第9章裂缝和挠度计算
钢筋混凝土构件抗裂度和裂缝计算(第二课)
混凝土结构
Concrete Structure
第九章 钢筋混凝土构件裂缝宽度和挠度验算 Deformation and Crack Width of RC Beam
整理ppt
第九章 变形和裂缝宽度的计算
第九章 钢筋混凝土构件的变形、裂缝和耐久性
§9. 3 §9. 4 §9. 5
(3) 腹板竖直裂缝:
位置:腹板较薄处 方向:垂直于梁轴线 分布:由梁的半高线上下延伸,裂缝中间宽两端窄
整理ppt
第九章 变形和裂缝宽度的计算
2、 成因
• 未凝固的混凝土下沉引起沿钢筋方向的裂缝。 • 由于混凝土体积变化受到内部或外部约束,在混凝土内 产生拉应力,导致开裂。 • 外力作用使混凝土产生拉应力,引起裂缝。 • 由于温度应力引起裂缝或其它因素。
整理ppt
第九章 变形和裂缝宽度的计算
§9. 3 钢筋混凝土构件裂缝宽度验算 9.3.1 裂缝的主要形式、成因及危害
1、 主要形式
(1) 受拉翼缘裂缝:
位置:受拉翼缘的侧面和底面 方向:垂直于受拉主筋 分布:临近跨中部分较密,渐向两端较稀
整理ppt
第九章 变形和裂缝宽度的计算
(2) 斜裂缝:
位置:距支座一定距离的梁的受拉区 方向:向跨中倾斜约45~60° 分布:两端近支座处较密,渐向跨中较稀
★裂缝间距的计算公式即是以该阶段的受力分析建立的。
★裂缝出齐后,随着荷载的继续增加,裂缝宽度不断开展。裂 缝的开展是由于混凝土的回缩,钢筋不断伸长,导致钢筋与混 凝土之间产生变形差,这是裂缝宽度计算的依据。
★由于混凝土材料的不均匀性,裂缝的出现、分布和开展具有 很大的离散性,因此裂缝间距和宽度也是不均匀的。但大量的 试验统计资料分析表明,裂缝间距和宽度的平均值具有一定规 律性,是钢筋与混凝土之间粘结受力机理的反映。
同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度
第九章混凝土结构的使用性能—开裂和挠度一、概述二、裂缝的类型三、构件的开裂内力四、裂缝宽度的计算理论五、裂缝的控制六、受弯构件的变形与刚度结构构件的可靠性具有足够的承载力和变形能力安全性:适用性:耐久性:在使用荷载下不产生过大的裂缝和变形在一定时期内维持其安全性和适用性的能力极限状态设计理论承载能力极限状态:正常使用极限状态:混凝土结构的使用性能包括裂缝、挠度、振动、疲劳等裂缝控制、变形控制和振动控制混凝土结构的极限荷载下的强度产生裂缝的原因:在混凝土结构中裂缝通常是由拉应力引起的。
因混凝土的极限拉伸应变εt u 随混凝土品种、配合比、添加剂、养护条件、加载速度、截面上的应力梯度等不同会发生变化。
严格地说,只有当混凝土的拉伸应变εt 达到某处混凝土的极限拉应变εt u 时才会出现裂缝。
1. 受力裂缝:拉、弯、剪、扭、粘结等引起的裂缝斜裂缝!!垂直裂缝!目前,只有拉、弯状态下混凝土横向裂缝宽度的计算理论比较成熟钢筋混凝土轴心受拉构件,贯穿整个截面宽度的裂缝为“主裂缝”;用变形钢筋钢筋配筋的构件,在主裂缝之间还出现有位于钢筋附近的短的“次裂缝”,有人称之为“粘结裂缝”。
当钢筋应力接近屈服时,将出现沿钢筋的纵向裂缝。
在梁中,主裂缝首先从受拉区边缘开始向中和轴发展,同样在主裂缝之间可以看到短的次裂缝。
梁高较大的T形梁或工字形梁中,钢筋附近的次裂缝可发展成与主裂缝相交的“枝状裂缝”(图c)。
在厚度较大的单向板或墙中(图d所示为板底面的裂缝)同样会产生这种“枝状裂缝”。
枝状裂缝在梁腹或钢筋间距中间处的裂缝宽度要比钢筋处的裂缝宽度大得多。
承受剪力和扭矩的构件,将出现垂直于主拉应力方向的裂缝。
钢筋混凝土结构在轴压力或压应力作用下也可能产生裂缝,例如梁受压区顶部的水平裂缝、薄腹梁端部连接集中荷载和支座的斜向受压裂缝、螺旋箍筋柱沿箍筋外沿的纵向裂缝、局部承压和预应力筋锚固端的局部裂缝等。
发生受压裂缝时,混凝土的应变值一般都超过了单轴受压峰值应变,临近破坏,使用阶段中应予避免。
《结构设计原理》叶见曙 第三版 课件第9章 钢筋混凝土受弯构件的应力、裂缝和变形计算
• 裂缝开展宽度过大,大气中的水汽和侵蚀性气体进入裂缝,
引起主筋锈蚀,使主筋有效截面积减小,导致构件强度降 低; • 由于冰冻和水化作用,日久会影响构件的耐久性,缩短 构件使用寿命。
青海大学 结构设计原理
广州机场立交出现15厘米宽裂缝
青海大学 结构设计原理
9.4 裂缝宽度计算——裂缝控制目的
