对勾函数详细分析报告.docx

对勾函数详细分析报告.docx
对勾函数详细分析报告.docx

. . . .

对勾函数的性质及应用

一 .对勾函数 y ax

b

(a 0, b 0)

的图像与性质 :

x

1. 定义域 :( -∞, 0) ∪( 0 ,+ ∞)

2. 值域 :(- ∞,- √ab]U[ √ab,+ ∞)

3. 奇偶性 :奇函数 ,函数图像整体呈两个 “对勾 ”的形状 ,且函数图像关于原点呈中心 对称 ,即 f (x) f ( x)

4. 图像在一 、三象限 ,

当 x

0 时, y

ax

b

2√ab ( 当且仅当 x

b

取等号 ), 即 f ( x) 在

x a

x= b

时,取最小值 2

ab

a

由奇函数性质知 :当 x<0 时, f ( x) 在 x=

b

时,取最大值

2 ab

a

5. 单调性 :增区间为 (

b , ),(

,

b

) ,减区间是 ( 0 ,

b

),(

b

,0)

a

a

a

a

1 、 对勾函数的变形形式

类型一 :函数 y

ax

b

(a

0, b 0) 的图像与性质

x

1.定义域 : ( ,0) (0,

)

2.值域 : (-∞,- √ab]U[ √ab,+ ∞)

3.奇偶性 :奇函数 ,函数图像整体呈两个 “对勾 ”的形状 .

4.图像在二 、四象限 , 当 x<0 时, f ( x) 在 x=

b

时,取

a

最小值 2

ab ;当 x 0 时, f ( x) 在 x=

b

时,取最大值 2 ab

a

5.单调性 :增区间为 ( 0 ,

b

),(

b

,0)减区间是 (

b

,

),(

,

b

),

a

a

a

a

....

类型二:斜勾函数y ax b

(ab 0) x

① a 0, b0 作图如下

1.定义域:(,0)(0,)

2.值域:R

3.奇偶性:奇函数

4.图像在二、四象限,无最大值也无最小值 .

5.单调性:增区间为( -,0 ),( 0 , +).

② a 0, b0 作图如下:

1.定义域:(,0)(0,)

2.值域:R

3.奇偶性:奇函数

4.图像在二、四象限,无最大值也无最小值 .

5.单调性:减区间为( -,0 ),( 0 , +).

2c

(ac

类型三:函数 f ( x)ax bx0)

x

此类函数可变形为 f ( x)ax

c b,可由对勾函数 y ax c上下平移得到

x x

练习 1.函数f ( x)x 2

x 1

的对称中心为x

类型四:函数

f ()

x

a(

a

0,

k

0)

x x k

a )

a

左右平移,上下平移得

此类函数可变形为 f (x)(x k

x

k ,则 f ( x)可由对勾函数 y x

k x

练习 1.作函数f ( x)x1与 f ( x)x3

x2x x

的草图

2 2.求函数f ( x) x1在 ( 2,) 上的最低点坐标

2x4

3. 求函数f (x)x

x x的单调区间及对称中心1

....

类型五:函数 f ( x)ax(a0,b0) 。此类函数定义域为R,且可变形为

x 2b

f ( x)a a

b b

x2x

x x

a.若a0 ,图像如下:

1 .定义域:( ,) 2.值域: [a1,a 1 ]

2b2b

3. 奇偶性:奇函数 .

4.图像在一、三象限 .当x0 时, f ( x)在x时,取最大值a

,当 x<0

b

2b 时, f (x) 在x= b 时,取最小值a

2 b

5. 单调性:减区间为(b,),(, b );增区间是[ b , b ]

f (x)x

x2 1 的在区间

练习 1.函数2,上的值域为

b. 若a 0,作出函数图像:

1 .定义域:(,) 2. 值域:[ a 1

,a

1

] 2b 2 b

3. 奇偶性:奇函数 .

4. 图像在一、三象限 .

