用导数工具求解数列问题

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

导数法解题例析

导数法解题例析
x (-∞,0) 0 (0,1) 1 (1,2) 2 (2,+∞) y, - 不存在 + 0 - 不存在 + y 单调递减 极小值 单调递增 极大值 单调递增 极小值 单调递增 ∴
评注"在利用导数法判定函数的单调性和极值时,首先要确定函数的定义区间,其次用函数的不可导点及驻点顺次把函数的定义区间分成若干个小开区间,列成表格,判断导数在各个小区间内的符号,进而判定函数的单调性和极值。
错因剖析:曲线与直线相切,并不一定只有一个公共点,求曲线过某一点的切线方程,这一点未必是切点,有可能以另一点为切点的切线刚好过该点。因此应注意求曲线"过某一点的切线"与"在某一点的切线"是有区别的。
正解:设切点为则P处的切线方程方程为由点A在切线l上有:
又点P在曲线S上,有,代入上式可知:。
2.利用导数证明不等式
例7. (2004全国卷)若函数
(1)求函数f(x)的最大值;
(2)设0<a<b,证明:0<<。
(1)函数f(x)的定义域为(-1,+∞),。令。
当-1<x<0时,f,(x)>0,当x>0时,f,(x)<0,又f(0)=0,∴当且仅当x=0时,f(x)可取最大值,且最大值为0
(2)证法一:
由(1)的结论知,由题设0<a<b,得, 因此

综上,0<<
证法二:, 设

当0<x<a时,F,(x)<0,因此F(x)在(0,a)上为减函数。
当x>a时,F,(x)>0,因此F(x)在(a,+∞)上为增函数。
∵f(x)在[0,2]上是减函数,∴,则b-3
又f(2)=0,∴8+4b+d=0,则d=-4b-8,∴f(1)=1+b+d=1+b-4b-8=-7-3b≥2

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

利用导数求几类数列题

利用导数求几类数列题

利用导数求几类数列题导数作为高考的新增内容,犹如一阵清新的春风,给传统的数学教学带来了新的生机和活力,为中学数学问题的研究提供了新的平台,同时也拓宽了高考数学命题的空间。

目前对导数的研究大多停留在函数、解析几何、不等式等方面,本文则另辟蹊径介绍了导数在几类数列题上的应用,给繁琐的数列题提供了一种更为便捷的解题途径。

例1:求以下数列之和:(1)sn=1+2x+3x2+……+nxn-1(x≠1,x≠0)(2)sn=1+3x2+5x3+……+(2n-1)x2n-2分析:利用数列求和f(x)=x+x2+x3+……+xn=x-xn+11-x(x≠1,x≠0)两边求导f’(x)=1+2x+3x2+……+nxn+1=1-(n+1)xn+nxn+1(1-x)2(*)(1)由(*)可以求得sn=1-(n+1)xn+nxn+1(1-x)2(2)法一:不妨令cn=(2n-1)x2n-2则cn=2[n(x2)n-1]-x2n-2,分组求和,利用(*)可求得sn=2[1-(n+1)x2n+nx2n+2(1-x2)2-1-x2n1-x2=(2n-1)x2n+2-(2n+1)x2n+x2+1(1-x2)2(**)法二:若g(x)=x+x3+x5+……+x2n-1=x2n-1-xx2-1对上式两边求导可得g’(x)=1+3x2+5x4+……+(2n-1)x2n-2=(2n-1)x2n+2-(2n+1)x2n+x2+1(x2-1)2【点评】一般形如cn=an*bn(其中{an}为等差数列,{bn}为等比数列)的数列{cn},即原来可用错位相减求前n项和的数列,都可将通项适当变形后,利用(*)或(**)的结论求解,上述两式中的x赋予具体数值便可求得一系列数列之和,例如:1+2×3+3×32+……+n×3n-1=1+(2n-1)3n4例2:求下列数列之和(1)1+22x2+32x2+……+n2xn-1(2)c22+c23x+c24x2+……+c2nxn-2分析:观察(1)可发现将(*)乘以x后求导可得(x+2x2+3x3+……+nxn)’=1+22x+32x2+……+n2xn-1=1+x-(n+1)2xn+(2n2+2n-1)xn+1-n2xn-1(1-x)2(2)因为c2nxn-2=n(n-1)2xn-2=12(nxn-1)’对(*)两端继续求导可得=c22+c23x+c24x2+……+c2nxn-2=2-(n2+n)xn-1+2(n2-1)xn-(n2-n)xn+12(1-x)3【点评】以上两题都是利用(*)再次求导后求得,当数列中出现n(n-1)形式都可考虑将原式适当变形后,由f(x)经两次求导而得。

例谈用导数证明数列型不等式的策略

例谈用导数证明数列型不等式的策略

>2022年第4期 >中学数学教学参考(下旬)★★★★★★思想囱法IT w d' ____________ZZZZZZZZZZ例谈用导数证明数列型不等式的策略赵素敏(福建省闽侯县第一中学)摘要:数列型不等式是数列问题中比较复杂的一类题型,需要运用导数先证明一个函数不等式,再将此 函数不等式数列化,最后运用数列知识使不等式得以证明。

关键词:数列不等式;导数;策略文章编号:1002-2171(2022)4-0049-03解答导数与数列综合求证函数不等式的问题时, 要先运用导数证明一个函数不等式,然后通过数列知识与方法进行运算,最终使不等式得证。

虽然解题思 路是清楚的,但其中的函数不等式证明是非常有难度的,这也是求解此类问题的关键。

本文针对这类问题,结合典型题目进行分析探究,介绍六种常用解题 策略,以供读者参考。

1合理替换例1若”是任意正整数,试证明:丄+ 士〉n n~r L21n*n求不等式(x 2-l)/(x)<0的解集。

分析:从条件In z • /'(丄)+ 竽>0,可得(/(z)ln z)'>0,进而探求得到/(^) <0与/(^)>0的解集,接着解决题中的不等式就比较容易了。

简解:设g(z)=/(z)ln 乂,根据条件,当x>0时,(/(x)ln 工)'>0,则g(z)在(0,+oo)上单调递增, 且 g(l) = 0,又当 re (0,l)时,In x<0,g(x)<0,则 /(工)>0;当 乂€(1,+°°)时,In x>0,g(x)>0,所以/(^)>0,且在(0,+s)内都成立,又孑(工)是定义在 R 上的奇函数,所以当x<0时,/a )<0,由(分一 1) •分析:设尸口,则丄+土=/—1+严=n n n~r I t 且t>l,所以要证丄+ 召>21n 也成立,只t n n~r 1 n需证当t>l 时』一+ >21nt 成立。