1、保证使用功能的要求 结构构件的变形较大时,会严重影响甚至丧失它的使用功 能。如桥梁上部结构过大的挠曲变形使桥面形成凹凸的波 浪形,影响车辆行驶,严重时将导致桥面结构的破坏。 2、满足观瞻和使用者的心理要求 构件的变形过大,还引起使用者明显的不安全感。 3、避免对其他结构构件的不利影响 构件的变形过大,会影响到与它连接的其他勾结也发生过 大变形,有时甚至会改变荷载的传递路线、大小和性质。
裂缝宽度计算
《公路桥规》采用的公式是大连工学院海洋工程研究所试验资料基 础上,分析了裂缝宽度的主要因素,舍去次要因素,用数理统计方 法给出的简单适用的公式。
表面形状系数,带肋:1.0 钢筋的直径,采用不同 直径的钢筋时 4 As 按短期效应组合计算的构件裂缝 受力特征系数,受弯 1.0 , 光圆: 1.4 取换算直径: d (MPa) 处纵向受拉钢筋的应力 大偏压0.9 ss 30 d wmax c1c2c3 ( ) (mm) 受拉钢筋的总周长 Es 0.28 10
青海大学 结构设计原理
9.5 受弯构件的挠度验算
钢筋混凝土受弯构件在正常使用极限状态下的挠度,可 根据给定的构件刚度,用结构力学的方法计算。 由图乘法可得,简支梁的挠度计算公式: 承受均布荷载时: 跨中承受集中荷载时:
钢筋混凝土受弯构件的裂缝宽度和挠度验算
受压翼缘加强系数
3、钢筋应变不均匀系数
sm sk s sm s sk
钢筋应力不均匀系数 是反映裂缝间混凝土参加受拉工作 程度的影响系数。 越小,裂缝之间的混凝土协助钢筋抗拉的
作用越强。
1.1 0.65 ftk s sk te
sk分布图
1.1 0.65 ftk s sk te
sm sk
Sm cm cck
sm
cm
c
(
' f
Mk
0 )bh02Ec
cm
Mk
bh02 Ec
sm
Mk
Ash0 Es
ቤተ መጻሕፍቲ ባይዱ
Bs
Mk
M k h0
sm cm
cm
Mk
bh02 Ec
Bs
1
Ash02 Es
1
bh03 Ec
Bs
Es Ash02
E
E 0.2 6 E
1 3.5 f
Bs
1.15
Es Ash02 0.2
6E
1 3.5 f
1.1 0.65 ftk s sk te
在短期弯矩Mk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
wm smlm cmlm
εsm、εcm——分别为裂缝间钢筋及砼的平均应变; lm——裂缝间距。
平均裂缝宽度wm
wm smlm cmlm
sm
(1
cm sm
裂缝和挠度计算
材料强度
材料强度原则值
按荷载效应 旳原则组组合
原则组合并考虑 长久作用旳影响
裂缝计算
裂缝宽度计算措施
m
lcr 0
( s
c )dl
( sm
cm )lcr
1
cm sm
sm
lcr
c
sm
Es
lcr
式中: c
1
cm sm
,考虑裂缝间砼本身伸长对裂缝宽度旳影响系数;
与配筋率、截面形式、砼保护层厚度等原因有关,但在一般情况下变化
裂缝计算
9.2.2 平均裂缝间距
无粘结滑移理论以为钢筋与混凝土之间旳粘结滑移很小,裂缝宽度在
钢筋处为0,在混凝土表面最大,裂缝宽度距离钢筋越远越大,裂缝
宽度是因为钢筋外围混凝土弹性收缩引起,混凝土保护层是影响裂缝
宽度旳主要原因。综合粘结滑移理论和无粘结滑移理论,根据试验资
料分析得到平均裂缝间距计算公式为:
cq 准永久荷载作用下抗裂验算边沿混凝土旳预压应力。
裂缝计算
9.1.1 裂缝控制旳三个等级
3 三级:构件上允许出现拉应力,但对裂缝宽度需要进行控制。 要求:在荷载效应原则组合并考虑长久作用影响旳最大裂缝宽度不超出 要求旳限值(详细计算见后)。
注意 (1)一级、二级为抗裂验算,一般属于预应力混凝土构件;三级为裂 缝宽度验算,一般属于一般混凝土构件; (2)一般混凝土构件在使用中一般会存在裂缝,但是过大旳裂缝宽度 会影响构造外观并影响正常使用。 (3)裂缝控制等级和裂缝宽度限值根据环境类别和构造类别拟定(附 表1-13)。
钢筋混凝土受弯构件的裂缝宽度和挠度计算
钢筋混凝土受弯构件的裂缝宽度和挠度计算【最新版】目录1.钢筋混凝土受弯构件裂缝宽度和挠度计算的背景和意义2.裂缝宽度和挠度计算的理论基础3.裂缝宽度和挠度计算的方法和步骤4.计算结果的分析和应用5.结论和展望正文钢筋混凝土受弯构件的裂缝宽度和挠度计算是建筑结构设计中的重要环节,关系到结构的安全性、稳定性和耐久性。
在实际工程中,裂缝宽度和挠度通常是混凝土结构受弯构件的主要设计控制参数,因此,对它们的精确计算和分析具有重要的现实意义。
一、钢筋混凝土受弯构件裂缝宽度和挠度计算的理论基础裂缝宽度和挠度是受弯构件的两个主要变形参数。
其中,裂缝宽度是指混凝土受弯构件在弯曲过程中,由于内部应力达到极限而产生的裂缝的宽度;而挠度则是指受弯构件在弯曲过程中,构件的中性轴线偏离原位置的距离。