当 x0 时, f (x) 在

x

时,取最小值a,b

2b

当 x<0时, f ( x) 在x= b 时,取最大值a

b

2

5. 单调性:增区间为(b,),(, b );减区间是 [b, b]

练习 1.如

a 1

2x x1,2 ,则的取值范围是x24

....

ax 2

bx

c

(a

a(x m)2s(x m)t t

类型六:函数

f (x)0) .可变形为f (x)a(x m)0),

x x m x

s(at

m m 则 f ( x) 可由对勾函数y ax t左右平移,上下平移得到

x

练习 1. 函数f (x)x2x11

向(填“左”、右“ ”)平移单位,向x1

由对勾函数y x

x

(填“上”、下“”)平移单位 .

2.已知x1,求函数 f ( x)x27x 10

的最小值;

x1

2

3.已知x 1 ,求函数f ( x)x9x

9 的最大值

x1

类型七:函数f (x)

x m

(a0) ax2bx c

练习 1.求函数

f ( x)

x1在区间 (1,) 上的最大值;若区间改为 [ 4,) 则f (x)的最大值为x 2x2

2 .求函数 f ( x)x22x 3

在区间 [ 0,) 上的最大值

x2x2

类型八:函数 f ( x)x b.此类函数可变形为标准形式:

f (x)x a b a x a b

a

(b a0)

x a x a x a 练习 1.求函数 f (x)x

3 的最小值;

x1

2 .求函数 f ( x)x5的值域;

x1

3.求函数f (x)x 2 的值域

x3

类型九:函数f (x)x2b

(a0)

。此类函数可变形为标准形式:

x2a

22b a b a

( x a)2

f (x)2x a2(b a o)

x a x a

练习 1.求函数f ( x)x25的最小值;

x 24

2.求函数

f (x)

x

x2

1 的值域

217

三、关于求函数 y x10 最小值的十种解法

x

x

1.均值不等式

.

. .

.

x

0 ,

y

1 2 ,当且仅当 x

1 1 的时候不等式取到 “= ”。 当 x 1 的时候 ,

x

,即 x

x

x

y min

2

2.

y

x 1

x 2 yx 1

x

若 y 的最小值存在 ,则 y 2 4

0 必需存在 ,即 y 2 或 y 2 (舍)

找到使 y

2 时,存在相应的 x 即可 。 通过观察当 x 1的时候 ,

y min

2

3. 单调性定义

设 0 x 1 x 2

f x 1

f x 2

x 1 x 2

1 1 x

2 1

1

x 1 x 2

x 1x 2 1

x 1

x 1

x 1 x 2

x 2

x 1x 2

当对于任意的 x 1,x 2 ,只有 x 1 ,x 2 0,1 时, f x 1 f x 2 0 , 此时 f x 单调递增 ;

当对于任意的 x 1,x 2 ,只有 x 1 ,x 2

1, 时, f x 1

f x 2

0 , 此时 f x 单调递减 。

当 x

1取到最小值 , y min f 1

2

4. 复合函数的单调性

1

1 2

y

x

2

x

x

x

t

x

1 在 0, 单调递增 , y t 2

2 在

,0 单调递减 ;在 0,

单调递增

x

x 0,1 t

,0 x 1, t 0,

原函数在

0,1 上单调递减 ;在 1,

上单调递增

即当 x

1取到最小值 , y min f 1 2

5. 求一阶导

y x

1 y '

1

1 当 x

0,1 时, y ' 0 ,函数单调递减 ;当 x 1,

时, y '

0 ,函

x

x 2

数单调递增 。

当 x

1取到最小值 , y min f 1 2

6. 三角代换

....令 x tan,,则1

0,cot

2x

y x 1

tancot

2

0,20, x sin 22

当,即 2时, sin 2max1, y min 2 ,显然此时x 1 42

7.向量

y x 1

x 1

1 1 a b ,a x, 1 , b1,1 x x x

a b a b cos 2 a cos

根据图象, a 为起点在原点,终点在 y 1

x 0 图象上的一个向量,a cos的几何意义为 a 在 b x

上的投影,

显然当 a b 时, a cos 取得最小值。此时,x1, y min222 8.图象相减

y

1

x

11

x,即 y 表示函数 y x 和y两者之间的距离x x x

求 y min,即为求两曲线竖直距离的最小值

平移直线 y

1

相切时,两曲线竖直距离最小。x ,显然当 y x 与y

1x

1

y x 轴对称,若 y x 与y在 x 1处有一交点,根据对称

关于直线 y

x

x 1

相交。显然不是距离最小性,在 0x 1 处也必有一个交点,即此时 y x 与y

x

的情况。

所以,切点一定为1, 1 点。此时,x1,y min2

9.平面几何

依据直角三角形射影定理

11

,设

AE x, EB,则 AB AD x

1x x

显然, x AB ,即 AD 为直线 AB 和 CD

为菱形的一条边,只用当 AD

x

之间的距离时, x 1

取得最小值。即四边形 ABCD 为矩形。x

.