专题13 利用导数解决函数的极值、最值

专题13 利用导数解决函数的极值、最值

专题13利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值万能模板内容使用场景一般函数类型解题模板第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号;第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值.【答案】极小值为1,无极大值.试题解析:第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为x xx f ln 1)(+=,所以()f x 的定义域为()0+∞,,所以()22111'x f x x x x -=-+=;第二步,求方程'()0f x =的根:令()'0f x =得,1x =;第三步,判断'()f x 在方程的根的左、右两侧值的符号:当01x <<时()'0f x <,当1x >时,()'0f x >;第四步,利用结论写出极值:所以1x =时,()f x 有极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值.【变式演练1】(极值概念)下列说法正确的是()A .当0'()0f x =时,则0()f x 为()f x 的极大值B .当0'()0f x =时,则0()f x 为()f x 的极小值C .当0'()0f x =时,则0()f x 为()f x 的极值D .当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =【答案】D 【解析】【分析】由导函数及极值定义得解.【详解】不妨设函数3()f x x =则可排除ABC由导数求极值的方法知当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =故选:D【变式演练2】(图像与极值)已知函数()3()ln (,,)f x ax bx c a b c =++∈R 的定义域为(3,)-+∞,其图象大致如图所示,则()A .b a c <<B .b c a <<C .a b c <<D .a c b<<【答案】A 【分析】设3()g x ax bx c =++,利用导数求得函数的单调性,以及结合图象中的函数单调性,即可求得,,a b c 的大小关系,得到答案.【详解】设3()g x ax bx c =++,可得2()3g x ax b '=+,由图象可知,函数()f x 先递增,再递减,最后递增,且当1x =时,()g x 取得极小值,所以函数()g x 既有极大值,也有极小值,所以2()30g x ax b '=+=有两个根,即3a x b=-31ab=-,可得0,0a b ><且3a b =-,又由()0ln 0f c =>,可得1c >,由()1ln()0ln1f a b c =++>=,可得1a b c ++>,所以11312c a b a a a a >--=-+=+>,所以c a b >>.故选:A.【变式演练3】(解析式中不含参的极值)已知函数()ln xf x x x=-,则()A .()f x 的单调递减区间为()0,1B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1-【答案】C【分析】先对函数求导()221ln x x f x x --'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f x x x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<,所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ,所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C【变式演练4】(解析式中含参数的极值)已知函数()2ln 2f x ax x =--,()4xg x axe x =-.(1)求函数()f x 的极值;(2)当0a >时,证明:()()()2ln 12ln ln 2g x x x a --+≥-.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形讨论单调性即可得极值;(2)令()()()2ln 1h x g x x x =--+,根据导数判断函数的单调性证明即可.【详解】(1)∵()2ln 2f x ax x =--,()0x >,∴()22ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,函数()f x 单调递减,函数()f x 无极值;当0a >时,20,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;故函数()f x 的极小值为2222=2ln 22ln f a a a a a ⎛⎫⨯--=-⎪⎝⎭,无极大值.(2)证明:令()()42ln 2222ln 20,0xxh x axe x x x axe x x a x =--+-=--->>,()()()211=22x x x x h x a e xe ae x x x +'+--=+-,故()()=21xh x x ae x '+-⎛⎫ ⎪⎝⎭,令()0h x '=的根为0x ,即02=x ae x ,两边求对数得:00ln ln 2ln a x x +=-,即00ln ln 2ln x x a +=-,∴当()0x x ∈+∞,时,()0h x '>,()h x 单调递增;当()00,x x ∈时,()0h x '<,()h x 单调递减;∴()()()0000000min 22ln 222ln 2ln 2ln xh x h x ax e x x x x a =---=-=--=-,∴()2ln 2ln 2h x a ≥-,即原不等式成立.【变式演练5】(由极值求参数范围)若函数()221e e 22x x f m x x m=--有两个极值点,则实数m 的取值范围是()A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .e ,2⎛⎫+∞ ⎪⎝⎭D .()e,+∞【答案】B 【分析】依题意,()2e e xxm f m x x =--'有两个变号零点,由()0f x '=,可得21e e xx x m +=,设()2e ex x g x x +=,求出函数()g x 的单调性及取值情况即可得解.【详解】解:依题意,()2e e x xm f m x x =--'有两个变号零点,令()0f x '=,即2e e 0x x m mx --=,则()2e e x xm x =+,显然0m ≠,则21e ex x xm +=,设()2e e x x g x x+=,则()()22421212()x x x x x x x e e e x e e x g x e e+⋅-+⋅--='=,设()1e 2x x h x =--,则()e 20xh x -'=-<,∴()h x 在R 上单调递减,又()00h =,∴当(),0x ∈-∞时,()0h x >,()0g x '>,()g x 单调递增,当()0,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减,∴()()max 01g x g ==,且x →-∞时,()g x →-∞,x →+∞时,()0g x →,∴101m<<,解得1m >.故选:B .【点睛】方法点睛:函数零点问题的求解常用的方法有:(1)方程法(直接解方程求解);(2)图象法(画出函数()f x 的图象分析得解);(3)方程+图象法(令()=0f x 得()()g x h x =,分析函数(),()g x h x 的图象得解).要根据已知条件灵活选择方法求解.【变式演练6】(由极值求其他)已知函数321()(,)3f x x ax bx a b R =++∈在3x =-处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[4,4]-上的最大值与最小值.【答案】(1)13a b =⎧⎨=-⎩;(2)最大值为763,最小值为53-.【解析】【分析】(1)先对函数求导()22f x x ax b '=++,根据题意,列出方程组求解,即可得出结果;(2)根据(1)的结果,确定函数极大值与极小值,再计算出端点值,比较大小,即可得出结果.【详解】(1)由题意得:()22f x x ax b '=++,()()396039939f a b f a b ⎧-=-+=⎪∴⎨-=-+='-⎪⎩,解得:13a b =⎧⎨=-⎩.当13a b =⎧⎨=-⎩时,()32133f x x x x =+-,()()()22331f x x x x x '=+-=+-,∴当(),3x ∈-∞-和()1,+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<,()f x ∴在(),3-∞-,()1,+∞上单调递增,在()3,1-上单调递减,()f x ∴的极大值为()39f -=,满足题意.(2)由(1)得:()f x 的极大值为()39f -=,极小值为()1511333f =+-=-,又()2043f -=,()7643f =,()f x ∴在区间[]4,4-上的最大值为763,最小值为53-.类型二求函数在闭区间上的最值例2已知函数()ln f x x x =-,()22g x ax x =+()0a <.(1)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最值;(2)求函数()()()h x f x g x =+的极值点.【答案】(1)最大值为1-,最小值为1e -;(2)见解析.【解析】试题分析:(1)对函数()f x 进行求导可得()11f x x'=-,求出极值,比较端点值和极值即可得函数的最大值和最小值;(2)对()h x 进行求导可得()h x '=221ax x x++,利用求根公式求出导函数的零点,得到导数与0的关系,判断单调性得其极值.试题解析:第一步,求出函数()f x 在开区间(,)a b 内所有极值点:依题意,()11f x x '=-,令110x-=,解得1x =;第二步,计算函数()f x 在极值点和端点的函数值:()11f =-,111e e f ⎛⎫=-- ⎪⎝⎭,()e 1ef =-;第三步,比较其大小关系,其中最大的一个为最大值,最小的一个为最小值:因为11e 11e -<--<-,故函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1-,最小值为1e -.(2)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :依题意,()()()h x f x g x =+=2ln x ax x ++,()121h x ax x =++'=221ax x x++,第二步,求方程'()0f x =的根:当0a <时,令()0h x '=,则2210ax x ++=.因为180a ∆=->,所以()221ax x h x x'++==()()122a x x x x x--,其中11184x a =-,21184x a+=-第三步,判断'()f x 在方程的根的左、右两侧值的符号:.因为0a <,所以10x <,20x >,所以当20x x <<时,()0h x '>,当2x x >时,()0h x '<,所以函数()h x 在()20,x 上是增函数,在()2,x +∞上是减函数,第四步,利用结论写出极值:故214x a+=-为函数()h x 的极大值点,函数()h x 无极小值点.【变式演练7】(极值与最值关系)已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间∴最小值点一定是极小值点∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【变式演练8】(由最值求参数范围)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为()A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B 【解析】由12f a -=-+(),可得222alnx x a --≤-+在0x >恒成立,即为a (1-lnx )≥-x 2,当x e =时,0e->2显然成立;当0x e <<时,有10lnx ->,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==--由0x e <<时,223lnx <<,则0g x g x ()<,()'在0e (,)递减,且0g x ()<,可得0a ≥;当x e >时,有10lnx -<,可得21x a lnx ≤-,设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(),由32e x e <<时,0gx g x ()<,()'在32e e (,)递减,由32x e >时,0g x g x '()>,()在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增,即有)g x (在32x e =处取得极小值,且为最小值32e ,可得32a e ≤,综上可得302a e ≤≤.故选B .【变式演练9】(不含参数最值)已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为()A .338B .32C .334D .233【答案】C 【解析】【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项.【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤ ⎥⎝⎦为减函数;故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 415cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 415cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故4M ≥即M的最小值4.故选:C.【变式演练10】(含参最值)已知函数121()(1),02x f x x a ex ax x -=---+>(1)若()f x 为单调增函数,求实数a 的值;(2)若函数()f x 无最小值,求整数a 的最小值与最大值之和.【答案】(1)1a =.(2)3【解析】【分析】(1)求出()f x ',再令()0f x '=,求出两个根,函数()f x 为单调函数,所以()f x 有两个相同的根,得到1a =,再进行检验即可;(2)由()0f x '=得11x =,或2x a =和a Z ∈,分别当0a ≤、1a =和1a >三种情况进行讨论;0a ≤时不成立,1a =时成立,1a >时,利用函数单调性,当()f x 无最小值时,(0)()f f a <,构造关于a 的函数,求出a 的范围,即可得到答案.【详解】(1)由题意,11()()()(1)x x f x x a e x a x a e --'=--+=--,()0f x '=,解得11x =,或2x a =,因为函数()f x 为单调函数,所以()f x 有两个相同的根,即1a =,1a =时,()0f x '≥,()f x 为增函数,故1a =适合题意;(2)由(1)知,()0f x '=,解得11x =,或2x a =,①当0a ≤时,则(0,1)()0x f x '∈⇒<⇒()f x 在(0,1]上为减函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,当1x =时,()f x 有最小值1(1)2f =-,故0a ≤不适合题意;②当1a =时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,∴()f x 在(0,)+∞上为增函数,()f x 无最小值,故1a =适合题意;③当1a >时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x a f x '∈⇒<⇒()f x 在[1,]a 上为减函数,(,)()0x a f x '∈+∞⇒>⇒()f x 在[,)a +∞上为增函数,因为()f x 无最小值,所以(0)()f f a <21121111(1)022a a a a e e a e a e -----⇒<-⇒--+<,()()()121111112a a g a e a a e a g a e a e ----'=--+>⇒=--,,由()110a g a e -''=->在()1+∞,上恒成立,()11a g a e a e --'=--在()1+∞,上单调递增,且110g e -'=-<(),()()12200g e e g a ->''=--⇒=存在唯一的实根()112a ∈,() g a ⇒在()11a ,上单调递减;() g a 在()1a +∞,上单调递增增,且()()()2e 439410220302e 2g g e g e e e-=<=--<=-->,,()0g a ⇒=存在唯一的实根()223a ∈,,由()12121102a e a a e a a ----+<⇒<,()f x 无最小值,则21a a <<,()223a ∈,,综上,21a a ≤<,()223a ∈,,a Z ∈ ,123min max a a +=+=.【变式演练11】(恒成立转求最值)已知函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,则实数a 的取值范围是()A .(,e]-∞B .(,2]-∞-C .[2,e]D .[2,2]-【答案】B【分析】由()0f x ≥转化为3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,利用3ln ln (3ln 1)ln x x e x x x x x x --+-≥--++-,即可求解.【详解】由题意,函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,可得32ln x ax e x x x -≤+-恒成立,即3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,又由函数()(1)1x x h x e x e x =-+=--,可得()1x h x e '=-,当0x >时,可得()10x h x e '=->,所以()h x 为单调递增函数,且(0)0h =,所以0x >时,可得()(0)0h x h >=,即1x e x >+,则3ln ()ln (3ln 1)ln 2x x g x e x x x x x x --=+-≥--++-=-,当且仅当3ln 0x x --=,即3ln x x =+时取“=”号,所以2a ≤-,即实数a 的取值范围是(,2]-∞-.故选:B.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【变式演练12】(构造函数求最值)函数()22(0)f x x x =-+<,()ln x g x x x =+.若()()12f x g x =,则212x x -的最小值为()A .1-B .24e -C .2D .1【答案】C【分析】让()()12f x g x =,得到212222ln x x x x -+=+,再构造22122222ln x x x x x -=+-,然后令()22ln x u x x x =+-,研究()u x 的最小值即可.【详解】由题120x x <<,且()()12f x g x =,2120x x ->.有212222ln x x x x -+=+,则22122222ln x x x x x -=+-,令()22ln x u x x x=+-(0x >且1x ≠,()0u x >).(1)当01x <<时,易知()0u x <,不满足条件.(2)当1x >时,知()0u x >,由222ln ln 1(2ln 1)(ln 1)()ln ln 2x x x x u x x +--+'==,令()0u x '=,则1 x =,212x =(舍去),若1x <<()0u x '<;若x >()0u x '>,则 x =时取得极小值2u=-,也为最小值,则()u x u ≥,即21242x x -≥-,所以212x x -的最小值为2.故选:C.【点睛】关键点睛:解决本题的关键一是构造出212x x 的表达式并要统一变量,二是对构造的函数求最小值.。

