第三章:转子、叶轮结构和强度计算_最终

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LABORATORY OF INTENSITY AND VIBRATION
HIT
第三章 转子、叶轮结构和强度计算
1. 2. 3. 4. 5. 6. 7. 8. 9. 转子和叶轮结构 旋转薄圆环应力计算 叶轮应力状态和基本计算公式 等厚度叶轮应力分析 实际叶轮应力计算 套装叶轮按松动转速计算过盈和应力 叶轮温度应力计算 整锻转子强度计算 叶轮、转子材料和许用应力
HIT
R
d

3-2 旋转薄圆环应力计算
2 R 2 u 2
旋转圆环的应力ζθ 只与圆周速度的平方有关。当圆周速度稍有增加 时,圆环的应力将大大增加。表3-1列出不同圆周速度时,旋转圆环的应力值。
对于一般材料制成的空心鼓式转子,其圆周速度限制在150米/秒 以内。表上计算的数据还没有考虑转子上叶片的离心力,如果把它计算 进去能用的圆周速度还要低。 分析旋转圆环强度低的原因,主要是圆环和叶片径向的离心力 只靠圆环圆周方向的切向应力ζθ平衡,因此切向应力较大。由此可见, 接近旋转圆环的空心转鼓强度低,不适宜用作高转速、大直径的透平转 子。但空心转鼓也有它的优点,即重量轻,抗弯刚度大。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
焊接转子具有整锻转子所有的许多优点,但它比整锻转子重量轻;特别 是锻件小容易获得高质量锻件。它比套装转子结构紧凑,而且刚度大。此外,焊 接转子的显著优点是强度大。焊接转子适于作为高温和高速条件下工作的转子型 式,而转子的重量和尺寸几乎不受限制。
HIT
LABORATORY OF INTENSITY AND VIBRATION
3-2 旋转薄圆环应力计算
空心鼓式转子接近于旋转圆环,这种转子的特点是转鼓壁厚δ比它 的直径D小得多,可 以当作旋转圆环来计算。 从圆环中切出一宽度为b,且 以两径向截面为界的微元体,两径向 截面之间的夹角为dθ,如图所示。 在微元体上作用有三个力: 一是微元体质量dm的离心力;其余两 个是大小相等的切向力dT。 离心力:
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
9FA重型燃气轮机拉杆转子
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
二、叶轮结构设计
从叶轮的工作条件和受力情况方面分析,叶轮是处在高温工质内并以高速 旋转,叶轮用来承装叶片。叶轮工作时,承受的力如下:
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
在高温、高压区域内工作的转子,最好采用整锻转子。因为整锻 转子的叶轮与轴是一整体,解决了高温条件下叶轮与轴连接可能松动的问 题。此外,整锻转子强度和刚度比同一外形尺寸的套装转子大,机械加工 和装配工作量小,而且结构紧凑(轴向尺寸短 );但是整锻转子的锻件大, 需要大型锻造设备,而且大锻件的质量较难保证,它的检验比较复杂。 整锻转子有两种型式:一种是转鼓式,另一种是轮盘式。 用于反 击式汽轮机中, 制造简单,刚度 很大,但强度较 低。只能用于圆 周速度较小的情 况。
HIT
3-1 转子和叶轮结构
整锻转子加工过程
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
为了保证锻件的良好质量,整锻转子的尺寸是受到一定限制的。如 果转子有几级叶轮直径过大而锻造困难而且由于后面低压级蒸汽温度低, 叶轮可用低一级的材料。此时亦可以采用组合转子,即在整锻转子轴上套 上几级叶轮。如图3-5所示为整锻和套装组合的转子,高压部份的前11级叶 轮是整锻,后面低压部分7级叶轮为套装。