二、裂缝宽度和挠度计算的方法和步骤在实际工程中,裂缝宽度和挠度的计算通常采用以下的方法和步骤:1.确定受弯构件的材料性能参数,包括混凝土的抗压强度、抗拉强度、弹性模量等;2.根据受弯构件的几何参数和荷载条件,确定构件的截面几何形状和尺寸;3.采用适当的数学方法(如有限元法、矩方法等)计算受弯构件在荷载作用下的应力和应变分布;4.根据计算结果,确定裂缝宽度和挠度的数值。
三、计算结果的分析和应用裂缝宽度和挠度的计算结果可以反映受弯构件在弯曲过程中的变形情况,为结构设计提供重要的依据。
通常,我们需要对计算结果进行以下的分析和应用:1.检验裂缝宽度和挠度是否符合设计规范的要求;2.如果不符合要求,则需要调整设计参数(如增加截面尺寸、改变材料性能等)重新计算,直到满足设计要求;3.根据裂缝宽度和挠度的计算结果,确定受弯构件的耐久性和安全性。
四、结论和展望钢筋混凝土受弯构件的裂缝宽度和挠度计算是建筑结构设计的重要内容。
随着计算机技术和数学方法的发展,计算方法和工具也越来越精确和便捷。
混凝土结构原理第9章 正常使用极限状态验算
混凝土的徐变、收缩造成梁截面弯曲刚度降低,挠度随时 间增长。计算挠度时必须采用按荷载效应的标准组合并考虑荷 载效应的长期作用影响的刚度B。
1.荷载长期作用下刚度降低的原因
(1)混凝土的徐变 裂缝间受拉混凝土的应力松弛以及 混凝土和钢筋的徐变滑移,使受拉钢筋的平均应变和平均应力 随时间而增大;裂缝的发展,受拉混凝土退出工作;受压混凝 土的塑性发展,内力臂减小。
刚度是反映力与变形之间的关系:
s Ee 应力-应变: M EI ×f 弯矩-曲率: EI P 48 × 3 × f 荷载-挠度: (集中荷载) l EI V 12 3 d(两端刚接) 水平力-侧移: h
9.3.1
截面弯曲刚度的概念及定义
对于弹性均质材料截面,EI为常数,M-f 关系为直线。 钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
9.3.2
钢筋混凝土受弯构件的短期刚度Bs
2.物理关系
e sq
s sq
Es
,
s cq e ck Ec
x h0
sc wsc
C
3.平衡关系
M q C h h0 ws cq x h0 b hh0 M q T hh0 s sq As hh0
ssAs
hh0
9.3.2
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es
09-钢筋混凝土构件裂缝和变形计算
ss0 .8 M h 0 7 A s0 .8 1 7 6 .4 7 1 1 6 1 60 522 5.1 6 3 N 8 /m2m
(3)计算有效配筋率ρte:
A te 0 .5 b h 0 .5 2 5 60 5 801m 22m 50
rte A s/A te 12 /85 1 0 6 .2 05 1 0 .0 0 5 ,1 取5 rte 0.0155
第九章 钢筋混凝土构件裂缝和变形计算
§9. 1 变形和裂缝的计算要求 • 构件的裂缝宽度和挠度验算是属于正常使用极限状态。 • 挠度过大影响使用功能,不能保证适用性,而裂缝宽 度过大,则同时影响使用功能和耐久性; • 挠度和裂缝在验算时应采用荷载标准值、荷载准永 久值和材料强度的标准值;
由于构件的变形和裂缝都随时间而增大,因此在验 算时应按荷载效应的标准组合并考虑长期作用的影响。
第
混凝土结构设计原理 九
章
【例】某钢筋混凝土简支梁,计算跨度 l=6m,截面尺寸b=200mm,h=500mm, 混凝土强度等级为C30,构件已配置4根直 径为12mm的HRB400级钢筋,按荷载的准 永久组合计算的跨中弯矩值M=52.5KN·M, 保护层厚度为30mm。试验算其裂缝宽度。
lim0.3mm
h2b混凝(b土f 结b构)h设f 计T原形理
第 九 章
h h/2
b (a) b
h hf h/2
bf (c)
bf
hf h
h/2
b (b)
bf hf
b
hf bf
h h/2
(d)
第
混凝土结构设计原理 九
章
2)裂缝截面处的钢筋应力σs:
ss––– 按荷载效应的标准组合计算的混凝土构件裂缝截
钢筋混凝土结构辅导资料十四
钢筋混凝土结构辅导资料十四主题:第九章钢筋混凝土构件的变形和裂缝计算的辅导资料——钢筋混凝土受弯构件挠度验算;钢筋混凝土构件裂缝宽度验算。
学习时间:2014年12月29日-2015年1月4日内容:这周我们学习第九章的第一部分,学习本章时,重要的是要搞清一些概念和原理,而对一些公式,例如截面弯曲刚度和裂缝最大宽度的计算公式以及一些系数的计算公式是不要求背的,但对这些系数的物理意义是要知道的。
