临时支墩计算书

临时支墩计算书
临时支墩计算书

成绵乐铁路客运专线CMLZQ-4标段

成渝三环立交特大桥

(39.35+64+39.35)m预应力混凝土连续梁

临时支墩计算书

中铁十四局集团有限公司成绵乐铁路工程指挥部

年月日

计算书

成绵乐铁路客运专线CMLZQ-4标

CHENGMIANLERAILWAYPASSENGERDEDICATEDLINENO.CMLZQ-4

目录

一、工程概况 (1)

二、计算依据 (1)

三、临时支墩设计 (2)

四、荷载计算 (2)

1、梁体自重不均匀引起的纵向不平衡弯矩 (3)

2、施工荷载不均匀引起的纵向不平衡弯矩 (3)

3、8#块混凝土浇筑时施工机具不同步引起的纵向不平衡弯矩 (4)

4、8#块混凝土浇注不同步引起的纵向不平衡弯矩 (4)

5、水平风荷载引起的横向不平衡弯矩 (5)

6、竖向风荷载引起的纵向不平衡弯矩 (5)

7、荷载组合 (6)

五、钢管混凝土支墩间距计算 (6)

六、钢管混凝土支墩承载力计算 (7)

七、结论 (9)

中铁十四局集团有限公司成绵乐铁路工程指挥部

成渝三环立交特大桥

预应力混凝土连续梁临时支墩计算书

一、工程概况

本桥为改建铁路成都枢纽成渝线跨成都石胜路而设,采用(39.35+64+39.35)m预应力混凝土双线连续梁,采用挂篮悬臂浇筑施工。该梁部为变截面箱梁,设有2个T构,每个T构设有1个0#块和7个悬浇节段,0#块梁高5.1米,合龙段以及边跨现浇段梁高为2.7米,梁体高度自悬臂根部至6#段端截面按二次抛物线变化。该段连续梁下部主墩为圆端实体墩,墩身高度分别为6米。桥梁合龙顺序为先利用挂篮浇筑中跨8#梁块,合龙中跨,利用挂篮悬挂两边跨不平衡段8#块,再在两边墩墩顶搭设支架,利用支架浇筑边跨9#梁块,拆除临时支墩及支架,形成整个连续梁系。

二、计算依据

1、《铁路桥涵设计基本规范》TB10002.1-2005

2、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005

3、《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005

4、《铁路桥涵地基和基础设计规范》TB10002.5-2005

5、《铁路预应力混凝土连续梁(刚构)悬灌浇注施工技术指南》

中铁十四局集团有限公司成绵乐铁路工程指挥部

TZ324-2010

6、《铁路桥涵施工规范》TB10203-2002

7、《钢管混凝土结构设计与施工规程》CECS28:90

8、《建筑结构荷载规范》GB50009-2001(2006年版)

9、《钢结构设计规范》GB50017-2003

10、《混凝土结构设计规范》GB50010-2002

三、临时支墩设计

为避免悬灌梁施工时前后梁段荷载不平衡产生倾斜,在悬灌梁施工过程中,临时将桥墩与梁体固结。临时支墩设于主墩两侧,承受中支点处最大不平衡力矩相应竖向支反力。每个临时支墩在墩顶与箱梁内埋入Ф25精轧螺纹钢,临时支墩的材料采用C40混凝土。根据结构可靠性以及施工可操作性要求,选择了钢管混凝土立柱作为该悬浇施工连续梁的临时支撑墩,其构造详见附图。

四、荷载计算

桥梁对称悬臂浇筑到最大悬臂状态时,T构受施工荷载、风荷载等的影响,此时临时支墩受力最不利,故计算以最大悬臂状态为基本结构进行验算。计算荷载工况包括:

1)梁体自重不均匀

2)施工荷载不均匀

3)8#块混凝土浇筑时施工机具不同步

中铁十四局集团有限公司成绵乐铁路工程指挥部

中铁十四局集团有限公司成绵乐铁路工程指挥部 4)8#块混凝土浇筑不同步

5)水平风荷载

6)竖向风荷载

1、梁体自重不均匀引起的纵向不平衡弯矩

(1) 本梁设计1#-7#段梁体混凝土体积为297.7m 3,1'#-7'#段梁体混凝土体积为298.7m 3, 1#-7#段梁体比1'#-7'#段梁体混凝土体积小1m 3。

(2)考虑一侧梁体比另一侧重5%,一侧梁体总体积298.7m 3,则不均匀体积为15m 3。

综上,梁体自重不均匀体积取16m 3,梁体混凝土容重取26.5KN/m 3。

不均匀荷载Gmax=16*26.5=424KN

梁体自重不均匀引起的不平衡弯矩

L G M max 211=

式中L —主梁的节段半长;

m KN L G M ?=??==65723142421max 211

2、施工荷载不均匀引起的纵向不平衡弯矩

考虑梁体上堆放工具材料以及人群荷载,一侧悬臂作用有

中铁十四局集团有限公司成绵乐铁路工程指挥部 12kN/m 均布荷载,另一侧侧悬臂空载。

2

221qL M =

式中L —主梁的节段半长;

m KN qL M ?=??==576631122121222

3、8#块混凝土浇筑时施工机具不同步引起的纵向不平衡弯矩

挂篮、模板、施工机具重约为550KN ,考虑挂篮、施工机具重量偏差,移动侧挂篮机具重乘以1.2,不动侧挂篮机具重乘以0.8,且施工机具位置考虑一个阶段差。

1213L F L F M -=

L1—相差一个阶段半长的长度,为27米;

m KN L F L F M ?=??-??=-=8580278.0550312.15501213

4、8#块混凝土浇注不同步引起的纵向不平衡弯矩

中跨合龙段8#块混凝土重量50.88t ,边跨合龙段8#块混凝土重量为105.21t 。

合龙中跨时,m KN L G M ?=???==4.7886311088.50212114

合龙边跨时,m KN M ?=??-?=2.84213110)88.5021.105(215

综上,8#块混凝土浇筑不同步产生的最大弯矩取最大值

中铁十四局集团有限公司成绵乐铁路工程指挥部 m KN M ?=2.84215

5、水平风荷载引起的横向不平衡弯矩

根据《铁路桥涵设计基本规范》TB10002.1-2005第4.4.1条,风荷载强度:

321W K K K W = 0W —基本风压值,根据《全国基本风压分布图》查得,成都地区

的基本风压值20/35.0m kN W =;

1K —风载体型系数,取3.11=K ;

2K —风压高度变化系数,本桥桥面离地面高度约为12m <20m ,

取0.12=K ;

3K —地形地理条件系数,本桥址属一般平坦空旷地区,取0.13=K ;

故2

0321/455.035.00.10.13.1m kN W K K K W =???== 支点处梁体风荷载大小:m kN /32.21.5455.0=?

跨中处梁体风荷载大小:m kN /23.17.2455.0=?

水平风荷载引起的弯矩取近似计算:

m KN M ?=??+?=8.35715.364)23.132.2(216 6、竖向风荷载引起的纵向不平衡弯矩

风荷载强度仍取2

/455.0m kN W ==, 竖向风荷载大小为:m kN /46.512455.0=?

中铁十四局集团有限公司成绵乐铁路工程指挥部 考虑不对称加载,则竖向风荷载引起的纵向弯矩为:

m KN qL M ?=???=?=1.524723145.521221227

7、荷载组合

考虑横向弯矩时,根据构造要求设置缀杆,同侧两根组成格构柱,缀杆满足构造要求,故横向弯矩不纳入组合,按最不利情况,参考《钢管混凝土结构设计与施工规程》和《建筑结构荷载规范》,纵向不平衡组合为:

75321M M M M M M ++++=

1.5247

2.8421858057666572++++=

m KN ?=3.34586

临时固结荷载竖向反力包括节段自重以及人均机具荷载所以竖向反力组合为:

5502315.1226.5)250.88105.21298.7297.7(?+?+?+++=G

19360.3KN =

五、钢管混凝土支墩间距计算

由于钢管混凝土支墩不承受拉力,所以钢管支墩的最小反力为: 0/2/>-=B M G N m (B —钢管混凝土支墩纵向间距)

0/3.345862/3.19360>-B m B 57.3>

根据墩身构造及承台受力的综合考虑,钢管混凝土支墩的纵向间

中铁十四局集团有限公司成绵乐铁路工程指挥部 距设计为5m 。

六、钢管混凝土支墩承载力计算

临时固结设计为四根钢管混凝土支墩,分布于墩身两侧。钢管混凝土支墩采用外经100cm 、壁厚1.2cm 的钢管,材质为Q235B ,内部灌注C40混凝土,纵向间距500cm ,横向间距520cm ,高度取760cm 。钢管混凝土支墩下部采用钢筋与承台联结。由于顺桥向产生不平衡弯矩,钢管混凝土支墩顺桥向与墩身固结,满足钢管混凝土支墩横向剪力要求即可。支墩顶面交叉连接,满足平面失稳的构造要求。计算时钢管混凝土支墩的稳定性安全系数取1.5。

1、钢管混凝土支墩承载力计算

钢管的截面特性:

4

c s 2

c s 4

4

4c 2

2

2c 4

4444s 2

2222s 11674883.4451936206337.454313I I I 2.15707.7477206

333.372A A A 1.193.445193614.364

6.9764I

7.747714.34

6.974A 215

7.45431314.364

)6.97100(64)(I 3.37214.34

)6.97100(4)(A cm Es E cm Es E MPa

f cm d cm d MPa

fs cm d D cm d D c c c =?+=?+==?+=?+

===?=?==?=?===?-=?-==?-=?-=ππππ

中铁十四局集团有限公司成绵乐铁路工程指挥部 (1)钢管混凝土支墩轴心力计算

2)53.3458623.19360(2)2(±=±=B M G N KN N KN N 4.1381min ,7.8298max ==

(2)单肢柱承载力计算

021N N ??μ=

)1(0θθ++=c c f A N

c c s s f A f A =θ

式中:

μN —钢管混凝土单肢柱承载力设计值

N —钢管混凝土轴心受压短柱承载力设计值 θ—钢管混凝土的套箍指标

s

A 、s f —钢管的截面面积和抗拉或抗压强度设计值 c A 、c f —钢管内混凝土的截面面积和抗压强度设计值 1?—考虑长细比影响的承载力折减系数 2?—考虑偏心率影响的承载力折减系数

1)套箍指标

56.07

.74771.193.372215=??==c c s s f A f A θ 2)考虑长细比影响的承载力折减系数

中铁十四局集团有限公司成绵乐铁路工程指挥部 78

.046.7115.01)4/(115.014

6.7100/760/7601=--=--=>===d le D le cm

le ? 3)考虑偏心率影响的承载力折减系数 构件按轴心受压考虑,12=? KN N N 5.2571540.560.56119.17477.710.78021=++????==)(??μ ,7.8298max 5.257154.KN N KN N =>=μ

5.1max .