. . .

此时 , x

1 1, y min

2

,即 x

x

10. 对应法则

设 f

x

min

t

f x 2

x 2

1

x 2

x 0,

, x 2

0,

,对应法则也相同

f x 2 min

t

f x

x

1 f

2 x

x 2

1 2

x

x 2

左边的最小值 右边的最小值

t 2 t 2

t

1 ( 舍 ) 或 t 2

当 x

P x 2 ,即 x

1 时 取 到最 小 值 , 且

y min 2

对勾函数练习 :

1 . 若 x>1. 求 y

x 1 的最小值 . 11. 若

t

a t 2 在 t

0,2 上恒成立 ,则 a 的取值范围

x 1

t

2

9

t 2 是

2. 若

x>1. 求 y x 2 2x 2

12. 求函数 f x

x

1 16 x

1 的最值 。

x

1

的最小值

x x 2

x

1

3. 若

x>1. 求 y x 2 x 1

的最小值

13. 当 x

2 x

x 1 (0,1)时,求 f (x)

的值域

4x 1

4. 若

x>0. 求 y

3x

2

的最小值

14. 求f

( x)

x 2

x

x 2

1 的值域

x

x 3

5.已知函数 y

x 2

2x a (x [1,

))

x

( 1) 求 a

1

时,求 f (x)的最小值

2

(2)若对任意 x ∈[1,+ ∞],f(x)>0 恒成立 ,求 a 范围

6.: 方程 sin 2

x -asinx+4=0

在[ 0 , 2 ]内有解 ,则 a 的取值范围是 __________

10

的 最 小 值 为

; 函 数 y x

10 7. 函 数 y x2 x 7

2 x 7 的 最 大 值 为

....。

8.函数y23x 4

的最大值为

x

9 、若4x1

x 22x2

。,则 y

2x

的最值是

2

10. 函数y9 4 sin2 x 的最小值是。

sin2x

专题13幂函数知识点归纳

3 幂函数知识点归纳 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α 系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2 x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如 ()-1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 练习:做出下列函数的图像: 1、1α> ①3 y x =或53y x = ②2y x =或43y x = ③32y x =或74 y x = 2、01α<< ①13y x = ②23y x = ③12 y x = 3、0α< ①2 y x -= ②1 y x -= ③32 y x - = ④43 y x =— 三、 幂函数的性质 y=x

3 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 四、 幂函数类型题归纳 (一) 定义应用: 1、下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21 (1)y x -=+ ④0 y x = ⑤1y = 2、若幂函数()y f x = 的图像过点2????? ,则函数()y f x =的解析式为______. 3、已知函数()() 22 1 44m m f x m m x --=--是幂函数,且经过原点,则实数m 的值为__________. 4、已知函数()()2 2 k k f x x k Z -++=∈满足()()23f f <,则k 的值为________ ,函数()f x 的 解析式为__________ 5、设1112,1,,,,1,2,3232a ? ? ∈--- ???? ,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________. 6、设()y f x =和()y g x =是两个不同的幂函数,集合()(){} |M x f x g x ==,则集合M 中 元素的个数是( ) (A)1或2或0 (B) 1或2或3(C)1或2或3或4 (D)0或1或2或3 (二) 图像及性质应用 1、 右图为幂函数y x α =在第一象限的图像,则 ,,,a b c d 的大小关系是 ( ) ()A a b c d >>> ()B b a d c >>> d y=x ()C a b d c >>> ()D a d c b >>> 2、如图:幂函数n m y x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有 ( ) ()A m 、n 为奇数且 1m n < ()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1m n < b c