一、学习要求1.理解钢筋混凝土构件截面弯曲刚度的定义、基本表达式、主要影响因素以及裂缝间钢筋应变不均匀系数的物理意义;2.掌握简支梁、板的挠度验算方法;基本内容:二、主要内容根据钢筋混凝土结构物的某些工作条件以及使用要求,在钢筋混凝土结构设计中,除需要进行承载能力极限状态计算外,还应进行正常使用极限状态(即裂缝与变形)的验算,同时还应满足在正常使用下的耐久性的要求。
对结构构件进行变形验算和控制的目的是出于对结构的功能、非结构构件的损坏和外观的要求。
结构构件产生过大的变形会损害甚至使构件完全丧失所应负担的使用功能,如吊车梁变形过大将使吊车轨道歪斜而影响吊车的正常运行;构件过度变形会引起非结构构件的破坏,如建筑物中脆性隔墙(如石膏板、灰砂砖等)的开裂和损坏很多是由于支承它的构件变形过大所致;构件出现明显下垂的挠度会使房屋的使用者产生不安全感。
我国《规范》将配筋混凝土结构构件裂缝控制等级划分为三级。
一级——严格要求不出现裂缝的构件,按荷载效应的标准组合进行计算时,钢筋混凝土构件的变形︑裂缝及混凝土结构的截面弯曲刚度的概念和定短期刚度Bs ,裂缝间纵向受拉钢筋应变不均匀系数,截最小刚度原则与挠度验算,影响Bs 的主要因裂缝出现、分布和开展的机理 平均裂缝间距和平均裂缝宽度 最大裂缝宽度及其验算方法,影响裂缝宽度的主混凝土构件截面延性的概念 受弯构件的截面曲率延性系数,偏心受压构件截面曲率延混凝土结构耐久性的概念及其主要影响因素 混凝土的碳化,钢筋的锈蚀,耐久性构件受拉边缘混凝土不应产生拉应力。
钢筋混凝土受弯构件的裂缝宽度和挠度计算
【钢筋混凝土受弯构件的裂缝宽度和挠度计算】一、引言钢筋混凝土结构是现代建筑中常见的结构形式之一,而受弯构件作为其重要组成部分,其裂缝宽度和挠度的计算是设计过程中的关键内容。
在本文中,我将分析钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行深度探讨,希望能为您提供有价值的信息。
二、裂缝宽度计算1.裂缝宽度计算公式钢筋混凝土受弯构件的裂缝宽度计算可以使用以下公式进行:\[w_k = k \times \frac{f_s}{f_y} \times \frac{M_s}{b \times d}\]其中,\(w_k\)为裂缝宽度,\(k\)为调整系数,\(f_s\)为梁内应力,\(f_y\)为钢筋的屈服强度,\(M_s\)为抗弯强度矩,\(b\)为截面宽度,\(d\)为截面有效高度。
2.裂缝宽度计算包含的因素在裂缝宽度计算中,需要考虑梁内应力、钢筋的屈服强度以及抗弯强度矩等因素。
通过对这些因素的综合考虑,可以准确计算出钢筋混凝土受弯构件的裂缝宽度,从而确保结构的安全性。
三、挠度计算1.挠度计算公式钢筋混凝土受弯构件的挠度计算可以使用以下公式进行:\[f = \frac{5 \times q \times l^4}{384 \times E \times I}\]其中,\(f\)为挠度,\(q\)为荷载,\(l\)为构件长度,\(E\)为弹性模量,\(I\)为惯性矩。
2.挠度计算的影响因素在挠度计算中,荷载、构件长度、弹性模量和惯性矩等因素都会对挠度产生影响。
通过对这些因素进行综合考虑,并结合实际工程情况,可以准确计算出钢筋混凝土受弯构件的挠度,从而满足设计要求。
四、个人观点和理解钢筋混凝土受弯构件的裂缝宽度和挠度计算是结构设计中的重要内容,它直接关系到结构的安全性和稳定性。
在实际工程中,我们需要充分理解裂缝宽度和挠度计算的原理和方法,结合设计规范和实际情况,确保结构设计的合理性和可行性。
五、总结与展望通过本文的分析,我们深入探讨了钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行了详细介绍。
第九章:钢筋混凝土构件的裂缝和变形
MK 2 f =S l ––– 钢筋混凝土梁的挠度计算 B
的要求。 (3)满足公式: f<[f] 的要求。 满足公式:
混凝土结构设计原理
第9章
八.对受弯构件挠度验算的讨论
1.由计算公式可知:截面有效高度的影响最大; 1.由计算公式可知:截面有效高度的影响最大; 由计算公式可知 2.配筋率对承载力和挠度的影响:在适筋范围内, 2.配筋率对承载力和挠度的影响:在适筋范围内,提高配筋 配筋率对承载力和挠度的影响 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大, 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大,挠度 跨高比 越小;可选择适当的跨高比,可控制挠度; 越小;可选择适当的跨高比,可控制挠度; 减小挠度措施: 减小挠度措施: 提高刚度的有效措施 h0↑ 或As↑ 增加ρ'