>N N μ,符合要求。

七、结论

此结构受力明确合理,满足施工要求。

墩柱模板计算书

武汉美高钢模板有限公司
项目名称:中铁六局合福铁路工程
墩柱模板计算书
工程编号:GLTL-DZ-110328
设 计:
王奎
审 核:
批 准:
武汉美高钢模板有限公司
2011 年 3 月 28 日
1

中铁六局合福铁路工程墩柱模板
武汉美高钢模板有限公司
计 算 书
一、编制依据: 编制依据: 依据 1、 《铁路桥涵设计基本规范》(TB10002.1-2005) 2、 《钢结构设计规范》(GB50017—2003) 3、 《建筑钢结构焊接技术规程》 JGJ81-2002
4、 《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、 《铁路组合钢模板技术规则》(TBJ211-86) 6、 《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、 《铁路桥涵施工规范》(TB10203-2002) 8、 《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 9、 《建筑结构静力计算手册》 ( 第二版 ) 10、 《预应力混凝土用螺纹钢筋》 (GB/T20065-2006) 二、计算参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝浇注入模温度:25℃; 3、混凝土塌落度:160~180mm; 4、混凝土外加剂影响系数取 1.2; 5、混凝土浇注速度:2m/h; 6、设计风力:8 级风; 7、模板整体安装完成后,混凝土泵送一次性浇注。
三、设计计算指标采用值 1、钢材物理性能指标 弹性模量 E=2.06×105N/mm ,质量密度ρ=7850kg/m ;
2 3
2

墩柱模板计算书midascivil

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

关于支墩推力的计算

关于室外直埋管固定墩选择的计算 室外直埋保温管热胀冷缩补偿工艺中,《施-S-04-02市政管线设计说明5.3附件》要求:敷设在市政管沟内的热水管每隔75米设复式拉杆式轴向型不锈钢波纹补偿器;组团内热水管道在地下室外边沿设不锈钢球形伸缩器;其工作压力应与所在管道工作压力一致。其它部位热水管道采用“门”形补偿器和管道敷设的自然弯曲吸收管道的自然变形。 直埋管道的“门”形补偿器设置时需同时配合设置固定支架、固定墩,可据各直埋管的规格,计算各单管推力后,依据《05R410 热水管道直埋敷设》确定固定墩尺寸。下面以“不锈钢无缝管57*3”为例,进行单管推力计算。 根据《CJJ /T81-98城镇直埋供热管道工程技术规程》附录E 确定,单管推力以max H=F l N +计算。 其中:max F ——轴线方向每米管道的摩擦力(N/m ); N ——管道工作循环最高温度下,锚固段内的轴向力(N/m ); 一、 抗外压稳定临界压力P cr (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, 1.70.25612t P cr s r δ=() 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ;

s δ——钢材屈服点,Mpa ;查《水电站压力钢管设计规范 DL t5141-2001》中表6.1.4-1可知,s δ=235 Mpa 。 故:323563.0225.5 1.70.25612MPa P cr ?==?()() 二、 径向均布外压力标准值ok P (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, K P P c cr ok = 其中:K c ——抗外压安全稳定系数,1.8; 则:P ok =35.01(Mpa ) 三、 钢管管壁环向应力t σ(Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, ok P r t t σ?=- 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ; P ok ——径向均布外压力标准值。 故:ok P r 35.0125.5297.61MPa t 3t σ??=- =-=-() 四、 钢管轴向推力(N ) 依据《CJJ /T81-98城镇直埋供热管道工程技术规程》, ()610t N aE t t A 10N νσ=--?????() 其中:a ——钢管的线性膨胀系数(m/m ·℃),查“常用钢材的弹性模量和线性膨胀系数表”可知,a=612.210-?(m/m ·℃); E ——钢材的弹性模量(Mpa ),查“常用钢材的弹性模量

墩身模板计算:

墩身模板计算书 墩身模板按双向面板设计,6mm钢板作为小肋,槽8作为大肋,2槽16作为围檩。 1、面板计算: 面板按最不利考虑,按三边固结,一边简支计算。 (1)强度验算: 取10mm宽板条作为计算单元,荷载为混凝土侧压力按50KN/m2=0.05N/mm2 q=0.05×10=0.5N/mm 因1 x /ly=1 M x0 =-0.06×0.5×4502=6075N/mm M y0 =-0.055×0.5×4502=5569N/mm 截面抵抗矩:W=bh2/6=10×62/6=60mm3 O X =M X /W=6075/60=101N/mm2<215 (2)挠度验算: f max =0.0016(ql4/K) K=Eh3b/12(1-V2)=2.06×105×63×10/12(1-0.32)=407×105=4.07×107 f max =0.0016×(0.5×4504/4.07×107)=0.0016(0.5×4.1×103/4.07)=0.81mm 2、小肋计算: 因大肋间距450mm,小肋焊在大肋上,按两端固定梁计算。 q=0.05×452=22.6N/mm (1)强度验算: 小肋与面板共同作用,计算板的有效宽度。 组合截面形式: y 1 =S/A S=6×452×3+80×6×(40+6) =30216mm3 A=452×6+80×6=3192mm2 y 1 =S/A=9.5mm 截面挠性矩:I=452×63/12+452×6×(9.5-3)2+80×63/12+80×6×(76.5

-40)2 =8136+114582+1440+639480 =763638mm 4 W 上=I/y 1=80383mm 3 W 下=I/y 2=9982mm 3 弯矩按两端固定梁计算: M=-(ql 2/12)=-1/12×22.6×4502=381375N.mm σ下=M/W 下=381375/9982=38.2N/mm 2 根据σ=38.2N/mm 2 b/h=450/6=75 查表 b 1/h=65 有效板宽b 1=65×6=390mm S=390×6×3+80×6×46=29100mm 3 A=2820 mm 2 y 1=S/A=10.3mm y 2=75.7mm I=390×63/12+390×6×(10.3-3)2+80×63/12+80×6×(75.7-40)2 =7020+124699+1440+611755 =744914mm 4 W 上=I/y 1=744914/10.3=72322mm 3 W 下=9840mm 3 σ下=I/w 下=744914/9840=757N/mm 2<215 (2)挠度验算 W =ql 4/384EI=22.6×4504/(384×205×105×744914)=22.6×4.1×105/384×2.05×744914 =0.7mm 3、大肋计算: (1)计算简图 围檀是大肋的支承,可简化三跨连续梁 q=450×0.05=22.5N/mm (2)强度验算: 板肋共同作用确定面板存放宽度