对勾函数的几点分析

对勾函数的几点分析 对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。也被形象称为“耐克函数” 奇偶性与单调性 当x>0时,f(x)= x b ax + 有最小值(这里为了研究方便,规定a>0,b>0),即当a b x =的时候 奇函数。 令a b k = ,那么: 增区间:{x|x≤-k}和{x|x≥k}; 减区间:{x|-k≤x<0}和{x|00,那么该函数在 (0,√a] 上是减函数,在 , [√a,+∞ )上是增函数. (1)如果函数 y=x+(2^b)/x (x>0)的值域为 [6,+∞),求b 的值; (2)研究函数 y=x^2+c/x^2 (常数c >0)在定义域内的单调性,并说明理由; (3)对函数y =x+a/x 和y =x^2+a/x^2(常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x) =(x^2+1/x)^n+(1/x^2+x)^n (x 是正整数)在区间[½ ,2]上的最大值和最小值(可利用你的研究结论) 当x>0时,f(x)=ax+b/x 有最小值;当x<0时,f(x)=ax+b/x 有最大值 f(x)=x+1/x 首先你要知道他的定义域是x 不等于0

最新指数对数幂函数知识点总结

高考数学(指数、对数、幂函数)知识点总结2 整理人:沈兴灿 审核人:沈兴灿 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1) (0,,)r s r s a a a a r s R +?=>∈. (2)()(0,,)r s rs a a a r s R =>∈.(3)()(0,0,)r r r ab a b a b r R =>>∈. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ;规律:底数a 保持不变 3注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化。规律:底数a 保持不变 幂值 真数 (二)对数的运算性质 (1)负数和零没有对数; (2)1的对数是0,即01log =a (a >0,且a ≠1);特殊地:ln10= (3)底的对数是1,即1log =a a (a >0,且a ≠1);特别地:ln 1e = (三)对数运算法则。若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1log = (5)对数的换底公式 log log log m a m N N a = (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). a b b a log 1 log = (a >0,且 b >0). (6)指数恒等式:a N a N l o g = (由②N log b ①N a a b ==,,将②代入①得a N a N l o g =)

幂函数题型归纳

幂函数知识点归纳及题型总结 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如() -1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 三、幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数 幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递 增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两

点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 一、幂函数解析式的求法 1. 利用定义 (1)下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21(1)y x -=+ ④0 y x = ⑤1y = (2(3 2 3 1. (1)、函数3 x y =的图像是( ) (2)右图为幂函数y x α =在第一象限的图像,则,,,a b c d 的大小关系是 ( )

基本不等式—最值—对勾函数耐克函数(学案 附答案)

基本不等式——形式一:a b +≥(a>0,b>0) ____a b +( ) ——形式二: 2 a b +≥ (a__0,b__0) __ (a >0,b >0) 2 a b + ——形式三:2 2a b ab +?? ≤ ??? ( ) (a>0,b>0)2 a b +≤ 2 a b +? 用分析法证明:要证 2 a b + (1) 只要证 a b +≥ (2) 要证(2),只要证____0a b +-≥ (3) 要证(3),只 要证2(__________)0-≥ (4) 显然(4)是成立的. 当且仅当a=b 时,(4)中的等号成立. 探究3:使用基本不等式的三个条件:一正二定三相等 思考:(1)已知y=x+x 1 ( x>0 ) ,求y 的范围. (2)已知y=x+x 1 ( x≠0 ) ,求y 的范围.

例题拓展 【例1 】已知0x >,则x x 4 32+ +的最小值是________。 【 例2 】下列不等式一定成立的是 ( ) A .xy y x 2≥+ B .21 ≥+x x C .xy y x 222≥+ D . xy xy y x 1 2≥ + 【 例3 】下列结论中,错用基本不等式做依据的是( ) 基础回顾 1、对于____ _ ,a b ,有22____2a b ab +,当且仅当____ _ 时,等号成立.

