连续型随机变量的生成-Read

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续型随机变量的生成:

1反函数法

采用概率积分变换原理,对于随机变量X的分布函数F(X)可以求其反函数,得: Xi=G(Ri)

其中,Ri为一个0-1区间内的均匀分布的随机变量.

F(X)较简单时,求解较易,当F(X)较复杂时,需要用到较为复杂的变换技巧。

1.1平均分布:

例:已知炮弹对目标的方位角Fi在0-2*P内均匀分布,试用(0,1)均匀随机数变换,模拟弹着点方位角的抽样值Fi.

解: R=F(Fi)=Fi/2*PI

得Fi=G(R)=2*PI*R ,其中,R为0-1区间上的均匀分布的随机数.

程序略

1.2指数分布:

指数分布的分布函数为:

x<0时,F(x)=0 ; x>=0,F(x)=1-exp(-lamda*x)

利用反函数法,可以求得: x=-lnR/lamda

2正态分布随机变量的生成:

正态分布在概率统计的理论及应用中占有重要地位,因此,能产生符合正态分布的随机变量就在模拟一类的工作中占有相当重要的地位。下面介绍两种方法。

2.1舍选法:

这种方法便捷而有效,且具有一定的代表性,其基本思路是:

在概率密度的函数图像的外围画一个大框,然后在这个框内部产生随机点(rx,ry),根据是否落在概率密度函数的下方,来决定是否要留下这个点。

经过一定的计算变行,符合二维的正态分布的随机变量的生成可按下面的方法进行:

1)产生位于0-1区间上的两个随机数r1和r2.

2)计算u=2*r1-1,v=2*r2-1及w=u^2+v^2

3)若w>1,则返回1)

4) x=u[(-lnw)/w]^(1/2)

y=v[(-lnw)/w]^(1/2)

如果为(miu,sigma^2)正态分布,则按上述方法产生x后,x’=miu+sigma*x

由于采用基于乘同余法生成的0-1 上的随机数的正态分布随机数始终无法能过正态分布总体均值的假设检验。而采用C语言的库函数中的随机数生成函数rand()来产生0-1 上的随机数,效果较为理想。

关键程序段(funNorm返回一维的正态分布,而funNorm2则生成二维的随机分布): float funNorm(float miu,float sigma)

{ float r1,r2;

float u,v,w;

float x,y;

do

{ r1=MyRnd();

r2=MyRnd();

u=2*r1-1;

v=2*r2-1;

w=u*u+v*v;

}while(w>1);

x=u*sqrt(((-log(w))/w));

y=v*sqrt(((-log(w))/w));

return miu+sigma*x; //also could return miu+sigma*y;

}

typedef struct

{ float x;

float y;

}sPoint;

sPoint funNorm2(float miu1,float sigma1,float miu2,float sigma2)

{ float r1,r2;

float u,v,w;

float x,y;

sPoint mPoint;

do

{ r1=rand()/(float)32767;

r2=rand()/(float)32767;

u=2*r1-1;

v=2*r2-1;

w=u*u+v*v;

}while(w>1);

x=u*sqrt(((-log(w))/w));

y=v*sqrt(((-log(w))/w));

mPoint.x=miu1+sigma1*x;

mPoint.y=miu2+sigma2*x;

return mPoint;

}

列出在Matlab下对某次试验(生成分布为N(0,1)的随机数)的检测结果: [muhat,sigmahat,muci,sigmaci]=normfit(a)

[h,sig,ci]=ztest(a,0,1)

Output:

muhat =-0.0246 %显著性为0.95的条件下,均值的点估计。

h = 0 %接受方差为1,均值估计为0的假设检验,不能拒绝假设。

sig =0.6700 %假设的成功概率.

由此可见,在这种条件下生成的正态随机数序列基本能符合使用的要求,在精度上仍有该进的余地。

2.2利用中心极限定理生成符合正态分布的随机量:

根据独立同分布的中心极限定理,有:

这里,其实只要取n=12(这里,亦即生成12个0-1上的随机数序列)就会有比较好的效果。

经验证,用该种方法生成生的随机数序列同样能比较好的符合正态分布特性。

由于生成的都是标准正态分布,所以,当需要生成N(a,b)的正态分布随机量时,根据正态分布的线性变换特性,只要用x=a*x0+b即可。(其中,x0表示生成的符合N(0,1)分布的正态随机变量。方法3.1亦是如此)

4离散型随机变量的生成:

离散型随机变量的生成主要是希望得到在已知X符合某类分布的条件下,生成相应的X。

4.1符合泊松分布的随机变量的生成:

这里,采用”上限拦截”法进行测试,其本的思想是这样的:

1)在泊松分布中,求出X取何值时,p(X=k)取最大值时,设为Pxmax.

其时,这样当于求解f(x)=lamda^k/k! 在k取何值时有最大值,虽然,这道题有一定的难度,但在程序中可以能过一个循环来得到取得f(x)取最大值时的整数自变量Xmax。

相关文档
最新文档