水平垂直弯头支墩计算书

水平、垂直弯头支墩计算书 1.引言 本计算书为不同弯头的支墩尺寸计算提供了相关数据。 2.流体推力 2.1 弯头处的推力合力 假设弯头顶角为β(用百分度表示),横截面积为S,其所受流体压力为P。 作用于弯头两侧截面之间结构上的力分别为F p1和F P2,支墩的反作用力为R。在此结构上套用动量定理可得: 该弯头顶角为β,用百分度表示,其补角为α,即: 合力R由次可得:

2.2 管道的压力 流体推力随管道压力而发生变化,此压力存在一个正常值,即为管道的运行压力,用PS表示,此外还有一个较大的值,为管道的试验压力,用PE表示。管道的试验压力导致最大的流体推力。 3.支墩 支墩的形状取决于其所受合力的方向。 当为水平弯头时,合力位于水平方向,我们称该支墩为水平支墩。 当为垂直弯头时,分为两种情况,合力朝上时,我们称该支墩为垂直向上支墩,反之,当合力朝下,我们称之为下部垂直支墩垂直向下支墩。 3.1 水平支墩 3.1.1 水平支墩的一般形状 水平支墩的一般形状如下图所示。支墩之上需要铺设一定厚度的回填料(厚度用h表示)。 3.1.2稳定性的研究 支墩稳定性研究类似于挡土墙稳定性的研究,需检查其防滑稳定性、倾覆稳定性和基础稳定性。 根据弯头的位置,关于施工现场土壤力学特性的相关假设可根据地质研究报告确定:比重,内摩擦角,黏附系数Co:

●比重= 1,6 t/m3 ●内摩擦角=30° 作用于支墩上的力 下图呈现的便是支墩的受力情况: h回填↓超负荷 对支墩受力总结如下: ●P m为支墩的自重 ●P r为回填料的重量 ●F ph为流体推力 ●F Q1为超负荷支墩作用力 ●F Q2为与基座内壁相接触的土壤支墩作用力 N代表竖直方向上的合力: B代表支墩作用合力: 由于超负载而产生且作用在支墩壁中间位置的作用力可按照以下公式进行计算:

墩柱模板计算分析(实心)Word版

实心墩墩身钢模计算书 一、工程简介 京沪高铁六标五工区第四作业工区位于昆山境内,线路起点DK1252+017.79,终点DK1256+911.65,里程长度4.89km。 主要包括五座连续梁桥,分别为:跨娄江连续梁拱(70m+136m+70m)、跨沪宁铁路连续梁(40m+72m+40m)、跨江浦路连续梁(40m+72m+40m)、跨朝阳西路连续梁(40m+56m+40m)、跨通澄南路连续梁(40m+56m+40m)。钻孔桩1552根、承台140个、墩身140个,主要为矩形空心墩,双柱墩及实体墩。 二、计算分析内容: 1、墩身模板强度验算 2、墩身模板刚度分析 三、分析计算依据 1、钢结构设计规范:GB50017-2003 2、建筑工程大模板技术规程:JGJ74-2003 3、全钢大模板应用技术规范:DBJ01-89-2004 4、建筑工程模板施工手册杨嗣信中国建筑工业出版社 四、模板设计构件规格及布置 1、面板:δ6 2、竖肋:Ⅰ10,布置间距400mm,法兰:δ16×100 , 抱箍:[16 模板具体构造见后附图。 五、荷载分析

1、计算初值 浇注速度V=1m/h,混凝土溶重γ=25KN/m3,混凝土初凝时间t0=17h。 外加剂影响修正系数:β1=1.2 β2=1.15,混凝土浇注层的高度H=4m 2、荷载计算 ⑴按下列二式计算,取其中最小值: F=0.22γt0β1β2V1/2 =0.22×2.5×104×17×1.2×1.15×11/2 =1.29×105(N/m2) F=γH=2.5×104×4=1×105(N/m2) 取F1=1×105(N/m2) 其中:γ—砼密度,取γ=2.5×104 N/m3 t0—砼初凝时间,取t0 =17h β1—外加剂影响修正系数,不掺外加剂取β1=1.0, 掺具有缓凝作用外加剂取β1=1.2,这里取1.2 β2—砼坍落度影响修正系数,坍落度小于3cm,取0.85, 5cm~9cm 时取1.0, 11cm~15cm时取1.15, 这里取1.15 ⑵泵送混凝土浇注施工时(T>10℃)对侧面横板压力 F2=4.6V1/4 =4.6×1 =4.6×103(N/m2) ⑶振捣混凝土时对侧面横板的压力 F3=4×103(N/m2) ⑷侧面横板即承受的总压力

最新墩柱模板计算书

墩柱模板计算书

墩柱模板计算书

2010-03-10

*设计、施工规范* 模板的计算参照《建筑施工手册》第四版、《建筑施工计算手册》江正荣著、《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》GB50010-2002、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通用规范》(JTJD60-2004)等规范。 根据规范,当采用溜槽、串筒或导管时,倾倒混凝土产生的荷载标准值为2.00kN/m2; 本计算数据采用贵单位给出的施工图纸中标准节段桥墩. *设计计算条件* 1.混凝土坍落度:150mm; 2.混凝土入模温度:25℃; 3. 混凝土初凝时间:6小时; 4.混凝土浇筑速度:约60.0m3/h; 一、参数信息 1.基本参数 内楞间距(mm):320; 外楞间距(mm):1000; 外楞设对拉螺杆,对拉螺栓直径(mm):Φ25精轧螺纹钢(fy=785 MPa); 模板连接螺栓采用4.8级M20螺栓. 2.内楞信息 内楞材料: 槽钢100×48×10.008kg/m; Ix = 198cm4, Wx = 39.7 cm3, 3.外楞信息 外楞材料:圆弧段:槽钢 2[280×84×35.823 kg/m; Ix = 2x5130cm4, Wx = 2x366 cm3, 4.面板参数