2、基本不等式:对于____ _ ,a b ,则2 a b +___ _时,不等式取等号. 注意:使用基本不等式时,应具备三个条件:____ _ ____ _ 【例1 】(1)已知x >0,且y = x + 81 x ,x =_________时,y 取最小值 (2)已知0x >,则x x 4 32+ +的最小值是________。 (3)y x x =++23 122 的最小值是 (4)a+b=2,则3a +3b 的最小值是______________ (5)a+2b=4,则3a +9b 的最小值是______________ 【 例2】设x ,y 为正数, 求14 ()()x y x y ++的最小值 【例4 】若0,0,x y >>且 21 1x y +=,则2x y +的最小值为________

2021届浙江省温州市高三上学期11月高考适应性测试(一模)数学试题教师解析版

2021届浙江省温州市高三上学期11月高考适应性测试(一模)数学 试题 一、单选题 1.已知集合{} 15A x x =<<,{} 03B y y =<<,则A B =() A .? B .{} 13x x << C .{} 05x x << D .{} 05x x << 答案:B 利用交集的定义可求得集合A B . 解: {}15A x x =<<,{}03B y y =<<,因此,{}13A B x x ?=<<. 故选:B. 2.已知z 为复数,若()1i i z ?+=(i 是虚数单位),则z = A .1 B C . 12 D . 2 答案:D 先根据复数除法求出复数z ,结合复数模长的求解方法可得模长. 解:因为(1)z i i +=,所以i i(1i)1i 11i 1i (1i)(1i)222z -+====++-+,所以||2 z ==,故选D. 点评:本题主要考查复数的除法及模长,复数模长的求解一般是先化简复数为z a bi =+形式,结 合模长公式z = . 3.设公差为d 的等差数列{}n a 的前n 项和n S ,若4228S S =+,则d =() A .1 B .2 C .3 D .4 答案:B 由4228S S =+,直接利用等差数列的前n 项和公式求解. 解:因为4228S S =+, 所以 () ()14124282 a a a a +=++,

所以()()11112328a a d a a d ++=+++, 即48d =, 解得2d =, 故选:B. 4.若实数x ,y 满足约束条件0320x y x x y -≥?? ≤??+-≥? ,则2x y -的最小值为() A ..1 B .1- C .3 D .3- 答案:D 根据实数x ,y 满足约束条件0320x y x x y -≥?? ≤??+-≥? ,画出可行域,记目标函数2z x y =-,平移直线 12 2 z y x = -,当直线在y 轴上的截距最大时z 有最小值求解. 解:实数x ,y 满足约束条件0 320x y x x y -≥?? ≤??+-≥? 的可行域如图所示: 记目标函数2z x y =-,平移直线122 z y x =-,当直线经过点(3,3)A 时在y 轴上的截距最大,此时对应的z 具有最小值, 最小值为3233z =-?=-, 故选:D. 5.已知0a >,0b >则“1a b +=”是“22 1 2 a b +≥ ”的()

高一数学幂函数知识点总结

高一数学幂函数知识点总结 函数是高中数学中比较重要的一项知识,学好函数可以提高自己的数学知识水平。下面就让小编给大家分享一些高一数学幂函数知识点总结吧,希望能对你有帮助! 高一数学幂函数知识点总结篇一一、一次函数定义与定义式:自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴

和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①和y2=kx2+b② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。

高一数学幂函数知识点总结

高一数学幂函数知识点总结 一、一次函数定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数 的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通 过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的 表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 一、高中数学函数的有关概念 1.高中数学函数函数的概念:设A、B是非空的数集,如果按照 某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A 到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x 的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

指对幂函数知识点总结

〖2.1〗指数函数 [2.1.1】指数与指数幂的运算 (1) 根式的概念 ① 如果x " = aa R, x ? R, n 1 ,且n N .,那么x 叫做a 的n 次方 根.当 n 是奇数时,a 的n 次方根用符号:a 表示;当n 是偶数时, 正数a 的正的n 次方根用符号 蔦表示,负的n 次方根用符号一蔦 表示;0的n 次方根是0 ;负数a 没有n 次方根. ② 式子蔦叫做根式,这里n 叫做根指数,a 叫做被开方数.当 n 为奇数时,a 为任意实数;当n 为偶数时,a_0 . ③根式的性质:(n .a)n =a ;当口为奇数时,n -a n =a ;当n 为偶 (2) 分数指数幂的概念 m ① 正数的正分数指数幂的意义是: a 下「n /(a 0, m, n ?N ,且 n 1). 0 的正分数指数幂等于0. ② 正数的负分数指数幂的意义是: a n =([)n (丄)m (a 〉0,m,门邛十且nn1) . 0 的负分数指数幂没有 a , a 意义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r a $ = a r s (a 0,r, s R) ③(ab)r =a r b r (a 0,b 0,r R) 【2.1.2】指数函数及其性质 数时, Wa (a —0) (a : ②(a r )s = a rs (a 0,r,s R)

(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若a?N(a 0,且a=1),贝卩x叫做以a为底N的对数,记作x=log a N,其中a叫做底数,N叫做真数.