运用导数巧求数列和

运用导数巧求数列和

运用导数巧求数列和数列是数学中的基础概念,是一系列按特定顺序排列的数的集合。

数列求和是指对数列中的所有数进行求和运算。

在数学中,比较常见的数列有等差数列和等比数列。

在一些情况下,为了方便计算数列的和,可以运用导数的巧妙方法,通过对数列进行求导和积分等运算,将求和问题转化为其他数学运算问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值是一个常数的数列。

在等差数列中,如果已知首项a1、末项aN和项数n,我们需要求解的就是数列的和Sn,即1+2+3+…+n的和。

对于等差数列,我们可以运用导数的巧妙方法进行求和。

步骤:1. 首先,假设原等差数列的首项为a1,公差为d,那么原数列的通项公式为an = a1 + (n-1)d。

2. 对于数列的和Sn = a1+a2+a3+…+an,我们将其视为n的函数Sn,即Sn = Sn(n)。

3.接下来,我们对数列的和Sn进行求导,得到导数Sn’(n)。

4.然后,我们对Sn’(n)进行积分,得到Sn(n),即数列的和。

举例:以等差数列1 + 2 + 3 + … + n为例,首项a1为1,公差d为1,通项公式为an = 1 + (n-1)1 = n。

1.对数列的和Sn进行求导,得到导数Sn’(n):Sn’(n) = d/dn(1 + 2 + 3 + … + n) = d/dn(n(n+1)/2) = (2n +1)/22.对Sn’(n)进行积分,得到Sn(n):Sn(n) = ∫[(2n + 1)/2]dn = (n^2 + n)/2所以,数列1+2+3+…+n的和为Sn(n)=(n^2+n)/2、通过运用导数的巧妙方法,我们成功地求解了等差数列1+2+3+…+n的和。

二、等比数列求和等比数列是指数列中相邻两项之间的比值是一个常数的数列。

在等比数列中,如果已知首项a1、末项aN和公比q,我们需要求解的就是数列的和Sn,即a1 + a2 + a3 + … + an的和。

数列问题的导数方法

数列问题的导数方法

数列问题的导数方法
在数学中,数列是一组按照特定规律排列的数字序列。

解决数
列问题的一个常见方法是使用导数。

导数是用来描述函数变化率的
工具,它可以帮助我们找到数列中每一项的变化规律,从而更好地
理解和分析数列的性质。

首先,我们可以将数列表示为一个函数,例如将数列的第n项
记作an,我们可以将数列看作是一个关于n的函数an=f(n)。

然后,我们可以使用导数来描述数列项之间的变化规律。

对于数列的项an,我们可以计算其导数f'(n),这个导数可以告诉我们数列项之间的
变化速率。

例如,如果数列的导数f'(n)是一个常数,那么这个数列可能
是一个等差数列,每一项之间的差值是固定的。

如果数列的导数
f'(n)是一个线性函数,则可能是一个等比数列,每一项与前一项之
比是一个固定的比率。

此外,导数还可以帮助我们找到数列的极值点,即数列中的最
大值和最小值。

通过计算导数f'(n)的零点和变号区间,我们可以
找到数列中的极值点,这对于分析数列的性质和趋势非常有帮助。

总之,数列问题的导数方法可以帮助我们更深入地理解和分析数列的性质和规律。

通过计算数列的导数,我们可以找到数列项之间的变化规律,进而更好地解决数列相关的问题。

因此,导数方法在数列问题的研究中具有重要的意义,也为我们提供了一种新的思考数列问题的角度。

2mxt-导数解数列问题1

2mxt-导数解数列问题1

慎用导数解数列问题导数,作为高中数学的新增内容之一,为解题教学和教研注入了新的活力,更是解决函数单调性问题的有力工具.由于数列可看作是特殊的函数,所以许多学生自然而然就想到用导数来解决有关数列单调性问题.但由于未能深入理解导当选知识的背景、吃透其含义,未能准确把握数列单调性与函数单调性的联系和区别,没有对其进行有机地“整合”,从而导致诸多错误.下面摘取学生的几例典型错误,加以分析,旨在引起同行的注意.例1 已知数列{}n a 的通项2(10)()na n n n N +=-∈,求数列{}n a 的最大项. 错解 设2()(10)()f n n n n N +=-∈,则'2()203f n n n =-. 令'()0f n >得2003n <<;'()0f n <得203n >或0n <. 得()f n 在区间20(0,)3上是增函数,在区间20(,)3+∞是减函数. 又n N +∈,故当7n =时,max ()147f n =.所以,数列{}n a 的最大项为7147a =.分析;结果是正确的,但其解题过程是错误的,原因是导数是定义在连续函数上的,而对于n N +∈,()f n 是离散函数,不存在导数,因而不能对其求导.正解 作辅助函数2()(10)f x x x =-(0x >),则'2()203f x x x =-. 令'()0f x >得2003x <<;'()0f x <得203x >或0x <. 得()f x 在区间20(0,)3上是增函数,在区间20(,)3+∞是减函数.因此,当203x =时函数()f x 取得最大值.对n N +∈,2()(10)()f n n n n N +=-∈.(7)147(6)144f f =>=,于是max ()147f n =所以,数列{}n a 的最大项为7147a =.当然,本题仍可利用数列本身的性质给以解决.若n a 是数列{}n a 中最大项,则11n n n n a a a a +-≥⎧⎨≥⎩,即2222(10)(1)(9)(10)(1)(11)n n n n n n n n ⎧-≥+-⎪⎨-≥--⎪⎩,解得174972339766n ++≤≤.由n N +∈知7n =时,7147a =,即数列{}n a 的最大项为7147a =.例2 已知数列{}n a 是递增数列,且对任意的正整数n ,2na n bn =+恒成立,求实数b 的取值范围.On n a1 2 3 错解 因{}n a 是递增数列,所以2n a n bn =+在[1,)+∞上是单调递增函数,故辅助函数 2()f x x bx =+在[1,)+∞上是单调递增函数,有'()20f x x b =+≥在[1,)+∞上恒成立, 即2b x ≥-在[1,)+∞上恒成立,故2b ≥-.分析:以上解答由{}n a 是递增数列,断定函数 2n a n bn =+在[1,)+∞上单调递增是错误的.由于数列通项公式中的n 是正整数,而不是取[1,)+∞内的任意实数,如图,该图象表示的数列{}n a 显然是递增 数列,但此时对称轴12b ->,即2b <-,并不满足2b ≥-. 正解 由于{}n a 是递增数列,由数列的单调性知,1nn a a +<,即10n n a a +->对任意n N +∈恒成立,将2n a n bn =+代入化简可得(21)b n >-+,又因为max (21)3n -+=-,于是得3b >-,即实数b 的取值范围是(3,)-+∞.例3 已知数列{}n a 的通项为(01)n na n a a =⋅<<且1n n a a +>对所有正整数n 均成立,求a 的取值范围.错解 依题意{}n a 是递减数列,确定a 的取值范围.作辅助函数()x f x x a =⋅(01a <<,1x ≥), 则1n n a a +>(n N +∈)恒成立⇔()(1)f n f n >+(n N +∈)恒成立⇔函数()f x 在区间[1,)+∞上为减函⇔()0f x ≤在[1,)+∞恒成立.因为'()(1ln )x f x a x a =+,由'()0f x ≤在[1,)+∞恒成立,即1ln 0x a +≤(1x ≥) 恒成立,得1ln a x ≤-(1x ≥)恒成立,于是min 1ln ()1a x ≤-=-,即10a e<≤. 正解 对于01a <<,n N +∈,1nn a a +>⇔1(1)n n n a n a +⋅>+⋅⇔1n a n <+. 因为min 1()12n n =+,所以a 的取值范围为1(0,)2.评注:由于11(0,)(0,)2e ⊂,可见以上两种结果截然不同,上述错解在()(1)f n f n >+(n N +∈)恒成立,并推不出()f x 在区间[1,)+∞上为减函,()(1)f n f n >+(n N +∈)恒成立是函数()f x 在区间[1,)+∞上为减函的必要而不充分条件,二者之间并非等价!事实上,令'()(1ln )0x f x a x a =+=得1log a x e =, 当1(,log )a x e∈-∞时,'()0f x >,()f x 为增函数;当1(log ,)a x e∈+∞时,'()0f x <,()f x 为减函数; 所以1log a x x e =是函数()f x 的极大点,而当11(,)2a e ∈时,1log (1,2)a x e=∈, 即函数()f x 在区间1(1,log )a e ((1,2)⊂)上为增函数,在1[log ,)a e+∞为减函数(()f x 在区间[1,)+∞上并非为减函),但(1)f a =,2(2)2f a =,仍有(1)(2)f f >>(3)f > ()f n ⋅⋅⋅>>⋅⋅⋅(n N +∈)成立.通过以上几例我们可以发现,数列的单调几与函数的单调性出现了不和谐的“音符”,二者并不总是统一一致的,将数列问题简单的函数化,极易出现错误.因此,在涉及数列问题时我们应该更多地首先想到数列自身的特征,利用数列自身所具有的特征解题.。