面板类型:钢面板;面板厚度(mm):6.00; Ix = 1.8cm4, Wx = 6.0 cm3, A = 0.006m2 (取100cm长为计算单元) E = 210 GPa 5.对拉螺杆参数 对拉螺杆采用Φ25精轧螺纹钢Φ25 x 5000 mm 二、模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: 其中γ -- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200/(T+15)计算,得5.0h,本工程去6.0h; T -- 混凝土的入模温度,取25℃; V -- 混凝土浇筑速度(m/h); H -- 混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m); β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85,50-90mm时取1.0,110-150mm时取1.15。 根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F; 有效压力高度:h =

支架体系及临时支墩计算书

跨牤牛河32.6+48+32.6m 连续梁 支架体系及临时支墩计算书 一、0#块支架体系检算 1.支架设计 0#块采用φ48mmWDJ 碗扣型多功能钢管脚手架搭设满堂支架现浇,支架直接支承于承台顶面。立杆配置可调底座,立杆横桥向间距:翼缘板下为(4×90+60)cm 、腹板下为(4×30)cm 、底板下为(5×60)cm ,立杆顺桥向间距为(17×60)cm 。横杆步距全为120cm 。顶杆配置顶托,顶托上设10×12cm 纵向分配方木,其上设10×10cm 横向分配方木,横向方木间距30cm (腹板下为20cm )。具体布置见《跨牤牛河连续梁0#支架布置图》。 底模采用胶合板,侧模、翼缘板采用挂篮模板,内模(横隔板模板划定为内模)采用组合钢模板,堵头模板采用自制大块钢模板。外模大楞采用[10槽钢对口焊接而成,间距80cm 。内模大楞采用10×10cm 方木,间距80cm ;横隔板内模大楞间距控制在50cm 左右,拉杆采用φ20精轧螺纹钢筋。 主要检算翼缘模板、底模板及横向分配方木、侧模板及背方、纵向分配方木、立杆的强度稳定性。 2.荷载情况 模板计算荷载包括:模板及支架自重;新浇砼自重(含钢筋重量);施工人员及施工设备荷载;新浇砼对模板侧压力、倾倒砼时产生的荷载及振捣产生的荷载。 模板、支架等自重:2 1/2m KN q =; 新浇钢筋砼自重:32/26m KN q =; 施工人员及运输机具荷载: 23/5.2m KN q = 新浇砼对模板产生的侧压力按2 1 21022.0υββγt p =和 H p γ=计算,取二式中的较 小值。 倾倒混凝土时产生的竖向荷载:2 4/0.2m KN q =; 振捣混凝土时产生的竖向荷载: 25/0.2m KN q =; 振捣荷载,对垂直面每平方米按KPa 0.4计算; 3.模板面板检算

圆柱墩模板受力计算书

圆柱墩模板受力计算书

广东云浮(双凤)至罗定(榃滨)高速公路工程圆柱墩模板受力计算书 广西壮族自治区公路桥梁工程总公司 广东云浮至罗定高速公路第四合同段项目部 2011年11月

目录 1、圆柱墩设计概况 ------------------------------------------2 2、受力验算依据 --------------------------------------------3 3、圆柱墩模板方案 ------------------------------------------3 4、模板力学计算 --------------------------------------------3 4.1、模板压力计算 --------------------------------------3 4.2、面板验算 ------------------------------------------3 4.3、横肋验算 ------------------------------------------4 4.4、竖肋验算 ------------------------------------------4 4.5、螺栓强度验算 --------------------------------------5

圆柱墩模板受力计算书 1、圆柱墩设计概况 本标段范围内共设有竹沙大桥、国道G324跨线桥、双莲塘大桥、小垌大桥、及更大桥、培岭1#桥、培岭2#桥、培岭3#桥等8座大桥,共有圆柱墩149条,根据墩柱高度不同,圆柱墩直径有1.1m、1.3m、1.4m、1.6m、

软土地基路堤设计计算书样本

理正软土地基路堤设计软件 计算项目: 简单软土地基路基设计 1 计算时间: -11-17 15:15:10 星期二 =========================================================== ================= 原始条件: 路堤设计高度: 3.600(m) 路堤设计顶宽: 14.000(m) 路堤边坡坡度: 1:4.000 工后沉降基准期结束时间: 60(月) 荷载施加级数: 1 序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算 1 0.000 6.000 3.600 是

路堤土层数: 1 超载个数: 0 层号层厚度(m) 重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 1 3.600 18.000 17.000 30.000 地基土层数: 5 地下水埋深: 1.000(m) 层号土层厚度重度饱和重度地基承载力快剪C 快剪? 固结快剪竖向固结系水平固结系排水层 (m) (kN/m3) (kN/m3) (kPa) (kPa) (度) ?(度) 数(cm2/s) 数(cm2/s) 1 1.100 18.400 18.520 60.000 7.500 24.000 0.000 0.01500 0.01500 否 2 3.500 17.500 17.740 50.000 13.300 8.900 0.000 0.00800 0.00800 否 3 1.600 18.400 18.520 100.000 4.500 26.300 0.000 0.01500 0.01500 否 4 9.800 18.800 19.020 180.000 11.100 9.100 0.000 0.01500 0.01500 否 5 7.600 18.400 18.520 160.000 4.500