最新对勾函数详细分析【精选】整理版

对勾函数的性质及应用 一.对勾函数的图像与性质: 1.定义域:(-∞,0)∪(0,+∞) 2.值域:(-∞,-√ab]U[√ab,+∞) 3.奇偶性:奇函数,函数图像整体呈两个 “对勾”的形状,且函数图像关于原点呈中心 对称,即 4.图像在一、三象限, 当时,2√ab(当且仅当取等号),即在x= 时,取最小值 由奇函数性质知:当x<0时,在x=时,取最大值 5.单调性:增区间为(),(),减区间是(0,),(,0) 1、对勾函数的变形形式 类型一:函数的图像与性质 1.定义域: 2.值域:(-∞,-√ab]U[√ab,+∞) 3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状. 4.图像在二、四象限, 当x<0时,在x=时,取 最小值;当时,在x=时,取最大值 5.单调性:增区间为(0,),(,0)减区间是(),(), 类型二:斜勾函数 ①作图如下 1.定义域: 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值.

5.单调性:增区间为(-,0),(0,+). ②作图如下: 1.定义域: 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值. 5.单调性:减区间为(-,0),(0,+). 类型三:函数。 此类函数可变形为,可由对勾函数上下平移得到 练习1.函数的对称中心为 类型四:函数 此类函数可变形为,则可由对勾函数左右平移,上下平移得到练习 1.作函数与的草图 2.求函数在上的最低点坐标 3. 求函数的单调区间及对称中心 类型五:函数。此类函数定义域为,且可变形为 a.若,图像如下: 1.定义域: 2. 值域: 3.奇偶性:奇函数. 4. 图像在一、三象限.当时,在时,取最大值,当x<0时,在x=时,取最小值 5. 单调性:减区间为(),();增区间是

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

对勾函数求最值

对勾函数年级:高二科目:数学时间:9/6/2009 16:25:27 新5961438 请问对勾函数的最值如何求。 答:同学,你好,现提供以下资料供你参考: 函数的单调性. 显然此函数的定义域为(-∞,0)∪(0,+∞),用描点法可作出此函数的图象为: 从图象上可看出,函数在(0,)上单调递减,在[,+∞)上单调递增,在(-∞,-]上单调递增,在[-,0)上单调递减. 我们可用单调性的定义验证它的单调性(证明略). 很容易看出f(x)是一个奇函数,所以它的图象是关于原点对称的,我们只需记住它在(0,]、[,+ ∞)上的单调性就可以了,而且我们用这个函数解题时,通常只用这两个区间上函数的单调性. 特殊地,当k=1时,,它在(0,1]上单调递减,在[1,+∞)上单调递增. 一般地,对于函数,我们也可把它转化为的形式,即为, 此时,f(x)在上单调递减,在上单调递增. 说明:因课本并没有介绍此函数的单调性,所以在利用它时应在答题中将它的单调性证一遍 例:甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元. (1)把全部运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 解:(1) (2)依题意知s,a,b,v都为正数,故,

当且仅当,即v=时上述等号成立. 若≤c,则当时v=时,全程运输成本y最小. 若>c,,此函数在(0,]上单调递减, 则在(0,c]上也单调递减,所以y≥,当v=c时取等号. 综上知,为使全程运输成本y最小,当≤c时行驶速度应为v=,当>c时,行驶速度应为v=c. 同学,你好,你要记住做每件事情要有决心。决心决定一切,要努力地去做,让你每一天都充满光彩。学习更上一层楼!

