机械工程控制基础知识点

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

” 。

机械工程控制基础知识点

●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高

度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。

机械工程控制论:是研究机械工程技术为对象的控制论问题。(研究系统及其输入输出三者的

动态关系)。

机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输

出(响应),并通过输出来研究系统本身的有关问题,即系统分析。(2)当系统已定,且系统

的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控

制。(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,

此即● 最优设计。(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统

的数学模型,此即系统识别或系统辨识。(5)当系统已定,输出已知时,以识别输入或输入

中得有关信息,此即滤液与预测。

● 信息:一切能表达一定含义的信号、密码、情报和消息。

信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。

信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再

输入到系统中去。如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相

反(或相位相差 180 度)则称之为“负反馈 ;如果方向或相位相同,则称之为“正反馈”

● 系统:是指完成一定任务的一些部件的组合。

控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。

开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。闭环系统:系统

的输出量对系统有控制作用,或者说,系统中存在反馈的回路。

开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开

环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定

性,对系统有控制作用。

线性系统:系统的数学模型表达式是线性的系统。

线性的定常系统:用线性常微分方程描述的系统。线性时变系统:描述系统的线性微分方程的系数为时间的函数。非线性系统:用非线性方程描述的系统。

线性系统与非线性系统的区别:线性系统可以运用叠加原理,而非线性系统不能运用叠加原

理。系统的稳定性能主要取决于系统的型次和开环增益,而系统的瞬态性能主要取决于

系统零点、极点分布。

●拉氏变换的线性性质:它是一个线性变换,若有常数KK,函数f(t1),f(t2),则

L[K1f1(t)+K2f2(t)]=K1L[f1(t)]+K2L[f2(t)]=K1F1(s)+K2F2(s)。

●终值定理的应用条件:若函数f(t)及其一阶导数都是可拉氏变换的,并且除在原点处

唯一的极点外,sF(s)在包括含jw轴的右半s平面内是解析的,这就意味着当t趋近与无

穷时f(t)趋于一个确定的值,则函数f(t)的终值为limf(t)=limF(s)。

求拉氏反变换的方法:(1)查表法;(2)有理函数法;(3)部分分式法。

在单输入—单输出系统的瞬态响应分析或频率响应分析中,采用的是传递函数标识的数学模

型,另一方面,在现代控制理论中,数学模型则采用状态空间表达式。

●数学模型:是系统动态特性的数学表达式。建立数学模型是分析、研究一个动态特性的前

提。一个合理的数学模型应以最简化的形式,准确地描述系统的动态特性。

建立系统的数学模型的方法:分析法和实验法。

●叠加原理:是系统在几个外加作用下所产生的响应,等于各个外加作用单独作用的响应

之和。

●机械运动的三要素:质量、阻尼和弹簧。

直线运动的三要素:质量、弹簧和粘性阻尼。

●基尔霍夫电流定律:若电路有分支路,它就有节点,则汇聚到某节点的所有电流之代数和应等于零(即所有流出节点的电流之和等于所有流进节点的电流之和)。基尔霍夫电压定律:电网络的闭合回路中电势的代数和等于沿回路的电压降的代数和。

●传递函数:线性定常系统的传递函数,是初始条件为零时,系统输出的拉氏变换比输入的拉氏变换。

传递函数的主要特点:(1)传递函数反映系统本身的动态特性,只与系统本身的参数有关,与外界输入无关;(2)对于物理可实现系统,传递函数分母中s的阶次n必不少于分子中

s的阶次m,即n》m;(3)传递函数的量纲是根据输入量和输出量来决定。

传递函数相同可以是不同类型的系统的原因:传递函数不说明系统的物理结构,不同的物理结构系统,只要其动态特性类同,可以用同一类型的传递函数来描述。

传递函数的典型环节:(1)比例环节K;(2)积分环节1/s;(3)微分环节s;(4)惯性

环节1/(Ts+1);(5)一阶微分环节Ts+1;(6)振荡环节1/(T2s2+2ζTs+1);(7)二阶

微分环节T2s2+2ζTs+1;(8)延时环节e-τs。

●方块图:是系统中各环节的功能和信号流向的图解表示方法。

方块图的简化法则:(1)前向通道的传递函数保持不变;(2)各反馈回路的传递函数保持

不变。

●响应时间响应:机械工程系统在外加作用激励下,其输出量随时间变化的函数关系称之为系统的时间响应,通过时间响应的分析可以揭示系统本事的动态特性。任一系统的时间响应都是由瞬态响应和稳态响应两部分组成。

瞬态响应:系统受到外加作用激励后,从初始状态到最终状态的响应过程。

稳态响应:时间趋于无穷大时,系统的输出状态。

频率响应:是系统对正弦输入的稳态响应。

系统时间响应的瞬态响应和稳态响应反映的性能:瞬态响应反映了系统的稳定性和响应的快

速性等方面的性能,而稳态响应反映了系统响应的准确性。

定义系统瞬态响应(过渡过程)的性能指标的前提:(1)系统在单位阶跃信号作用下的瞬态

响应;(2)初始条件为零。即在单位阶跃输入作用前,系统处于静止状态,输出量及其各阶

跃导数均等于零。

一阶系统的单位阶跃响应曲线中的T指的是系统的输出由0上升到稳态值某百分数时所需

的时间。

一阶系统的时间常数T是重要的特征参数,它表征了系统过渡过程的品质,T愈小,则系统

响应愈快,即很快达到稳定值。

二阶系统的单位阶跃响应:(1)欠阻尼情况(0<ζ<1);(2)临界阻尼情况(ζ=1);(3)

过阻尼情况(ζ>1);无阻尼情况(ζ=0)。

典型二阶系统(当0<ζ<1, ζ=0, ζ>1或=1时)在单位阶跃输入信号作用下的输出响应的

特性:00

或=1时,为非周期过程。

●机械工程系统的性能要求:稳定性、准确性及灵敏性。

系统的性能指标:(1)时域性能指标,它包括瞬态性能指标(即延迟时间td、上升时间

tr、峰值时间tp、最大超调量Mp、调整时间ts)和稳态性能指标(即稳态误差ess)。(2)

频域性能指标,它包括相位裕量γ、幅值裕量Kg、截止频率ωb及频宽(简称带宽)

0~ωb、谐振频率ωr及谐振峰值Mr。参量ζ,ωn与各性能指标间的关系:(1)若保持ζ不变而增大ωn则不影响超调量Mp,但延迟时间td,峰值时间tp及调整时间ts

相关文档
最新文档