桥墩模板计算

3#墩墩身模板计算书 一、基本资料: 1.桥墩模板的基本尺寸 桥墩浇筑时采用全钢模板,模板由平面模板和平面模板带半弧模板对接组成,单块模板设计高度为2250mm,面板为h=6㎜厚钢板;竖肋[10#,水平间距为L1=300mm;横肋为10mm厚钢板,高100mm,竖向间距L2=500mm;背楞:平面模板为双根[20#槽钢、平面模板带半弧模板为双根[14#槽钢,纵向间距为:800mm; 2.材料的性能 根据《公路桥涵施工技术规范JTG/T F50-2011》和《钢结构焊接规范GB 5066-2011》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:10℃;砼浇筑速度:2m/h;不掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 3.计算荷载 对模板产生侧压力的荷载主要有三种: 1)振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载: 4.0km/m2;二者不同时计算。 2)新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): h Pγ =(1) k 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P-新浇混凝土对模板产生的最大侧压力(kPa);

h -有效压头高度(m ); v -混凝土浇筑速度(m/h ); T -混凝土入模时的温度(℃); γ-混凝土的容重(kN/m 3) ; k -外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为: v/T=2.0/10=0.2>0.035, 所以 h =1.53+3.8v/T=1.53+3.8×0.2=2.29m 最大侧压力为:h k P γ==26×2.29=59.54kN/㎡ 检算强度时荷载设计值为:='q 1.2×59.54+1.4×4.0=77 kN/m 2; 检算刚度时荷载标准值为:=''q 59.54 kN/m 2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/400; 3) 钢模板面板的变形为1.5mm ; 4) 钢面板的钢楞的变形为3.0mm ; 二、 面板的检算 1. 计算简图 面板支承于横肋和竖肋之间,横肋间距为50cm ,竖肋间距为30cm ,取横竖肋间的面板为一个计算单元,简化为四边嵌固的板,受均布荷载q ;则长边跨中支承处的负弯矩为最大,可按下式计算: y x l l Aq M 2'= (2) 式中:A -弯矩计算系数,与y x l l /有关,可查《建筑结构静力计算实用手册(第二版)》(中国建筑工业出版社2014)P154表5.2-4得A=0.0367; y x l l 、-分别为板的短边和长边; 'q -作用在模板上的侧压力。 板的跨中最大挠度的计算公式为:

墩柱模板计算

墩柱模板计算 一、计算依据 1、《铁路桥涵设计基本规范》 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) < 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、? 四、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效

压头。新浇混凝土对模板侧向压力分布见图1。 [ 图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=γt 0K 1K 2V 1/2 Pmax =γh 式中: … Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取;50~ 90mm max 72722 40kPa 1.62 1.6P υυ?===++

40+70+40连续梁墩梁临时固结设计计算书

40+70+40连续梁墩梁临时固结设计计算书由于连续梁施工采用支架法施工,故采用墩梁固结法确保安全。临时砼块采用C40混凝土,预埋Φ32精轧螺纹钢筋,配筋则按最小配筋率ρmin bh0计算。上部荷载按半跨计算,均由临时固结块承受。 一、设计荷载 1、工况I 假定:(1)由于采用对称支架施工,施工过程中不平衡荷载按半跨自重的5%取; (2)临时固结块不承受受拉过程中产生的水平荷载; (3)连续梁张拉后上挠和自重下挠由于分节段,认为不累积,可以调节,预抬值可以参见监控单位,每一节段支架沉落预留不叠加;(4)在计算临时固结时,不考虑连续梁因为预应力张拉引起的内应力、抵抗弯矩,变形忽略。 自重计算如下表: 块段名称混凝土方量(m3)钢筋砼容重(kg/m3) 自重(KN) 0# 35.25 2.6 916.50 1# 52.88 2.6 1374.88 2# 41.2 2.6 1071.20 3# 39.83 2.6 1035.58 4# 38.54 2.6 1002.04 5# 49.53 2.6 1287.78 6# 47.60 2.6 1237.60 7# 45.91 2.6 1193.66 8# 50.01 2.6 1300.26 9# 48.83 2.6 1269.58 按最不利工况计算: 由于固结为简支双悬臂,所受荷载为对称均恒荷载:

取1#-9#块自重,施工荷载作用于结构上,经计算得: G1 =10772.58KN,不平衡荷载按自重的5%计算,G’=538.629KN 2、工况Ⅱ 考虑竖向风荷载,查全国规范,内蒙古地区在10m以下100年一遇风基本风压值为0.6KN/m2,此值见相关参考书。不再考虑u Z(风压高度变化系数)u S(风荷载体型系数)。由于施工期为大风不常见期,计算风压取0.6KN/m2。 横向迎风面积按70×3.3=231㎡计算, 竖向迎风面积按34×13.75=467.5㎡计算。 则横桥向风荷载为F h=0.6×231=138.6KN, 竖向风荷载为F S=0.6×467.5=280.5KN。 3、工况Ⅲ 施工过程中存在机具、人员布置不均的情况,在此按f=50KN的力作用在梁的一端,不再考虑其它因素。 二、Φ32精轧螺纹钢计算 为确保安全,按最不利情况考虑,即工况Ⅰ、工况Ⅱ、工况Ⅲ相互叠加作用在箱梁上。假设预埋Φ32精轧螺纹钢距0#块中心为L1=0.85m,箱梁为变截面,不平衡力作用在距0#块中心1/3处计算。 F S f 施工时受力图如下: G’ L2=34m L1=0.85m

墩柱模板承载力计算

墩柱模板承载力计算 1 模板及支架自重 肋形楼板及无梁楼板的荷载:(见附表) 2 混凝土容重24 kN/ m3 钢筋混凝土容重(以体积计算的含筋量≤2%时)25 kN/ m3 3 施工人员及设备的自重 a、计算模板及直接支承模板的小楞时(均布荷载) 2.5 kN/ m2 以集中荷载验算(取大者) 2.5 kN b、计算直接支承小楞结构构件时(均布荷载) 1.5 kN/ m2 c、模板单块宽度小于150mm时,集中荷载可分布在相邻的两块板上。 4 振动混凝土时产生荷载 对水平面模板为 2 kN/ m2对垂直面模板为(作用在新浇混凝土有效侧压高度之内) 4 kN/ m2 5 新浇混凝土对模板的侧压力 新浇混凝土的初凝时间(h)t =200/(T+15) 5.41 H T为混凝土的温度,取T=22 ℃混凝土的浇注速度(V) 6 m/h 新浇混凝土顶面至侧压力计算处的总高度(H) 6 m 外加剂影响系数(β 1 ): 不掺外加剂时取 1 掺具有缓凝作用的外加剂时 1.2 混凝土塌落度影响修正系数(β 2 ): 当塌落度小于30mm时取0.85 50~90mm时取 1 110~150mm时取 1.15 新浇混凝土对模板的侧压力:F=0.22γt β 1 β 2 V1/2 68.22 kN/ m2 F=24H 144 kN/ m2 取二者中的小者,侧压力为:68.22 kN/ m2