gk+qk A Bmin Bmin(a) (b) Mlmax gk+qk B M Bmin (a) BBmin B1min
+
(b)
混凝土结构设计原理
第9章
七. 挠度计算步骤
(1)根据最小刚度原则确定所求刚度; 根据最小刚度原则确定所求刚度;
Mk B = M q ( θ − 1) + M
Bs
k
(2)代入材料力学公式计算挠度; 代入材料力学公式计算挠度;
混凝土结构设计原理
第9章
裂缝宽度和变形的验算表达式如下: 裂缝宽度和变形的验算表达式如下: 的验算表达式如下
主 页
SK≤RK 式中: 式中:
…9-1 目 录
SK —— 结构构件按荷载效应的标准组合、准永久 结构构件按荷载效应的标准组合、 组合或标准组合并考虑长期作用影响得到的裂缝宽 组合或标准组合并考虑长期作用影响得到的裂缝宽 上一章 度或变形值; 度或变形值;
第9章 钢筋混凝土构件变形及裂缝宽度验算
试验分析表明,影响裂缝间距的主要因素是纵 向受拉钢筋配筋率、纵向钢筋直径及外形特征、混 凝土保护层厚度等。采用变形钢筋,纵向受拉钢筋 配筋率越高,钢筋直径越细,裂缝间距越小;混凝 土保护层厚度越大,裂缝间距越大。
第9章 钢筋混凝土构件的裂缝及变形
纯弯段内受拉钢筋的应变分布图
第9章 钢筋混凝土构件的裂缝及变形 13/44
9.1.3平均裂缝宽度
图中的水平虚线表示平均应变 sm 。 为裂缝之间纵向受拉钢 设 筋应变不均匀系数,其值为裂缝间钢筋的平均拉应变 sm 与开裂截面 处钢筋的应变 s 之比,即 = sm s ,又由于 s = sq Es ,则平均 裂缝宽度 wm 可表达为
18/44
9.1.4最大裂缝宽度的计算及验算
2.最大裂缝宽度验算
构件在荷载效应的准永久组合并考虑长期作用的影 响,计算的最大裂缝宽度不能超过《规范》规定的限值, 应满足下式 w max≤wli m 式中: wlim——最大裂缝宽度限值。 (9-10)
第9章 钢筋混凝土构件的裂缝及变形
19/44
9.1.4最大裂缝宽度的计算及验算
8/44
9.1.2 平均裂缝间距
考虑上述诸多因素并根据试验资料, 《规范》给出了平均裂缝间 距计算公式为 d eq lcr (1.9cs 0.08 ) (9-1)
te
式中: lcr——平均裂缝间距。当计算的 lcr 大于构件箍筋间距时,可取 lcr 为构件箍筋间距; cs——最外层纵向受拉钢筋外边缘至受拉区底边的距离 (mm): 当 cs <20mm 时,取 c s =20mm;当 cs >65mm 时,取 cs =65mm; β ——系数, 对轴心受拉构件取β =1.1; 对其他受力构件均 取β =1.0; ρte——按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率
钢筋混凝土构件的裂缝宽度和挠度计算
钢筋混凝土构件的裂缝宽度和挠度计算钢筋混凝土结构是一种广泛应用的建筑结构形式。
在使用的过程中,由于各种因素的影响,钢筋混凝土构件会出现裂缝和挠度。
裂缝宽度和挠度的计算是设计和施工中非常重要的一步,下面将详细介绍钢筋混凝土构件的裂缝宽度和挠度计算的方法。
首先,我们先来了解什么是裂缝宽度。
裂缝宽度是裂缝两侧的最大间隔距离,通常用毫米来表示。
裂缝宽度的计算与构件所承受的荷载大小有关。
弹性模量法是一种基于线弹性理论的裂缝宽度计算方法。
该方法假设构件的截面保持线弹性行为,并且裂缝开口处的应力等于截面中的应力。
根据这个假设,可以通过使用构件的几何特征、材料性质以及荷载情况来进行计算。
弹性模量法的计算步骤如下:1.确定构件的几何特征,包括构件的截面形状、尺寸和钢筋的分布情况。
2.根据构件的截面形状和计算荷载,计算构件的抗弯承载力和抗剪承载力。
3.根据构件的弹性模量、截面的惯性矩和荷载情况,计算出构件所受到的弯矩和剪力。
4.计算裂缝宽度,可以使用一些经验公式或者根据经验计算裂缝宽度的公式,如ACI224R-01中给出的公式。
极限平衡法是一种基于非线性分析的计算方法,广泛用于钢筋混凝土构件的裂缝宽度计算。
该方法考虑了材料的非线性行为和构件在承受荷载过程中的变形情况。
极限平衡法的计算步骤如下:1.确定构件的几何特征和材料性质。
2.将构件的截面划分为若干离散截面,然后使用有限元或其他非线性分析方法计算每个离散截面的受力情况。
3.根据计算出的应力分布,计算裂缝宽度。
可以使用一些经验公式或者根据经验计算裂缝宽度的公式。
除了计算裂缝宽度,钢筋混凝土构件的挠度也是需要考虑的。