(完整word版)指对幂函数知识点总结

【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时, a 的n n 是偶数时,正数a 的正的n n 次方 根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当 n 为偶数时,0a ≥. ③根式的性质 : n a =;当 n 为奇数时 , a =;当 n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数 幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③() (0,0,)r r r ab a b a b r R =>>∈

【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数, N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式 log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10 log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1, 0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 【2.2.2】对数函数及其性质

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

对勾函数最值的十种求法

关于求函数()01>+=x x x y 最小值的十种解法 一、 均值不等式 Θ0>x ,∴21≥+=x x y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。 ∴当1=x 的时候,2min =y 二、?法 0112=+-?+=yx x x x y 若y 的最小值存在,则042≥-=?y 必需存在,即2≥y 或2-≤y (舍) 找到使2=y 时,存在相应的x 即可。 通过观察当1=x 的时候,2min =y 三、单调性定义 设210x x << ()()()??? ? ??--=-+-=-21212121211111x x x x x x x x x f x f ()2121211x x x x x x --= 当对于任意的21,x x ,只有21,x x (]1,0∈时,()()21x f x f -0>,∴此时()x f 单调递增; 当对于任意的21,x x ,只有21,x x ()+∞∈,1时,()()21x f x f -0<,∴此时()x f 单调递减。 ∴当1=x 取到最小值,()21min ==f y 四、复合函数的单调性 2112 +??? ? ??-=+=x x x x y x x t 1 -=在()+∞,0单调递增,22+=t y 在()0,∞-单调递减;在[)+∞,0单调递增 又Θ∈x ()1,0()0,∞-∈?t ∈x [)+∞,1[)+∞∈?,0t ∴原函数在()1,0上单调递减;在[)+∞,1上单调递增 即当1=x 取到最小值,()21min ==f y

五、求一阶导 2'111x y x x y -=?+= 当()1,0∈x 时,0'y ,函数单调递增。 ∴当1=x 取到最小值,()21min ==f y 六、三角代换 令αtan =x ,?? ? ??∈2,0πα,则αcot 1=x α αα2sin 2cot tan 1=+=+=x x y ??? ? ?∈2,0πα()πα,02∈? ∴当4π α=,即22π α=时,()12sin max =α,2min =y ,显然此时1=x 七、向量 b a x x x x y ?=?+?=+=1111, ()1,1,1,=?? ? ??=b x x a b a ?θcos b a ?=θcos 2a 根据图象,a 为起点在原点,终点在x y 1=()0>x 图象上的一个向量,θcos a 的几何意义为a 在b 上 的投影,显然当b a =时,θcos a 取得最小值。 此时,1=x ,222min =?=y 八、图象相减 ?? ? ??--=+=x x x x y 11,即y 表示函数x y =和x y 1-=两者之间的距离 求min y ,即为求两曲线竖直距离的最小值

对勾函数详细分析

对勾函数的性质及应用 一.对勾函数b y ax x =+)0,0(>>b a 的图像与性质: 1. 定义域:(-∞,0)∪(0,+∞) 2. 值域:(-∞,-√ab]U[√ab,+∞) 3. 奇偶性:奇函数,函数图像整体呈两个 “对勾”的形状,且函数图像关于原点呈中心 对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,b y ax x =+ ≥2√ab (当 且仅当b x a = 取等号),即 )(x f 在x=a b 时,取最小值ab 2 由奇函数性质知:当x<0时,)(x f 在x=a b -时,取最大值ab 2- 5. 单调性:增区间为(∞+,a b ),(a b -∞-,),减区间是(0,a b ),(a b -,0) 1、 对勾函数的变形形式 类型一:函数b y ax x =+ )0,0(<时,)(x f 在x=a b -时,取最大 值ab 2- 5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,a b ),(a b -∞-,), 类型二:斜勾函数b y ax x =+)0(b a 作图如下 1.定义域:),0()0,(+∞?-∞ 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值. 5.单调性:增区间为(-∞,0),(0,+∞).

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数、对数及幂函数知识点小结及习题

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)() s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

式与指数式混合运算时,将根式化为指数运算较为方便 1 、5+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、 化简 (b a b +-的结果是………………………………( ) A 、a - 、a a D 、2b a + 4、已知0.001a = ,求:413 3 223 3 8(14a a b a b -÷-+=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6 、若y y x x -+=,其中1,0x y ><,则y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ x s A B =?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( ) A 、()1 12x + B 、 1 4x + C 、2x D 、

相关文档
最新文档