6 倾倒混凝土时对垂直面模板的水平荷载: 用溜槽、串筒、或导管输出 2 kN/ m2用容量0.2及小于0.2m3的运输器具倾倒 2 kN/ m2用容量大于0.2至0.8m3的运输器具倾倒 4 kN/ m2用容量大于0.8m3的运输器具倾倒 6 kN/ m2本方案采用输送泵灌注,取值为 2 kN/ m2 由于灌注放料与混凝土振捣是交替进行的,此力不与新浇混凝土对 模板的侧压力同时计算。 7 墩柱模板有关数据: 肋间距:400 mm 面板厚度: 6 mm 肋高:90 mm 肋宽:8 mm 计算荷载值:27.29 kN/m 惯性矩:1769261.5 Mm4钢材弹性模量:210000000 pa 中性轴位置:81.92 mm 8 模板检算: 最大弯矩:qL2/10 0.5457 kN-m 强度计算:最大拉力25.27 Mpa 最大压力 4.34 Mpa 强度符合要求。 挠度计算:qL4/128EI 计算挠曲变形: 1.25 mm 模板允许变形为:[f]=l/800 1.875 mm 刚度符合要求。

盖板涵计算书很全面

盖板涵计算书(参考版) 一、盖板计算 1、设计资料

盖板按两端简支的板计算,可不考虑涵台传来的水平力。 ×盖板涵洞整体布置图 2、外力计算 1)永久作用 (1)竖向土压力

q=K×γ 2 ×H =×20×= kN/m (2)盖板自重 g=γ 1 ×d=25×= kN/m 2)有车辆荷载引起的垂直压力(可变作用) 计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准。 车辆荷载顺板跨长: La=c 轮 +2×H×tan30°=+23/3= m 车辆荷载垂直板跨长: Lb=d 轮 +2×H×tan30°=+23/3= 单个车轮重: P=70*=91 kN 车轮重压强: p= a b = P L L 91/(×)= kN/m2

3、内力计算及荷载组合1)由永久作用引起的内力 跨中弯矩: M1=(q+g )×L 2/8=(+)× /8= kN??m 边墙内侧边缘处剪力: V1=(q+g )×L 0/2=(+)× /2= kN 2)由车辆荷载引起的内力 跨中弯矩: a a 2p -b 2= 4 L L L M ?? ???=**()*4= kN 边墙内侧边缘处剪力: a a 00 p b -2= L L L V L ? ? ? ??= ***(2)/5= kN a a p - b 2= 4 L L L M ?? ???a a 0 p b -2=L L L V L ? ? ??? 3)作用效应组合 跨中弯矩: γ0Md=(+)=×(×+×)= kN??m 边墙内侧边缘处剪力: γ0Vd=(+)=(×+×)= kN??m 4、持久状况承载能力极限状态计算

MIDAS 墩柱模板设计计算书

MIDAS 墩柱模板设计计算书

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

临时固结计算书

万州区长江二桥至密溪沟段消落带生态库岸综合整治工程(三标段) (桃子园大桥) 0号块临时固结 施 工 专 项 方 案 审批人: 审核人: 编制人: 编制单位:苏州市政园林工程集团有限公司 编制时间: 2016年9月

目录 (一)工程概况 (3) (二)固结方案 (4) 1、方案一:体内固结 (4) 1.1临时支座受力计算 (4) 1.2临时支座验算 (5) 1.3临时支座拆除 (6) 2、方案二:体内体外固结 (6) 2.l. 设计依据及参数 (7) 2.2. 临时固结抗倾覆荷载 (7) 2.3.计算临时固结结构内力. (7) 2.4. 临时固结结构设计 (8)

(一)工程概况 桃子园大桥桥型布置为左幅桥上部结构为(55+100+55)m+(3x25)m 预应力混凝土连续梁,左幅桥全长295m,右幅桥为(55+100+55)m 预应力混凝土连续梁,右幅桥全长220m。桥墩下部结构为11 号主墩基础采用6 根φ1.8m 钻孔灌注桩,桩基呈行列式布置:横向间距4.5m、纵向间距4.5m;桩底高程147.728m,左右幅桥桩长均为30m;桥墩基础设计为端承桩基础。承台为矩形承台,平面尺寸为12.6m×8.1m。承台厚3.5m。墩身采用等截面矩形实体花瓶墩,墩高左幅桥为10.5m,右幅桥为9m,桥墩截面尺寸3×7.26m,四周设r=0.3m的倒角。12 号主墩基础采用6 根φ1.8m 钻孔灌注桩,桩基呈行列式布置:横向间距4.5m、纵向间距4.5m;左右幅桥桩长均为30m;桥墩基础设计为端承桩基础。承台为矩形承台,平面尺寸为12.6m×8.1m。承台厚3.5m。墩身采用等厚度矩形实体花瓶墩,墩高左幅桥为20m,右幅桥为16.5m,单幅墩标准截面3×7.26m,四周设r=0.3m 的倒角。 主桥上部结构为(55+100+55)m 三跨预应力混凝土变截面连续箱梁,采用分离的上、下行独立的两幅桥,单幅桥采用单箱双室截面,跨中箱梁中心高度为2.5m,支点处箱梁中心梁高6.5m,由距主墩中心2.5m 处往跨中方向46.5m 段按1.8 次抛物线变化。箱梁根部底板厚80cm,跨中底板厚28cm,箱梁高度以及箱梁底板厚度按1.8 次抛物线变化。箱梁腹板根部厚75cm,跨中厚50cm,箱梁腹板厚度在腹板变化段按直线段渐变,由厚75cm 变至至50cm。箱梁顶板厚度30cm。箱梁顶宽18.49m,底宽9.786m,顶板悬臂长度外侧2.5m内侧2.4m,悬臂板端部厚18cm,根部厚65cm。箱梁顶设有2%的单向横坡。箱梁浇筑分段长度依次为:12m(0 号段)+3×3.0m+4×3.5m+5×4.0m。 0号块箱梁长12m(墩柱中心线两边各6米),设计为单箱双室截面,顶宽18.49m、顶板悬臂长度外侧2.5m内侧2.4m,底宽9.786m,梁高6.5m,底板厚80cm,顶板厚度30cm,腹板厚度75cm,悬臂板端部厚18cm,根部厚