挠度是构件在受到荷载作用后产生的弯曲变形,通常用单位长度的偏移量表示。
挠度的计算方法与裂缝宽度计算类似,可以使用弹性模量法和极限平衡法等进行计算。
总而言之,钢筋混凝土构件的裂缝宽度和挠度的计算是设计和施工中的关键步骤。
正确的计算方法能够保证构件的安全性和使用寿命,并且提供准确的数据指导设计和施工。
混凝土结构设计原理:第9章 正常使用极限状态验算及耐久性设计
为可变荷载组合系数。
ci
i=2
由于可变荷载达到其标准值Qk的作用时间较短,故Sk也称为短期效应, 其值约为作用效应设计值的50%~70%。
在荷载长期作用下,构件的变形和裂缝宽度随时间增长,需要考虑长期
荷载的影响,荷载效应的准永久组合为:
n
∑ Sq = SGk +
ψ qi SQik ,
ψ
为可变荷载准永久系数。
2
9.1 概述
第9章 正常使用极限状态验算及耐久性设计
结构设计的 功能要求
安全性
承载能力极限状态
适用性 耐久性
正常使用极限状态
n 正常使用极限状态的设计特点
p 可靠指标可适当降低 p 这种设计为验算而非计算 p 材料和荷载采用标准值或准永久值 p 考虑荷载的长期作用效应
变形 抗裂 裂缝宽度
3
9.1 概述
Mk
12
σ sm = ω 1σ s2
lm
εs
ψ
=
ω
1
σ σ
s2 sq
εctm εsm
εct
p 由2-2截面的平衡条件可得
Mq = Asσ s2η2h0 + Mct
σs2
=
Mq − Mct Asη2h0
ψ
=ω
1 (1 −
M ct Mq
)
ψ = 1.1(1− Mct ) Mq
22
9.3 裂缝宽度的计算
第9章 正常使用极限状态验算及耐久性设计
9.3.3 平均裂缝宽度
wm
= ε smlm
− ε cmlm
=
ε sm (1 −
ε ε
cm sm
)lm
令: αc
板裂缝及挠度计算
板裂缝及挠度计算在进行板裂缝及挠度的计算前,需要先了解板的受力特点。
板结构主要由面板和边梁组成,板的受力可以分为不同的工作状态。
通常情况下,板的工作状态可分为两种:静态工作状态和动态工作状态。
静态工作状态下的板,其受力主要来自于自重、边梁支撑力和荷载,边梁支撑力主要是由边梁对板的约束力产生的。
这时板的挠度主要是由外荷载引起的,需要计算板的挠度值以确定其承载能力。
动态工作状态下的板,其受力主要来自于板的自重和外部激励荷载。
此时板的挠度主要是由于板的共振频率与激励频率相近引起的。
在设计和计算中,需要考虑到动态荷载引起的挠度,并采取适当的措施来降低振动。
在板裂缝及挠度的计算中,常用的方法有弯曲计算法、有限元计算法和简化计算法等。
弯曲计算法是根据经典弹性理论,利用平衡方程及边界条件等进行计算。
该方法适用于较为简单的板结构,具有计算精度高、结果可靠的特点。
但在复杂板结构的计算中,由于计算过程较为复杂,手工计算变得困难,需要借助计算机进行计算。
有限元计算法是目前最常用的计算板挠度的方法之一、该方法通过将板划分为有限个小单元,利用弹性力学和有限元法原理进行离散化处理,然后利用计算机进行计算。
该方法计算精度高,适用于各种复杂的板结构。
简化计算法是将板划分为若干小块或小梁,根据小梁理论进行计算。
该方法的计算较为简单,适用于一些简单的板结构。
除了上述常用的计算方法外,还可以通过实验方法来计算板裂缝及挠度。
实验方法主要是通过在板上施加荷载,并通过测量得到板的变形情况,从而计算出板的裂缝及挠度。
在板裂缝及挠度的计算中,需要注意以下几点:1.确定荷载:在计算中,需要确定板受到的荷载类型及大小,包括自重、活荷载、温度荷载等。
2.确定边界条件:边界条件是计算中的重要参数,决定了计算的准确性。
边界条件包括边梁的约束和支撑方式等。
3.计算板的刚度:在计算中,需要确定板的弹性模量和截面惯性矩等参数。
4.计算板的应力:在计算中,需要确定板的应力分布,以确定板的最大应力。
第9章混凝土结构按变形和裂缝宽度验算
南通大学建筑工程学院
第九章 混凝土构件的变形及裂缝宽度验算
式中
ρ , ρ ′ ——分别为受压及受拉钢筋的配筋率。
ρ′ θ = 2.0 − 0.4 ρ
此处反映了在受压区配置受压钢筋对混凝土受压徐 变和收缩起到一定约束作用,能够减少构件在长期荷载 作用下的变形。上述θ适用于一般情况下的矩形、T形、 工字形截面梁,θ值与温湿度有关,对干燥地区,θ值应 酌情增加15%~25%。对翼缘位于受拉区的T形截面,θ 值应增加20%。
Ms = 0.87 As h0
Ns As
σ sk =