着手设计叶轮时,先必须考虑叶轮与透平轴的联结方法。 对套装叶轮,通常是用键来联结,同时为了使叶轮与轴可靠的联结, 也就是说要保证在叶轮工作时,叶轮与轴保持对中(同心),且相对于轴的 位置不变,还必须把叶轮红套在轴上。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
LABORATORY OF INTENSITY AND VIBRATION
HIT
第三章 转子、叶轮结构和强度计算
1. 2. 3. 4. 5. 6. 7. 8. 9. 转子和叶轮结构 旋转薄圆环应力计算 叶轮应力状态和基本计算公式 等厚度叶轮应力分析 实际叶轮应力计算 套装叶轮按松动转速计算过盈和应力 叶轮温度应力计算 整锻转子强度计算 叶轮、转子材料和许用应力
HIT
3-1 转子和叶轮结构
叶轮设计步骤: 1.由叶根联结部的型式选择适当的轮缘形状与尺寸,进行轮缘强度 计算,并确定轮缘上的外载荷; 2.选择轮面型线和轮毂尺寸(对套装叶轮)。一般轮毂的宽度约为与 轮面交界处宽度的1.5-2.5倍。在选择叶轮型线时,应综合考虑叶轮的应力 状态、叶轮振动特性、叶轮结构工艺性能以及叶轮型线的标准化等问题。 3. 选出合适的叶轮型线和结构,并预先确定叶轮各部分尺寸后,下 一步是进行叶轮应力计算。
焊接转子在燃气轮机中得到广泛应用。这种型式的转子除了刚度 和强度大外;由于转子轻巧,温度应力小,适应燃气轮机启动快的要求。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
拉杆转子是用拉杆螺栓将叶轮、轴头联成一整体所组成。拉杆的 作用是:既固定每个叶轮,又保证叶轮的对中,有时还传递扭矩。 拉杆转子不但具有焊接转子的所有优点,并且可以根据需要自由 选择各个叶轮材料而不受材料可焊性的限制,重量也可以做得更轻。
焊接转子
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
焊接转子焊接过程 焊接转子热处理过程
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
燃气轮机主要采用以下几种型式转子:整锻转子、焊接转子、拉杆转子。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
广泛采用的是轮式整锻转子。由于采用叶轮弥补了上述空心 鼓式转子强度不足的缺点,其圆周速度容许达到170-200米/秒以上。
LABORATORY OF INTENSITY AND VIBRATION
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
叶轮结构设计的下一步骤是选择叶轮型线。 决定叶轮型线的方法有两种: 1. 一种是按给定应力曲线设计叶轮型线; 2. 一种方法是先选好一种叶轮型线算出它的应力,再来修改叶轮型线。 整个叶轮型线由下列几部分组成:(1)轮缘,(2)轮面,(3) 轮毂(对套装叶轮而言)。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
一、转子结构型式
现代蒸汽轮机主要采用以下几种型式的转子:整锻转子、焊接转子、 套装转子以及上述两种型式组合的转子,譬如整锻转子上套装几个叶轮。 中压机组广泛采用套装转子,套装转子加工方便,生产周期短;材 料可以合理利用;叶轮、主轴等锻件尺寸小,易保证质量,且供应方便。 但套装转子在高温条件下,由于产生蠕变会使叶轮与轴之间产生松动。因 此不宜作为高压、高温汽轮机的高压转子。
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
由于燃气轮机转子尺寸较小,容易获得所需尺寸的整锻转子锻件。燃 气轮机整锻转子也有轮式和鼓式两种型式。但在燃气轮机中多半采用实心鼓 式整锻转子。 其优点是刚度大,强度较好,结构简单;但重量较大,变工况时温度 应力较大。