导数在数列中的应用

导数在数列中的应用

导数在数列中的应用摘 要:导数是解决函数问题的有力工具,更为数学解题注入了新的活力。

由于数列可看做特殊的函数,所以自然可联想尝试应用导数知识解决数列问题。

一.导数的概念1、定义:0'0000()()()()()limlim lim x x x x f x f x y f x x f x f x x x x x ∆→∆→→-∆+∆-===∆∆-左导数:0'0000()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ----∆→∆→→-∆+∆-===∆∆- 右导数: 0'0000()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ++++∆→∆→→-∆+∆-===∆∆-'''()()()f x A f x f x A -+∴=⇔==可以证明:可导⇒连续 即:可导是连续的充分条件连续是可导的必要条件导函数:'00()()()lim limx x y f x x f x f x y x x∆→∆→∆+∆-===∆∆ 二.导数在数列问题中的应用1.利用导数确定数列的最大或最小项例1 已知数列{n a }的通项n a =328x x -,n ∈N+,求数列{n a }的最大项 解:构造辅助函数f(x )=328x x -(x>0),则()x f '=16x-23x 显然,当0<x<316时,()x f '>0,当x>316时,'f (x )<0,故f(x)在区间(0,316)上是增函数,在区间(316,+∞)上是减函数,所以当x=316时,函数取最大值。

对于n ∈N+,f(n )=328n n -,f(5)=75,f(6)=72,所以f(n)的最大值是75,即数列{n a }的最大项为5a =75. 2.利用导数研究数列的增减性例2 设定以在R 上的函数f(x )与数列{n a }满足:1a >a,其中a 是方程f(x )=x的实数根,()n n a f a =+1,f(x )可导,且()x f '∈(0,1).(1) 证明:n a >a,(1)判定n a 与1+n a 的大小关系,并证明 证明(1)由已知1a >a,即n=1时,n a >a 成立. (2)设n=k 时 k a >a因为'f (x )>0,所以f(x )是增函数,所以1+k a =f(k a )>f(a) 又由题设可知 f(a)=a ,所以k k a a >+1 即n=k+1时,命题成立. 由(1)(2)知 n ∈N+时,n a >a 成立.(2) 要比较 n a ,1+n a 的大小,即比较n a 和f(n a )的大小,构造辅助函数g(x )=x-f(x ),则'g (x)=1-'f (x)>0,故g(x )是增函数,所以当n a >a 时,g (n a )>g(a),又因为g(a)=a-f(a)=0,g(n a )=()n n a f a -,所以()n n a f a ->0,故()n n a f a >即1+>k k a a 3.利用导数求数列前n 项和例3 求数列,...,...3,2,112-n nx x x 前项的和 s n . 解:当x=1时,n s =1+2+3+…+n=()121+n n 当x ≠1时,因x+2x+23x+…+nx=xx x n --+11,两边求导数,得1+2x+32x +…+n-1-n x =1-(n+1)nx +()()21111x x x n n n -++-+ 综上可知:当 x=1时,()121+=n n s n ,当x ≠1时,()()21111x nx x n s n n n -++-=+ 4.利用导数证明数列不等式例4 若⎪⎭⎫ ⎝⎛+=n n n t t a 121 其中t ∈[21,2],n T 是数列{n a }前n 项的和,求证:nnn T ⎪⎪⎭⎫ ⎝⎛-<222证明: 构造辅助函数 f (t )=⎪⎭⎫ ⎝⎛+n n t t 121,t ∈[21,2] 则'f (t )=⎪⎭⎫ ⎝⎛-+-1112n n t t n . 当121≤≤t 时 'f (t)<0 当1<t ≤2时 'f (t )>0故f(t )在[21,1]上递减,在[1,2]上递增 所以 ()m a x t f =f(21)=f(2)=⎪⎭⎫ ⎝⎛+n n 21221 即n a =⎪⎭⎫ ⎝⎛+≤n n 21221 所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++++++≤n n n T 21 (2)1212...222122nn n n ⎪⎪⎭⎫ ⎝⎛-<⎪⎭⎫⎝⎛+-=222211212说明这里需要证明 :212221121n nn =⎪⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛+ 121221222122121221212121212==∙>+=⎪⎭⎫ ⎝⎛++-+-+n nn n n n ∴nn n ⎪⎪⎭⎫⎝⎛=>⎪⎭⎫ ⎝⎛+2221211212所以命命题的证. 5. 导数在数列求和中的应用 例5 1≠x ,求下列数列之和 (1)12...321-++++n nx x x (2)22221123...n x x n x -++++(3)222242322...-+++n n x c x c x c c 分析 (1)由),...,2,1()'(1n k kx x k k ==- 可设12...321)('-++++=n nx x x x f 则n x x x x x f ...1)(32++++=而 )1(11 (11)32≠--=++++++x xx x x x x n n上式两端对x 求导,并整理得 2212)1()1(1...321x nx x n nxx x n n n -++-=+++++- [1](2) 比较(1),(2)两式中的通项可发现,只需对[1]两端同乘以x ,再对x 求导 便可得到:22212212222)1()122()1(1...321x x n x n n x n x xn x x n n n n ---+++-+=+++++--(3) 由 21222)(212)1(---=-=n n n n nx x n n x c 可知只需对[1]式两端继续求导便可得到: 22)1(...34232--++∙+∙+n x n n x x=212212)1()()1(2)(2x x n n x n x n n n n n ----++-+- ∴ 312212222242322)1(2)()1(2)(2...x x n n x n x n n xc x c x c c n n n n n----++-=+++++--三.数列是特殊的函数(导数的应用)1. 函数的单调性与导数 例1 已知函数f(x)=3x -ax -1.(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;(2)是否存在实数a ,使f(x)在(-1,1)上单调递减?若存在,求出 a 的取值范围;若不存在,说明理由.解析 (1)由已知)('x f =32x -a.因为f(x)在R 上是单调增函数, 所以f ′(x)=32x -a ≥0在R 上恒成立,即a ≤32x 对x ∈R 恒成立. 又因为32x ≥0,所以只需a ≤0.又因为当a=0时,f ′(x)=32x ≥0, 即f(x)=3x -1在R 上是增函数,所以a ≤0.(2)由)('x f =32x -a ≤0在(-1,1)上恒成立,得a ≥32x ,x ∈(-1,1)恒成立.因为-1<x<1,所以32x <3,所以只需证明a ≥3. 当a=3时,)('x f =3(2x -1),在x ∈(-1,1)上,f ′(x)<0,即)(x f 在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f(x)在(-1,1)上单调递减.2. 函数的极值与导数例2 已知x=3是函数f(x)=aln(1+x)+2x -10x 的一个极值点. (1)求a;(2)求函数f(x)的极大值;(3)若直线y=b 与函数y=)(x f 的图象有3个交点,求b 的取值范围.解析 (1)因为)('x f = x a +1+2x-10, 所以)3('f = 4a+6-10=0, 因此a=16.(2)由(1)知,)('x f =x+116+2x-10 = xx x +--1)3)(1(2 (x>-1).此时,)('x f 、)(x f 随x 的变化情况如下表:x(-1,1)1(1,3)3(3,∞)f ′(x) + 0- 0 +f(x)单增极大值 单减极小值单增由上表知函数f(x)的极大值为f(1)=16ln2-9.(3)由(2)知,f(x)在(-1,1)内单调递增,在(1,3)内单调递减,在(3,+∞)上单调递增,且当x=1或x=3时,f ′(x)=0,所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21.若直线y=b 与函数y=f(x)的图象有3个交点,当且仅当f(3)<b<f(1). 因此,b 的取值范围为(32ln2-21,16ln2-9). 3. 函数的最大值、最小值与导数例3 已知函数f(x)=3x -12x+8在区间[-3,3]上的最大值与最小值分别为M,N ,试求M-N 的值.解析 )('x f =32x -12=3(x+2)(x-2), 令)('x f =0,得1x =-2,2x =2.则)('x f ,f(x)随x 的变化情况如下表:x -3 (-3,-) -2(-2,2) 2 (2,3) 3 f ′(x) + 0 - 0 + y=f(x) 17单增极大 值24单减极小 值-8单增-1显然,M=24,N=8,则M-N=24+8=32.。

导数应用之数列

导数应用之数列

导数应用之数列一.导数的概念1、定义:0'0000()()()()()limlim limx x x x f x f x y f x x f x f x x x x x ∆→∆→→-∆+∆-===∆∆- 左导数:0'0000()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ----∆→∆→→-∆+∆-===∆∆- 右导数: 0'0000()()()()()lim lim lim x x x x f x f x y f x x f x f x x x x x ++++∆→∆→→-∆+∆-===∆∆- '''()()()f x A f x f x A -+∴=⇔==可以证明:可导⇒连续 即:可导是连续的充分条件连续是可导的必要条件导函数:'00()()()lim lim x x y f x x f x f x y x x∆→∆→∆+∆-===∆∆二.导数在数列问题中的应用1.利用导数确定数列的最大或最小项例1 已知数列{n a }的通项n a =328x x -,n ∈N+,求数列{n a }的最大项 解:构造辅助函数f(x )=328x x -(x>0),则()x f '=16x-23x 显然,当0<x<316时,()x f '>0,当x>316时,'f (x )<0,故f(x)在区间(0,316)上是增函数,在区间(316,+∞)上是减函数,所以当x=316时,函数取最大值。