式中 Ns 、As——分别为按荷载短期效应组合计算的轴 向拉力值和受拉钢筋总截面面积。 ③偏心受拉构件。大小偏心受拉构件σsk按下式计算: N ss e′ σ sk = As ( h ′ − as′ ) 式中 e′——轴向拉力作用点至受压区或受拉较小边 ′ 纵筋合力点的距离, ′ = e0 + y c + − a ′ e s yc′ ——截面重心至受压或较小受拉边缘的距离。
ψ ——钢筋应变不均匀系数,是裂缝之间钢筋的平均应 变与裂缝截面钢筋应变之比,它反映了裂缝间混凝土受 拉对纵向钢筋应变的影响程度。ψ愈小,裂缝间混凝土 协助钢筋抗拉作用愈强。该系数按下列公式计算
ψ = 1.1 − 0.65
并规定0.4≤ ψ ≤1.0 式中
ρ 钢筋配筋率, te =
ρ teσ sk
f tk
ρ te ——按有效受拉混凝土面积计算的纵向受拉
As Ate
。
南通大学建筑工程学院
第九章 混凝土构件的变形及裂缝宽度验算
Ate
——有效受拉混凝土面积。对受弯构件,近似取
Ate = 0.5bh + (b f − b)h f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢筋的作用仅仅扩展钢筋周围有限区域,裂缝出现后只是钢筋周围有
限范围内混凝土受到钢筋约束。国内外对此进行了大量研究,目前已
广泛接受有效配筋率的概念,并反应在规范的计算公式中,但是对其
取值方法尚无统一意见。
在我国,砼有效受拉面积对于轴心受拉构件取全截面,对于受弯、偏
压、偏拉构件取
Ate 0.5bh (bf b)hf
锈胀引起的沿钢筋纵向的裂缝,规定了钢筋的混凝土保护层的最
小厚度。
通常,裂缝宽度和挠度一般可分别用控制最大钢筋直径和最大跨 高比来控制,只有在构件截面尺寸小,钢筋应力高时进行验算。
钢筋混凝土结构伸缩缝最大间距(m)
结构类别 排架结构 框架结构
剪力墙结构
挡土墙、地下室墙壁等结构
装配式 装配式 现浇式 装配式 现浇式 装配式 现浇式
裂 缝 计 算
第九章
钢筋砼构件变形与裂缝验算
本章主要内容
裂 缝
计
算
9.1 概述
9.2 裂缝宽度验算
9.3 挠度计算
9.4 耐久性要求(略)
本章基本要求
裂 缝
计
算
1. 裂缝宽度的验算:计算理论概述,裂缝开展前后的应力变化。裂缝 间距、平均裂缝宽度、最大裂缝宽度、允许裂缝宽度及减小裂缝宽度的 措施; 2. 受弯构件挠度验算:裂缝出现前的刚度计算,在荷载短期效应组合 下的短期刚度计算;在荷载短期效应组合下并考虑荷载长期效应组合影 响的长期刚度计算; 3. 耐久性规定。
裂
9.2.2 平均裂缝间距
缝 计
算
注意:由于材料的不均匀性以及截面尺寸的偏差等因素 的影响,裂缝的出现具有某种程度的偶然性,因而裂缝的分 布和宽度同样是不均匀的。但是,对大量试验资料的统计分 析表明,从平均的观点来看,平均裂缝间距和平均裂缝宽度 是有规律的,平均裂缝宽度和最大裂缝宽度之间也有一定的 规律性。所以我们可采用平均裂缝间距和平均裂缝宽度以及 根据统计求得的“扩大系数”来确定最大裂缝宽度的验算方 法。
ck
pc 扣除全部预应力损失后,在抗裂验算边缘混凝土的预压应力。
裂
9.1.1 裂缝控制的三个等级
缝
计
算
2 二级:一般要求不出现裂缝的构件
要求:在荷载短期效应组合作用下,构件上拉应力应小于混凝土的抗拉
强度;在荷载效应的准永久组合作用下,构件上不宜产生拉应力(有经
验可适当放松)。
ck pc ftk cq pc 0
C25~ C45
25 30 35
40
≥50 ≤C2 0
25 30 30 / 30 /
35 /
柱
C25~ C45
30 30 35
40
裂 缝 计 算
≥50
30 30 30 35
注:混凝土保护层厚度不应小于钢筋的公称直径。基础中纵向受力钢 筋保护层厚度不应小于40mm,当无垫层时不应小于70mm。 有防火要求建筑,其混凝土保护层厚度应符合有关规定。
而且lm与砼保护层厚度有较大关系。此外,用带肋变形钢
筋时比用光圆钢筋的平均裂缝间距要小些,钢筋表面特征
同样影响平均裂缝间距对此可用钢筋的等效直径deq代替d。
据此,对lml采m 用两项2c表达式1。deteq
裂
说明:砼有效受拉面积
缝
计
算
砼有效受拉面积不是指全部受拉区面积,因对于裂缝间距和宽度而言,
裂
说明:截面的有效配筋率
缝
计
te
As Ate
te 0.01, 取te=0.01
算
h h/2
b (a) b
h hf h/2
bf (c)
bf
hf
h h/2
b (b)
bf hf
b
hf bf
h h/2
(d)
裂
说明:受拉区纵向钢筋的等效直径
缝
计
deq
ni di2
ni idi
达到l后,粘结应力消失,砼和钢筋又 具有相同的拉伸应变,各自的应力又 趋于均匀分布。钢筋与砼间无粘结应 力。钢筋把足以引起第二条裂缝的拉力传
递给砼所需的最小粘结长度l叫传递长度l。