60+100+60m连续梁悬臂T构墩梁临时固结方案计算书

新建铁路沈阳至丹东客运专线太子河特大桥(60+100+60)m连续梁悬臂T构临时固结 抗倾覆结构施工方案设计 计算:刘东跃 复核: 审定:刘东跃 中铁九局集团有限公司 2011年5月16日

一、工程概况 新建沈阳-丹东铁路客运专线本溪枢纽工程太子河特大桥,位于本溪市明山区,中心里程为DK56+899.82,桥梁全长1345.96m。其中跨越本溪市滨河南路为一联(60+100+60)m连续梁,桥墩牌号为27#~30#,28#和29#墩为悬臂梁O#段主墩。 连续梁桥墩为双线圆端型实体桥墩。28#墩墩高为19m、29#墩墩高为11.5m;边墩27#墩高为21.5m、30#墩墩高9m。28#墩和29#墩墩顶横向长度为10m,纵向宽度为4m,其中两端为半径2m圆弧。 连续梁截面采用单箱单室、变高度、变截面直腹板形式。箱梁顶宽12.2m,底宽 6.7m。顶板厚度除梁端附近外均为400mm,腹板厚度600—1000mm,按折线变化,底板厚度由跨中的400mm变化至根部的1200mm。中支点处梁高7.85m,跨中10m直线段及边跨15.75m直线段梁高为4.85m。 0#块长度为14m,边跨现浇段长度9.75m,采用支架法现浇。边跨合拢段和中跨合拢段长度均为2m。1#~13#节段及合拢段梁段采用挂篮悬浇。为悬臂浇筑稳定,T构设置临时固结。 本桥T构临时固结方案采用体内固结结构形式。即在墩顶上设置钢筋混凝土临时支墩,同时预埋精轧螺纹锚固钢筋。 二、确定墩梁临时固结设计荷载 新建沈阳-丹东铁路客运专线无砟轨道预应力混凝土连续梁(双线悬浇)(60+100+60)m施工设计图《沈丹客专桥通-Ⅰ-04》设计说明书“七章施工方法及注意事项、(八)款”中“墩梁临时固结措施:各中墩梁临时固结措施(或临时支墩),应能承受中支点处最大不平衡弯矩70941KN

支墩桩承载力验算

临时支墩桩承载力验算样板 1、支墩最大受压力计算 经过上述箱梁支架计算,其中: 支墩范围箱梁重G0≈(9.119+ 10.49 )×18×2.6/2=458.85t 桁横梁自重G2≈(270×168+80×296)×1.1=69040kg=69.04 t 上部荷载组合 箱梁及桁架自重:(458.85+69.04) ×10=5278.9KN /m 施工荷载:1KN/m 2 (查公路桥涵施工技术规范) 振捣砼时产生的荷载:2KN/m 2(查公路桥涵施工技术规范) 模板及支架取自重:2.5KN/m 2(查公路桥涵施工技术规范) 荷载组合计算值:G=1.2×(5278.9+2.50×16×18)+(1+2)×1.4×16×18=8408 KN 横梁剪力图: 令单元荷截作用下,经SM SOLVER 结构力学求解器,计算得剪力图如下: -2.95-2.00 -1.05 F E D C B A 2.95 2.00 1.05 3.0 则临时桩最大单桩受压力应该是边桩: N=0.5×8408 KN ×[3/(2.95+2+1.05+3)]=1401 KN

2、设计临时桩最大受力 根据地质报告,钻孔桩单桩轴向受压力容许承载力: [P]=1/2(U i l iτi+AσR) 其中,考虑上层为围堰土,不但没有正摩阻力,反而有负摩阻,在此计算中,上层填土摩阻力不计入内,桩标高1.0,设原状土标高为0(地质剖面图在0.5~-0.3之间),桩尖土容许承载力σR按下式计算: σR=2m0λ{[σ0]+k2γ2(h-3)} =2×0.7×0.7×{300+5×18×(0-(-25)-3)} =2234kpa U1l1τ1=3.14159×1×14×0.5=22 (设②-2层底标高均-0.5) U2l2τ2=3.14159×1×12×1=37.7 (设③-2层底标高均-1.5) U3l3τ3=3.14159×1×36×6=678.6 (设④层底标高均-7.5) U4l4τ4=3.14159×1×50×7=1099.6 (设⑥层底标高均-14.5) U5l5τ5=3.14159×1×60×6=1131 (设⑩-1-1层底标高均-20.5) U6l6τ6=3.14159×1×90×5=1413.7 (设⑩-2层底标高均-25.5) 则有: [P]=1/2(U i l iτi+AσR) =1/2×(22+37.7+678.6+1099.6+1131+1413.7+3.14159×0.52×2234) =3069KN>N=1401 KN 所以,经计算临时支墩桩设计直径及桩尖标高能满足承载力

相关文档
最新文档