对于n ∈N+,f(n )=328n n -,f(5)=75,f(6)=72,所以f(n)的最大值是75,即数列{n a }的最大项为5a =75.2.利用导数研究数列的增减性例2 设定以在R 上的函数f(x )与数列{n a }满足:1a >a,其中a 是方程f(x )=x 的实数根,()n n a f a =+1,f(x )可导,且()x f '∈(0,1).(1) 证明:n a >a,(1)判定n a 与1+n a 的大小关系,并证明 证明(1)由已知1a >a,即n=1时,n a >a 成立.(2)设n=k 时 k a >a因为'f (x )>0,所以f(x )是增函数,所以1+k a =f(k a )>f(a) 又由题设可知 f(a)=a ,所以k k a a >+1 即n=k+1时,命题成立. 由(1)(2)知 n ∈N+时,n a >a 成立.(2) 要比较 n a ,1+n a 的大小,即比较n a 和f(n a )的大小,构造辅助函数g(x )=x-f(x ),则'g (x)=1-'f (x)>0,故g(x )是增函数,所以当n a >a 时,g (n a )>g(a),又因为g(a)=a-f(a)=0,g(n a )=()n n a f a -,所以()n n a f a ->0,故()n n a f a >即1+>k k a a 3.利用导数求数列前n 项和例3 求数列,...,...3,2,112-n nx x x 前项的和 s n . 解:当x=1时,n s =1+2+3+…+n=()121+n n 当x ≠1时,因x+2x+23x+…+nx=xx x n --+11,两边求导数,得1+2x+32x +…+n-1-n x =1-(n+1)nx +()()21111x x x n n n -++-+ 综上可知:当 x=1时,()121+=n n s n ,当x ≠1时,()()21111x nx x n s n n n -++-=+ 4.利用导数证明数列不等式例4 若⎪⎭⎫ ⎝⎛+=n n n t t a 121 其中t ∈[21,2],n T 是数列{n a }前n 项的和,求证:nn n T ⎪⎪⎭⎫ ⎝⎛-<222 证明: 构造辅助函数 f (t )=⎪⎭⎫ ⎝⎛+n n t t 121,t ∈[21,2] 则'f (t )=⎪⎭⎫ ⎝⎛-+-1112n n t t n . 当121≤≤t 时 'f (t)<0 当1<t ≤2时 'f (t )>0故f(t )在[21,1]上递减,在[1,2]上递增 所以 ()m a x t f =f(21)=f(2)=⎪⎭⎫ ⎝⎛+n n 21221 即n a =⎪⎭⎫ ⎝⎛+≤n n 21221 所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++++++≤n n n T 21 (2)1212...222122nn n n ⎪⎪⎭⎫ ⎝⎛-<⎪⎭⎫⎝⎛+-=222211212说明这里需要证明 :212221121n nn =⎪⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛+ 121221222122121221212121212==∙>+=⎪⎭⎫ ⎝⎛++-+-+n nn n n n ∴nn n ⎪⎪⎭⎫⎝⎛=>⎪⎭⎫ ⎝⎛+2221211212所以命命题的证. 5. 导数在数列求和中的应用 例5 1≠x ,求下列数列之和 (1)12...321-++++n nx x x (2)12222...321-++++n x n x(3)222242322...-+++n n x c x c x c c分析 (1)由),...,2,1()'(1n k kx x k k ==- 可设12...321)('-++++=n nx x x x f 则n x x x x x f ...1)(32++++=而 )1(11 (11)32≠--=++++++x xx x x x x n n上式两端对x 求导,并整理得 2212)1()1(1...321x nx x n nxx x n n n -++-=+++++- [1] (2) 比较(1),(2)两式中的通项可发现,只需对[1]两端同乘以x ,再对x 求导 便可得到: 22212212222)1()122()1(1...321x x n x n n x n x xn x x n n n n ---+++-+=+++++-- (3) 由 21222)(212)1(---=-=n n n nnx x n n x c 可知只需对[1]式两端继续求导便可得到: 22)1(...34232--++∙+∙+n x n n x x=212212)1()()1(2)(2x x n n x n x n n n n n ----++-+-∴ 312212222242322)1(2)()1(2)(2...x x n n x n x n n xc x c x c c n n n n n----++-=+++++-- 三.数列是特殊的函数(导数的应用)1. 函数的单调性与导数 例1 已知函数f(x)=3x -ax -1.(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;(2)是否存在实数a ,使f(x)在(-1,1)上单调递减?若存在,求出 a 的取值范围;若不存在,说明理由.解析 (1)由已知)('x f =32x -a.因为f(x)在R 上是单调增函数, 所以f ′(x)=32x -a ≥0在R 上恒成立,即a ≤32x 对x ∈R 恒成立. 又因为32x ≥0,所以只需a ≤0.又因为当a=0时,f ′(x)=32x ≥0, 即f(x)=3x -1在R 上是增函数,所以a ≤0.(2)由)('x f =32x -a ≤0在(-1,1)上恒成立,得a ≥32x ,x ∈(-1,1)恒成立.因为-1<x<1,所以32x <3,所以只需证明a ≥3. 当a=3时,)('x f =3(2x -1),在x ∈(-1,1)上,f ′(x)<0,即)(x f 在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f(x)在(-1,1)上单调递减.2. 函数的极值与导数例2 已知x=3是函数f(x)=aln(1+x)+2x -10x 的一个极值点. (1)求a;(2)求函数f(x)的极大值;(3)若直线y=b 与函数y=)(x f 的图象有3个交点,求b 的取值范围. 解析 (1)因为)('x f = x a +1+2x-10, 所以)3('f = 4a+6-10=0, 因此a=16.(2)由(1)知,)('x f =x+116+2x-10 = xx x +--1)3)(1(2 (x>-1).此时,)('x f 、)(x f 随x 的变化情况如下表:x(-1,1)1(1,3)3(3,∞)f ′(x) + 0 -0 +f(x) 单增 极大值 单减 极小值单增由上表知函数f(x)的极大值为f(1)=16ln2-9.(3)由(2)知,f(x)在(-1,1)内单调递增,在(1,3)内单调递减,在(3,+∞)上单调递增,且当x=1或x=3时,f ′(x)=0,所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21.若直线y=b 与函数y=f(x)的图象有3个交点,当且仅当f(3)<b<f(1). 因此,b 的取值范围为(32ln2-21,16ln2-9). 3. 函数的最大值、最小值与导数例3 已知函数f(x)=3x -12x+8在区间[-3,3]上的最大值与最小值分别为M,N ,试求M-N 的值.解析 )('x f =32x -12=3(x+2)(x-2), 令)('x f =0,得1x =-2,2x =2.则)('x f ,f(x)随x 的变化情况如下表:x -3 (-3,-) -2(-2,2) 2 (2,3) 3 f ′(x) + 0 - 0 + y=f(x) 17单增极大 值24单减极小 值-8单增-1显然,M=24,N=8,则M-N=24+8=32.。

运用导数解数列问题常见错误解析

运用导数解数列问题常见错误解析
’ .






÷
1 ÷ 一
的垂 直 平 分 线 为 Y 轴 , 立 平 面 直 角 坐 标 系 . 建

≤ e ≤ _ .
依 意 A一,, 号^,x ) 题 设 (f) ( , E 。。其 oc ) ( , ,
中 f一 l B I 双 曲线 的半焦 距 1 为 A
分析 结果 是正确 的 , 其解题 过程 却是错 但
误 的 , 因 是 导 数 是 定 义 在 连 续 函 数 上 的 , 对 原 而
于 "∈ N 厂 7 是 离散 函数 , 存在 导 数 , , ( ) 2 不 因而
不 能对其求 导. 正解 作辅 助 函数 , z 一 a (0 x ( ( ) T 1 - ) > .
因 ”∈ N 则 当 一 7 , ( … : 1 7 故 , 时 厂 ) = 4 , :
数 列 { n }的 最 大 项 是 a 一 1 7 4.
合 ” 从 而导致许 多 错误 , 面就 几个 典 型题 目进 , 下
行 分 析 , 求 避 免 同类 错 误 . 以
1 利 用 导 数 判 断 数 列 的 单 调 性 时 , 转 化 要 为 函数去 判断. 例 1 已 知 数 列 { n }的 通 项 a = 。 1 = =" ( 0一

设 双 曲线 方程 为 一 s = 1 则 P: , Z , 由
,,
a—


{ 。 f ’

82

一一b 4 e

he
1 l

点 E分有 向线段 AC所
成 的 比 为 , 曲 线 过 双 C、 E 三 点 , 以 A 、 D、 且

巧妙利用函数的导数_解数列问题_颜复尊

巧妙利用函数的导数_解数列问题_颜复尊

{
[
)
(
)
(
)
[(
(
) (
)
)]
巧与方法
JIETI JIQIAO YU FANGFA
数列中来, 从而问题得到解决. 四、 精心构造, 巧妙运用 ( 1 ) 对任意的正实数 例 4 已知函数 f ( x ) = x - xlnx, x1 , x2 , 且 x1 < x2 . ( 1) 证明: ( x2 - x1 ) f'( x2 ) < f( x2 ) - f( x1 ) < ( x2 - x1 ) f'( x1 ) ; 1 1 + +…+ ( 2 ) 对任意的 n ∈ N + , 且 n ≥2 , 证明: ln2 ln3 1 1 - f( n + 1 ) < . lnn ln2 ·lnn 1 ) 时, 解 ( 1 ) 因 为 f' ( x ) = - lnx, 所 以, 当 x ∈ ( 0, f' ( x) > 0 ; + ∞ ) 时, f' ( x) < 0 . 故 f( x) 在 x ∈ ( 0 , 1 ) 上单 当 x∈( 1 , + ∞ ) 上单调递减. 调递增, 在 x∈( 1 , x1 x2 , < 所以, 对任 意 的 正 实 数 x1 , 且 x1 < x2 , 有f x2 x f( 1 ) , f 2 < f( 1 ) . x1 x1 x1 x1 x1 < f( 1) , - ln < 1, 由f 得 即 x2 - x1 - x2 x2 x2 x2 x2 ( lnx2 - lnx1 ) < 0 , 所以 f( x2 ) - f( x1 ) - ( x2 - x1 ) f' ( x1 ) = x2 - x1 - x2 ( lnx2 - lnx1 ) < 0 , 故: f( x2 ) - f( x1 ) < ( x2 - x1 ) f' ( x1 ) , ①. x2 ) < f( 1 ) , 由 f( 同理可证( x2 - x1 ) f' ( x2 ) < f ( x2 ) - x1 f ( x1 ) , ②. 综合 ①②, 得( x2 - x1 ) f' ( x2 ) < f ( x2 ) - f ( x1 ) < ( x2 - x1 ) f' ( x1 ) . ln( x + k) ( 2) 对 k = 1, 2, …, n - 2, ( x > 令 gk ( x ) = lnx 1) , 则 lnx ln( x + k) - x+k x xlnx - ( x + k) ln( x + k) g k ' ( x) = = , ln2 x x( x + k) ln2 x 0 < lnx < ln ( x + k ) , 显然 1 < x < x + k, 所以 xlnx < ( x + k) ln ( x + k ) , g k ( x ) 在 ( 1 ,+ ∞ ) 上 单 调 所 以 gk ' ( x ) < 0,