裂
9.2.2 平均裂缝间距
缝
计
平均裂缝间距lm=1.5l。对粘结应力传递长度l可由平衡条件求得。 算
l
取l段内钢筋为隔离体,作
算
纵向钢筋相对粘结特性系数
非预应力钢筋 钢筋 光面 带肋 类别 钢筋 钢筋
先张法预应力钢筋
带肋 螺旋肋 刻痕钢丝 钢筋 钢筋 钢铰线
后张法预应力钢筋
带肋 钢铰 光面 钢筋 线 钢筋
νi 0.7 1.0 1.0 0.8
0.6
0.8 0.5 0.4
对于环氧树脂涂层带肋钢筋,其相对粘结特性系数还应在上表基础 上乘以0.8。
裂
结构构件的裂缝控制公式
缝 计
算
max lim
结构构件的裂缝控制及最大裂缝宽度限值
环境类别
一 二 三
钢筋混凝土结构
裂缝控制等级 三
Wlim(mm) 0.3(0.4)
三
0.2
三
0.2
预应力混凝土结构
裂缝控制等级 三
Wlim(mm) 0.2
二
/
一
/
裂
混凝土结构的环境类别
缝
计
类别
条件
算
一
室内正常环境。
e0
e0
1 荷载产生的裂缝
Ns Ns
(a)
Ns
Ts
Ns
(b)
Ns
Ns
(c)
裂 缝 计 算
(d)
T (e)
裂
2 非荷载裂缝
缝 计
算
非荷载裂缝一般通过构造措施控制。
为防止温度应力过大引起的开裂,规范规定了最大伸缩缝之间
非 荷
间距。
载
裂
缝 为防止由于钢筋周围砼过快的碳化失去对钢筋的保护作用,出现
控 制
裂缝的开展是由于砼的回缩,钢筋的伸长,导致砼与钢筋之间不断
产生相对滑移的结果。
在一定区段钢筋与砼应变差的累积量,即形成了裂缝宽度。
另外: 1.在荷载长期作用下,由于砼的滑移徐变和拉应力的松弛,,讲导 致裂缝间受拉砼不断退出工作,使裂缝开展宽度增大; 2.砼的收缩使裂缝间砼的长度缩短,也回引起裂缝的进一步开展; 3.荷载的变动使钢筋直径时胀时缩也将引起粘结强度的降低,导致 裂缝宽度的增大。
cq 准永久荷载作用下抗裂验算边缘混凝土的预压应力。
裂
9.1.1 裂缝控制的三个等级
缝
计
3 三级:构件上允许出现拉应力,但对裂缝宽度需要进行控制。
算
要求:在荷载效应标准组合并考虑长期作用影响的最大裂缝宽度不超过
规定的限值(具体计算见后)。
注意 (1)一级、二级为抗裂验算,一般属于预应力混凝土构件;三级为裂 缝宽度验算,一般属于普通混凝土构件; (2)普通混凝土构件在使用中一般会存在裂缝,但是过大的裂缝宽度 会影响结构外观并影响正常使用。 (3)裂缝控制等级和裂缝宽度限值根据环境类别和结构类别确定(附 表1-13)。
1
张紧的砼此时向裂缝两侧回
缩,但其回缩不自由,受到 钢筋约束而直到被阻止。在
Ns 1
回缩的那一段长度l中,砼
与钢筋之间有相对滑移从而
产生粘结应力τ。
ss
2 (a)
<ftk 2
(b) (c)
(d) (e)
1
Ncr+N
3
Ns
sm
9.2.ቤተ መጻሕፍቲ ባይዱ 裂缝出现与开展规律
在第一批裂缝出现后, 在传递长度l以外的那部分 砼仍处于受拉紧张状态中, 因此当轴拉力继续增大时, 就可能在离开裂缝截面>l的 另一薄弱截面处出现新裂缝, 按此规律,随着轴拉力的增 大,裂缝将逐条出现。在两 条裂缝之间,当砼拉应力小 于实际砼抗拉强度时,不再 产生新的裂缝。
重点、难点:构件裂缝宽度和变形公式的建立、构件裂缝宽度和变 形的影响因素。
裂
9.1 概述
缝
计
算
9.1.1 裂缝控制的三个等级
构件的裂缝宽度和挠度验算是属于正常使用极限状态
1 一级:严格要求不出现裂缝的构件 要求:在荷载效应标准组合作用下,构件不允许出现裂缝。
ck pc 0 在荷载效应标准组合作用下,抗裂验算边缘的混凝土法向应力;
lm
3 ftd
8 m te
试验表明,砼和钢筋间得粘结强度大致与砼抗拉强度成正比关系,且可取
ft0 为常数。
m
lm
1
d
te
裂
9.2.2 平均裂缝间距
缝
计
试验还表明,lm不仅与 d te 有关(d te ,则lm ,
算
但d 很小,te很大,lm并不会等于0,而是趋于一常数。)
准永久组合
标准组合并考虑 长期作用的影响
9.2 裂缝宽度验算
裂 缝
计
算
裂
半理论半经
分析裂缝形成开展机理,建立力学模
缝
验方法
宽
型,推导计算公式,试验资料确定计 算参数。
度
计
算
方
法
数理统计
分析试验资料,确定影响参数和主要
方法
因素,数理统计方法确定计算公式。
注:我国规范采用半理论半经验方法计算裂缝宽度。
lcr
k2c
k1
deq
te
1.9c 0.08 deq
te
c 20mm,取20mm c 65mm,取65mm
裂
9.2.3 平均裂缝宽度
缝
计
粘结滑移理论认为裂缝宽度是由于钢筋与混凝土之间的粘结破坏出现 算