导数和数列综合问题解决技巧之构造函数法

导数和数列综合问题解决技巧之构造函数法

导数和数列不等式的综合问题解决技巧之构造函数法1.已知曲线.从点向曲线引斜率为22:20(1,2,)n C x nx y n -+== (1,0)P -n C 的切线,切点为.(0)n n k k >n l (,)n n n P x y (1)求数列的通项公式; {}{}n n x y 与(2)证明:.13521n n nxx x x x y -⋅⋅⋅<<A A A A 【解析】曲线是圆心为,半径为的圆, 222:()n C x n y n -+=(,0)n n 切线 :(1)n n l y k x =+ (Ⅰ,解得,又,n =2221n n k n =+2220n n n x nx y -+= 联立可解得, (1)n n ny k x =+,1n n n x y n ==+(Ⅱ=n n x y = 先证:, 13521n x x x x -⋅⋅⋅⋅< 证法一:利用数学归纳法 当时,,命题成立, 1n =112x =<假设时,命题成立,即 n k =13521kx x x x -⋅⋅⋅⋅< 则当时,1n k =+135212121k kk x x xx x x -++⋅⋅⋅⋅<=∵, 2222416161483k kk k ++=>++.<=∴当时,命题成立,故成立. 1n k =+13521n x x x x -⋅⋅⋅⋅<==,121214)12(4)12(2122222+-=--<-=-nnnnnnnnnnn xxnnnnnxxxx+-=+=+-⨯⨯⨯<-⨯⨯⨯=⋅⋅⋅⋅-1112112125331212432112531<不妨设,令,t=()f t t t=则在上恒成立,故在上单调递减,()10f tt'=<t∈()f t t t=t∈从而()(0)0f t t t f=-<=<综上,成立.13521nnnxx x x xy-⋅⋅⋅⋅<<2.设函数表示的导函数.2()2(1)ln(),()kf x x x k N f x*'=--∈()f x(I)求函数的单调递增区间;()y f x=(Ⅱ)当k为偶数时,数列{}满足,求数列{}的通项公式;na2111,()3n n na a f a a+'==-2na (Ⅲ)当k为奇数时,设,数列的前项和为,证明不等式()12nb f n n'=-{}n b n n S对一切正整数均成立,并比较与的大小.()111n bnb e++>n20091S-2009ln解:(Ⅰ)函数的定义域为(0,+∞),又,212[(1)]()22(1)kkxy f x xx x--''==--=当k为奇数时,,122(1)()xf xx+'=即的单调递增区间为.(0,),()0(0,)x f x'∈+∞∴>+∞在恒成立.()f x'(0,)+∞当k为偶函数时,222(1)2(1)(1)()x x xf xx x-+-'==(0,),0,10,x x x∈+∞>+>又由,得,即的单调递增区间为,()0f x'>10,1x x->∴>()f x(1,)+∞综上所述:当k 为奇数时,的单调递增区间为, ()f x (0,)+∞当k 为偶数时,的单调递增区间为()f x (1,).+∞(Ⅱ)当k 为偶数时,由(Ⅰ)知, 所以22(1)()x f x x-'=22(1)().n n n a f a a -'=根据题设条件有 2222221112(1)3,21,12(1),n n n n n n a a a a a a +++-=- ∴=+ +=+∴{}是以2为公比的等比数列, 21n a +∴ 221211(1)22,2 1.n n n n n a a a -+=+⋅= ∴=-(Ⅲ)由(Ⅰ)知,当k 为奇数时,12(),f x x'=+ 11111(),1.223n n b f n n S n n'∴=-= =+++⋅⋅⋅+由已知要证两边取对数,即证111,n e n +⎛⎫+> ⎪⎝⎭11ln 1,1n n ⎛⎫+> ⎪+⎝⎭事实上:设则 11,t n+=1(1),1n t t =>-因此得不等式 …………………………………………① 1ln 1(1)t t t>->构造函数下面证明在上恒大于0.1()ln 1(1),g t t t t=+->()g t (1,)+∞∴在上单调递增,即211()0,g t t t '=->()g t (1,)+∞()(1)0,g t g >=1ln 1,t t>-∴ ∴即成立.11ln 1,1n n ⎛⎫+> ⎪+⎝⎭111,n e n +⎛⎫+> ⎪⎝⎭()111n b n b e ++>由得 11ln,1n n n +>+111231ln ln ln ln(1),23112n n n n +++⋅⋅⋅+<++⋅⋅⋅+=++即当时, 11ln(1),n S n +-<+2008n =20091S -<2009.ln3.已知,函数. 0a >1()ln xf x x ax-=+(Ⅰ)试问在定义域上能否是单调函数?请说明理由;(Ⅱ)若()f x 在区间 [)1,+∞上是单调递增函数,试求实数a 的取值范围;(Ⅲ)当 1a =时,设数列 1n ⎧⎫⎨⎬⎩⎭的前n 项和为,求证:n S 111()(2)n n nS f n S n N n n---<-<∈*≥且解:(Ⅰ)的定义域为,,由得. ()f x ()0,+∞21()ax f x ax -'=()0f x '=1x a=当时,,递减; 1(,x a a∈()0f x '<()f x 当时,,递增. 1(,)x a∈+∞()0f x '>()f x所以不是定义域上的单调函数.()y f x =(Ⅱ)若在是单调递增函数,则恒成立,即恒成立. ()f x x ∈[1,)+∞()0f x '≥1a x≥即.1max,[1,)a x x ⎧⎫≥ ∈+∞⎨⎬⎩⎭11x∴≤1a ∴≥ (Ⅲ)当时,由(Ⅱ)知,在上为增函数, 1a =1()ln xf x x x-=+[1,)+∞ 111()ln ln ,n n nf n n n n n n----=+-= 又当时,, ,即.1x >()(1)f x f >1ln 0x x x -∴+>1ln 1x x>- 令则,当时,()1ln ,g x x x =--1()1g x x'=-(1,)x ∈+∞()0.g x '>从而函数在上是递增函数, ()g x [1,)+∞所以有即得()(1)0,g x g >=1ln .x x -> 综上有: 11ln 1,(1).x x x x-<<->111ln .1x x x x+∴<<+ 令时,不等式也成立,1,2,...,1,(2)x n n N n *=-∈≥且111ln .1x x x x+∴<<+ 于是代入,将所得各不等式相加,得1112311...ln ln ...ln 1....2312121n n n n +++<+++<+++--即 11111...ln 1. (2321)n n n +++<<+++-即 111()(2).n n nS f n S n N n n*---<-<∈≥且4.设函数.(是自然对数的底数)()(1),()x f x e x g x e =-=e (Ⅰ)判断函数零点的个数,并说明理由; ()()()H x f x g x =-(Ⅱ)设数列满足:,且 {}n a 1(0,1)a ∈1()(),,n n f a g a n N *+=∈①求证:;②比较与的大小.01n a <<n a 1(1)n e a +-解:(Ⅰ), 令 ()(1)x H x e e '=--0()0,ln(1)H x x e '= =- 当时,在上是增函数 0(,)x x -∞()0,H x '> ()H x 0(,)x x -∞ 当时,在上是减函数 0(,)x x +∞()0,H x '< ()H x 0(,)x x +∞ 从而max 0()(0)(1)1(1)ln(1)2x H x H e x e e e e ==-+-=---+注意到函数在上是增函数, ()ln 1k t t t t =-+[)1,+∞ 从而 从而 ()(1)0,11k t k e ≥=->又0()0H x > 综上可知:有两个零点.()H x (Ⅱ)因为即, 所以 1()(),n n f a g a +=1(1)1na n e a e +-+=11(1)1n a n a e e +=-- ①下面用数学归纳法证明. 当时,,不等式成立. (0,1)n a ∈1n =1(0,1)a ∈ 假设时, 那么 n k =(0,1)k a ∈11(1)1k a k a e e +=--1011kka a e e e e << ∴<-<- 即 10(1)11k a e e ∴<-<-1(0,1)k a +∈ 这表明时,不等式成立. 所以对, 1n k =+n N *∈(0,1)n a ∈②因为,考虑函数1(1)1na n n n e a a e a +--=--()1(01)x p x e x x =-- << ,从而在上是增函数()10x p x e '=->()p x (0,1)()(0)0p x p >=所以,即1(1)0n n e a a +-->1(1)n n e a a +->5.数列的各项均为正数,为其前项和,对于任意,总有成等差数列. {}n a n S n n N *∈2,,n n n a S a (1)求数列的通项公式;{}n a(2)设数列的前项和为,且,求证:对任意实数是常数,{}n b n n T 2ln n n nxb a =(1,](x e e ∈e=2.71828…)和任意正整数,总有;n 2n T <(3)在正数数列中,.求数列中的最大项. {}n c 11(),()n n n a c n N +*+=∈{}n c 解:由已知:对于,总有成立 (1)n N *∈22n n n S a a =+ (2)21112(2)n n n S a a n ---∴=+≥(1)—(2)得22112n n n n n a a a a a --∴=+-- 111()()n n n n n n a a a a a a ---∴+=+-均为正数,1,n n a a - 11(2)n n a a n -∴-=≥ 数列是公差为1的等差数列∴{}n a 又时,,解得,1n =21112S a a =+11a =()n a n n N *∴=∈(2)证明:对任意实数和任意正整数,总有(]1,x e ∈n 22ln 1n n n x b a n=≤222111111...1...121223(1)n T n n n∴≤+++<++++⋅⋅-⋅1111111(1() (22223)1n n n ⎛⎫=+-+-++-=-<⎪-⎝⎭(3)解:由已知22112a c c ==⇒= ,33223a c c ==⇒=44334a c c ==⇒==易得55445a c c ==⇒=12234,......c c c c c <>>> 猜想时,是递减数列2n ≥{}n c令,则 ln ()x f x x=221ln 1ln ()x xx x f x x x ⋅--'==当时,,则,即 ∴3x ≥ln 1x >1ln 0x -<()0f x '< 在内为单调递减函数, ∴()f x [)3,+∞由知 11n n n a c ++=ln(1)ln 1n n c n +=+ 时,是递减数列,即是递减数列 2n ∴≥{}ln n c {}n c又,数列中的最大项为12c c <∴{}n c 2c =6.已知23()ln 2,().8f x x xg x x =++=(1)求函数的极值点;()()2()F x f x g x =-⋅(2)若函数在上有零点,求的最小值;()()2()F x f x g x =-⋅),()te t Z ⎡+∞∈⎣t (3)证明:当时,有成立;0x >[]1()1()g x g x e +<(4)若,试问数列中是否存在?若存在,求出所有相1(1)()()g n n b g n n N *+=∈{}n b ()n m b b m n =≠等的两项;若不存在,请说明理由.(为自然对数的底数).e 解:(1)由题意,的定义域为23()ln 228F x x x x =++-(0,)+∞,函数的单调递增区间为和, (32)(2)()4x x F x x --'=∴()F x 20,3⎛⎤⎥⎝⎦[)2,+∞的单调递减区间为,()F x 2,23⎡⎤⎢⎥⎣⎦所以为的极大值点,为的极小值点,23x =()F x 2x =()F x (2)在上的最小值为 ()F x 2,3x ⎡⎫∈+∞⎪⎢⎣⎭(2)F且,在上没有零点, 23ln 41(2)242ln 2082F -=⨯-++=>()F x ∴2,3⎡⎫+∞⎪⎢⎣⎭函数在上有零点,并考虑到在单调递增且在单调递减,故只∴()F x ),te ⎡+∞⎣()F x 20,3⎛⎤ ⎥⎝⎦2,23⎡⎤⎢⎥⎣⎦须且即可,23t e <()0F t ≤易验证 121222313()120,()20,88F e e e F e e e -----⎛⎫=⋅+->=⋅-< ⎪⎝⎭当时均有所以函数在上有零点, 2,t t Z ≤∈()0,t F e <()F x )1,()t e e t Z -⎡∈⎣即函数在上有零点, 的最大值为()F x ),()te t Z ⎡+∞∈⎣t ∴2-(3)证明:当时,不等式0x >[]1()1()g x g x e +<即为: 11(1)ln(1)1ln(1)xx e x x x x+<⇔+<⇔+<构造函数则 ()ln(1)(0),h x x x x =+->1()10,11x h x x x-'=-=<++所以函数在上是减函数,因而时, ()h x (0,)+∞0x >()(0)0,h x h <=即:时,成立,所以当时,成立;0x >ln(1)x x +<0x >[]1()1()g x g x e +<(4)因为 1(1)(2)111(1)(2)2222(1)11(1)3(1),(1n n n n n n n n n n n b n n e n n b n b n n n n n++++++++++++===⋅+<<令,得, 23(1)1n n+<2330n n -->因此,当时,有4n ≥(1)(2)1(1)(2)1,n n n n n nb b +++++<所以当时,,即 4n ≥1n n b b +>456...b b b >>>又通过比较的大小知:, 1234b b b b 、、、1234b b b b <<<因为且时所以若数列中存在相等的两项,只能是与后面的项11,b =1n ≠111,n n b n +=≠{}n b 23b b 、可能相等,又,所以数列中存在唯一相等的两项, 11113964283528,35b b b b ====>={}n b 即.28b b =7.在数列中, {}n a 12a =11,22().n n n a a n N ++=+∈ (I )求证:数列为等差数列; }2{nn a(II )若m 为正整数,当时,求证:. 2n m ≤≤1231(1)()n m n n m m n a m⋅--+≤解:(I )由变形得:1122+++=n n n a a 122,1221111=-+=++++n nn n n n n n a a a a 即故数列是以为首项,1为公差的等差数列 }2{nn a121=a (II )(法一)由(I )得n n n a 2⋅= m m n m m m a n n m m nm n n 1)23)(1(1)3)(1(221-≤+--≤⋅+-即令mn m nn m n f n m n f 123()()1(,23()1()(+⋅-=+⋅+-=则当mn m n m n f n f n m 1)32(1)1()(,2⋅-+-=+≥>时m m m n m 11)32()211(32()11(⋅-+≥⋅-+=又 23221211211(1>>-+>+-⋅+=-+m m m C m m m m m 123(211>-+∴则为递减数列. )(,1)1()(n f n f n f 则>+当m=n 时,递减数列.)1()(+>n f n f )(,2n f n m 时当≥≥∴ mm m m f x f m m 1)1(49(),1()49()2()(11max-≤--==∴2故只需证要证:时,2,)11()1(491)23)(1(2≥+=+≤-≤+-m mm m m m n m m m m n 而即证49221212212122122)1(121111(22010=⨯-+≥-+=-+=-⋅+=⋅+⋅+≥+m m m m m mm C m C C m m m m m 故原不等式成立.(法二)由(I )得n n n a 2⋅= mm n m m m a n n m m nm n n 1)23)(1(1)3)(1(221-≤+--≤⋅+-即令)123ln 1()23()('),2()23)(1()(-⋅+-=≤≤+-=m x m x f m x x m x f m xm x则上单调递减. ],2[)(0)(',11,2m x f x f mx m m x 在即<∴<+-∴≤≤ ∴ mm m m f x f m m 1)1()49(),1()49()2()(11max-≤--==∴2故只需证也即证,时而2,)11(149≥+≤m mm49221212212122122)1(121111(22210=⨯-+≥-+=-+=-⋅+=⋅+⋅+≥+m m m m m mm C m C C m m m m m 故原不等式成立.。

构建函数平台 巧解数列问题论文

构建函数平台 巧解数列问题论文

构建函数平台巧解数列问题摘要:数列是定义域为正整数集或它的有限子集1,2,3…,n 的函数(“离散型”函数),数列的通项公式则是相应的解析式。

因此在数列的教学中,应充分利用数列问题中所蕴涵的函数本质,以函数的概念、图像、性质为纽带,架起函数与数列间的桥梁,揭示它们之间的内在联系,从而使函数与数列知识相互交汇,使学生的知识网络得以优化与完善。

同时在解题教学中如能合理的利用函数思想和方法来解决数列的问题,更有利于提高学生的解题能力。

关键词:函数概念函数图像单调性周期性构建函数巧解数列数列问题是学生在小学与初中都见过的一种常见题型,只不过是以找规律的形式出现而已,多数学生对这种规律准确表达出来是困难的,更不用说利用规律解决其他相关的问题。

高中教材将数列安排在函数之后学习,强调了数列与函数知识的密切联系。

从函数的观点出发,变动地、直观地研究数列的一些问题,不仅有利于认识数列的本质,也有利于解决数列中一些较难的问题。

处理数列问题时,我们通常采取构造与之对应的函数,再利用函数的图象和性质来求解。

一、利用函数概念,合理消化数列问题通过对数列中的通项公式,前项an和公式等这些特殊函数的关系的概念的理解与分析,引导学生充分认识an与n,sn与n之间的对应关系,从而合理地找到解决问题的办法。

对于通项而言,等差数列实际是一次型函数,等比数列实际上是指数型函数。

例:(1997年上海市高考试题)设f(n)=++…+(n∈n),则f (n+1)-f(n)等于()a. b.c.+d.-解析:本题从形式上看是考查学生对数列的通项的意义的理解,但事实上更侧重于对函数符号与对应关系的考查,解决它的关键在于如何引导学生对函数f(n)=+++…的概念的理解,即如何正确表示f(x+1),从而得出正确答案d。

二、利用函数图象,简化数列问题函数图象是函数特征的形象、直观的体现,数形结合是我们解决问题的重要思想方法和手段。

例:在等差数列an中,a1=25,s17=s9,求sn的最大值。

导数在数列问题中的应用

导数在数列问题中的应用

导数是解决函数问题的有力工具, 更为 数 学解题注入了新的活力. 由于数列可看作
特殊的函数, 所以自然可联想、尝试、应用导 数知识解决数列问题. 1 利用导数确定数列的最大或最小项
例 1 已知数列{ an } 的通项 an = 8n2 -
n3 , n ∈ N* , 求数列{ an } 的最大项. 解 构造辅助函数 f ( x ) = 8x 2 - x 3 ( x
N* 时, 0 < an < 1.
1 2
)
=
f ( 2) =
1 2n
)
,

an

1 2
(
2n
+
1 2n
)
.
1 2
(
2n
+
所以 T n ≤
1 2
[(2+
22 +
…+
2n ) +
(
1 2
+
1 22
+
…+
1 2n
)
]
=
2n -
1 2
(
1
+
1 2n
)
<
2n
n
-
2.
2
说明 这里需要证明
1 2
(
1
+
1 2n
)
>
2 2
n
=
1 n
.
22
因为
2
n 2
由 及 1 ≤ x ≤ 2 知此时不等式无解.
( 3) 当 2 < x < 3 时, log 3x > 0, l og3( 3 -
x ) < 0, 此时不等式等价于 log 3x - log 3( 3 x ) ≥ 1 !.

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。

这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。

可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。

常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。

恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。

常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。

高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。

在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。

对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。

在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。

放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。

数列不等式也可考虑利用数学归纳法进行证明。

经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。

1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。

运用导数巧解题

运用导数巧解题

W ) %& + !
( . d 所以当 时5 ’! $ 5 W ) $ + !% 5 " " 有最 小 值 5 即 ^a 此时5 W ) ’ + _的 值 最 小 5 ^! $ ^a _ ) 5 $ + 5 _! ) $ 5% ( + 5 < = 1 b ^ 5 _ c! e ^ f_ e " !%
] 求角
$ @ ) @* $ + G (
( ’ 例 ] 已知 ^ !) 5 ’ + 5 _ !) ’ 5 ’% " + 5 " 求当 ^a 取最小值时 5 的值 / ’‘% & 5 _ b ^ 5 _ c 解 设^ a _ !W ) ’ + " ’ ( 则 *’ % " ’ 5 " ( ’% " ! W > ) ’ + ! ’* ( 如图 ( ) ’% $ + ) ’* " + 5 5 当 ’6 # % & 5% " +时 W > ) ’ +R . 5 W ) ’ +为 增 函 数G 当 ’6 ) % " 5 $ +时 5 图( W > ) ’ +Q . 5 W ) ’ +为 减 函 数G 当’ 时5 为增函数 5 又 R$ W > ) ’ + R. 5 W ) ’ +
长为 % 则其一半为 " 这样 & & 从 N 点到各点的最 短 路 线 长 如图 ! 乙4 所示 3 图中括 3 再逆向追踪用树 号标 记 4 & 形图表示路线如图 F ? 从而找出从 N 到 O的 条最短路径 ? " % N J Q R O & N S K R O & N J K R O & N J Q TO & N UM TO & N J M TO & N S V LO & N UV LO & N UM LO & N J M LO & N S K LO & N J K LO ( 评析 在数学竞赛和实际问题中常要求 找最短路径 & 这可借助树形图寻找 & 求解 ( 学 会 使 用 简 单 的 树 形 图& 不仅为我们分 还为我们解决问题开 析问 题 开 启 了 新 视 角 & 辟了 一 条 崭 新 的 道 路 & 更会有利于提高学生 对图形问题的分析能力及高等学校的后续学 习( 收稿日期 ? 3 % # # F # " # ! 4 图F

数列不等式的证明方法

数列不等式的证明方法

数列不等式证明的几种方法数列和不等式都是高中数学重要内容,这两个重点知识的联袂、交汇融合,更能考查学生对知识的综合理解与运用的能力。

这类交汇题充分体现了“以能力立意”的高考命题指导思想和“在知识网络交汇处”设计试题的命题原则。

下面就介绍数列不等式证明的几种方法,供复习参考。

一、巧妙构造,利用数列的单调性例1. 对任意自然数n,求证:。

证明:构造数列。

所以,即为单调递增数列。

所以,即。

点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。

二、放缩自然,顺理成章例2. 已知函数,数列的首项,以后每项按如下方式取定:曲线处的切线与经过(0,0)和两点的直线平行。

求证:当时:(1);(2)。

证明:(1)因为,所以曲线处的切线斜率为。

又因为过点(0,0)和两点的斜率为,所以结论成立。

(2)因为函数,所以,即,因此;又因为。

令,且。

所以因此,所以点评:本题是数列、函数、不等式、解析几何、导数等多知识点的综合题,在证明过程中多次运用放缩,放缩自然,推理逻辑严密,顺理成章,巧妙灵活。

三、导数引入,更显神威例3. 求证:证明:令,且当时,,所以。

要证明原不等式,只须证。

设,所以。

令,所以。

设,所以上为增函数所以,即所以同理可证所以。

对上式中的n分别取1,2,3,…,,得。

点评:导数进入中学数学新教材,为解决数列与不等式的交汇问题展示了新的思路和广阔的空间,其解题方法新颖独特,尤其是对数、指数次幂形式出现的一类问题,更显导数在解题中的工具性和独特的神威。

四、裂项求和,简捷明了例4. 设是数列的前n项和,且(1)求数列的首项,及通项;(2)设,证明。

解:(1)首项(过程略)。

(2)证明:将,得,则点评:本题通过对的变形,利用裂项求和法化为“连续相差”形式,从而达到证题目的,整个证题过程简捷明了。

五、独辟蹊径,灵活变通独辟蹊径指处事有独创的新方法,对问题不局限于一种思路和方法,而是善于灵活变通,独自开辟新思路、新方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用导数工具求解数列问题
作者:李觉友
来源:《数学教学通讯·中等教育》2014年第06期
摘要:本文以两道2013年高考试题来探讨如何用导数工具解决数列问题.
关键词:数列;导数
?摇数列是高中数学必修的5个模块内容之一,也是高等数学的基础,所以数列是每年高考数学的重要考查内容. 《普通高中数学课程标准(实验)》(以下简称《标准》)对高中数列的教学内容与要求是“了解数列是一种特殊函数;理解等差数列、等比数列的概念;探索并掌握等差数列、等比数列的通项公式与前n项和的公式;能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题;体会等差数列、等比数列与一次函数、指数函数的关系”. 因此,高考试题重点考查等差、等比数列的定义、性质、通项公式及前n项和公式等知识点.
数列是定义域为正整数集N*(或它的有限子集{1,2,…,n})的函数,是一类特殊的函数. 因此,许多数列问题可以用函数思想、观点和性质来解决,从而基于函数思想研究和解决数列问题十分有意义. 函数思想是中学数学的一种基本的数学思想,它应用广泛,贯穿于整个高中数学. 对比数列,函数有许多好的性质,如函数连续性、可导性等. 函数的导数,作为高中数学的新增内容之一,为解题、教学和教研注入了新的活力,更是研究函数的单调性、极值和最值等问题的有力工具. 由于数列可看作是特殊的函数,所以我们自然而然就想到要用函数导数这个新的工具来解决有关数列问题.
例1 (2013安徽卷·理20)设函数fn(x)=-1+x+■+■+…+■(x∈R,n∈N*).
证明:(1)对每个n∈N*,存在唯一的xn∈■,1,满足fn(xn)=0;
(2)对任意的p∈N*,由(1)中xn构成的数列{xn}满足0
解答:(1)因为对任意的x∈R和n∈N*,有f ′n(x)=1+■+■+…+■.
所以当x>0时,有f ′n(x)>0. 故fn(x)在(0,+∞)是严格增函数.
由于f1(1)=0和fn(1)>0,n≥2,所以
fn■=-1+■+■+■+…+■≤-■+■+■+…+■=-■+■·■= -■■■
所以存在唯一的点xn∈■,1,满足fn(x)=0.
(2)根据fn(x)的表达式,当x>0时,有fn+1(x)=fn(x)+■>fn(x),结合(1)有fn+1(xn)>fn(xn)=0=fn+1(xn+1).
又因为fn(x)在(0,+∞)是严格增函数,所以xn>xn+1. 故{xn}是严格单调数列,从而对任意的n,p∈N*,有1≥xn>xn+p>0.
由(1)知,对任意的n,p∈N*有
f■(x■)=-1+x■+■+…+■=0,?摇?摇①
fn+p(xn+p)=-1+xn+p+■+…+■+■+…+■=0,?摇?摇?摇?摇②
利用①-②和1≥xn>xn+p>0得,
xn-xn+p=■+…+■+■+…+■?摇≤■+…+■
综上,对任意的p∈N*,都有0
评析:本题以通项为xn与■乘积的数列的前n项和构造一个函数fn(x),显然这是以高等数学知识为背景,将数列与函数融为一体,解决函数的零点问题利用数列求和,解决数列的单调性需要用到函数的导数;由于函数的表达式是数列前n项和形式,所以求函数值的范围就是求数列前n项和的范围. 将第(1)问中求和的数列放缩成等比数列,将第(2)问中求和的数列放缩成可倍差求和的数列,进而求出函数值的范围,足以看出本题数列和函数及其导数结合的深度和广度. 试题考查了转化和归纳能力、综合运用知识和解决问题能力、推理论证能力,数列求和则考查了运算求解能力,试题颇有深度和难度.
在教学中,我们经常强调,立足函数观点,数列可以看做是定义域为正整数集上的一类特殊函数,因此在解决数列问题时,常用函数的性质去分析. 当然,如果能将数列与函数有机地结合起来,这对解决数列问题有极大帮助,比如例1. 但是数列自身也有其特殊性,与函数是有区别的,如果不去关注这些区别就会导致错误,学生用导数处理数列问题经常出现的错误就是忽视数列具有离散型的特征.
例2 (2013新课程全国Ⅱ卷·理16)等差数列{an}的前n项和为Sn,已知S10=0,
S15=25,求nSn的最小值.
错解:设等差数列{an}的首项为a1,公差为d,由等差数列前n项和可得
10a1+■d=0,15a1+■d=25,解得a1=-3,d=■. 故nSn=nna1+■d=■-■. 设f(n)=nSn=■-■,则f ′(n)=n2-■. 令f ′(n)=0,解得n=0(舍去)或n=■. 当n>■时, f(n)是单调递增的;当0
分析:结果是正确的,但是部分解题过程是错误的.因为导数是定义在连续函数基础上
的,而对于n∈N*, f(n)是离散函数,不存在导数,从而不能对其求导. 究其原因是未能吃透函数导数的本质含义,未能准确把握数列单调性与函数单调性的联系和区别. 例2要利用导数判别数列的单调性,一定要转化成函数去判断,同时要注意数列的定义域是正整数这一特点.
正解:按照上面同样步骤解得nSn=■-■.设f(x)=■-■,x>0,则f ′(x)=x2-■. 令f ′
(x)=0,解得x=■. 当x>■时, f(x)是单调递增的;当 0
评析:当学生通过解方程发现nSn的解析式为三次式时,学生马上能够想到以函数的导数为工具,研究数列的单调性和最值性,这样本题就较容易解决. 但如果利用数列的单调性nSn≤(n+1)Sn+1,nSn≤(n-1)Sn-1,解不等组,不仅运算量大,而且人为增加了试题难度,这是不可取的. 另外本题也考查了学生对“数列是特殊的函数”的理解,即项数n必须取正整数.
综上所述,数列是特殊的离散函数,以函数思想为指导,数列知识为工具来考查数列问题一直是高考试题背后的立意之一. 那么,在数列问题解题过程中,我们应当立足函数观点,借用函数导数这个强有力的工具去讨论和研究数列,但要充分考虑数列自身的特殊性,比如定义域是正整数集.如果将数列问题简单地函数化,则容易出现上述例2的错误.。

相关文档
最新文档