(1) 叶轮自身质量引起的离心力; (2) 叶片引起的离心力,一般称为叶轮外部径向载荷,通常包括叶片(包 括围 带、拉金)、叶根联结部分(叶根和轮缘)的离心力; (3) 由于叶轮红套在轴上的过盈产生的接触压力(对于套装叶轮而言)。 以上三项载荷引起的应力与叶轮旋转速度有关称为转动应力; (4) 在较高温度区域内以及透平起动过程中,叶轮受到温度沿径向分布不 均匀引起的温度应力; (5) 由于叶轮轴向振动将产生振动应力。
dT b
根据微元体径向分力平衡:
dC
dT
d 2 d 2
d dC 2dT sin dTd 2
R 2 b Rd b d
圆环的应力
dT
b
将dT与dC的值代入上式:
2 R 2 u 2
式中 u—旋转圆环圆周速度(m/s)
LABORATORY OF INTENSITY AND VIBRATION
HIT
LABORATORY OF INTENSITY AND VIBRATION
3-3 叶轮应力状态和基本计算公式
为了提高转子强度,应以叶轮代替圆环组成转子,因为圆盘的 强度比圆环的强度好。圆盘的受力情况与自由圆环不同,在圆盘中的 任一圆环,外层把它向外拉,里层把它向里拉,即在径向方向存在径 向应力,此外也同样存在切向应力。 叶轮的应力状态是轴对称平面应力状态: 叶轮主平面内只有径向应力和切向应力,且同一半径上各点的 径向应力、切向应力各自相等,即叶轮任一过轴线的径向截面(子午面) 上的应力可以代表其他径向截面上的应力状态。 从叶轮中切出一块微元体,分析微元体的受力平衡。为了表示 叶轮各点的应力状态,在叶轮任意部位上,取半径相距dR的两个圆弧 面和夹角为dθ的两个径向截面所切出的无穷小微元体。
HIT
前言
转子是透平十分重要的部件,保证转子安全工作是设 计制造部门的重要任务之一。 转子的工作条件相当复杂,转子处在高温工质中,并以 高速旋转。 转子承受由于叶片和转子本身离心力引起的很大的应力 以及由于温度分布不均匀引起的温度应力。 透平转子和其他高速旋转机械一样,由于不平衡质量的 离心力,将引起转子振动。此外,转子还要传递作用在叶片上 的气流力产生的扭矩等。 因此,必须对转子、叶轮进行强度计算,任何设计、 制造、运行等方面工作的疏忽,均会造成重大事故。
第三章 转子、叶轮结构和强度计算
1. 2. 3. 4. 5. 6. 7. 8. 9. 转子和叶轮结构 旋转薄圆环应力计算 叶轮应力状态和基本计算公式 等厚度叶轮应力分析 实际叶轮应力计算 套装叶轮按松动转速计算过盈和应力 叶轮温度应力计算 整锻转子强度计算 叶轮、转子材料和许用应力
LABORATORY OF INTENSITY AND VIBRATION
HIT
3-1 转子和叶轮结构
借过盈和键联结叶轮与轴的方法,不能用于 高温区域内工作的叶轮,因为高温蠕变会使过盈降低, 或者由于透平快速起动过程中叶轮迅速加热亦会使过 盈消失。因此在这种情况下应采用销钉、轴套来联结 叶轮与轴,如右图
为了保证叶轮与轴之间轴向位置不变,并保持 叶轮之间有一定的轴向间隙,应该采用轴向定位环。
图3-11用键和过盈联结叶轮与轴。扭矩 借接触摩擦力和键来传递。
对于承受较重载荷的叶轮 (低压转子的叶轮),由于强度不允 许在叶轮内孔开轴向键槽,因为在 叶轮内孔键槽周围要引起应力集中。 此时键应装在叶轮或特置的中间环 的端面上,这种键称为径向键(端 面键)。
LABORATORY OF INTENSITY AND VIBRATION
dC
dT
d 2 d 2
dT
b
dC R 2 dm R 2 b Rd
式中 ρ—材料密度; R—旋转圆环的平均半径; ω—旋转角速度。
LABORATORY OF INTENSITY AND VIBRATION
HIT
R
d

3-2 旋转薄圆环应力计算
切向力dT等于纵向截面的应力ζθ乘以面积
轮缘是为了安置叶片,轮缘的形状与叶根的形状有关,一般 它是等厚度的。 轮毂的形状都是等厚度的。 轮面的型线有下述几种型式: (1)等厚度型; (2)锥形; (3)双曲线型; (4)等强度型。 实际叶轮的轮缘与轮面以及轮面与轮毂连接处均用圆弧或者 其他曲线圆滑地连接。
ຫໍສະໝຸດ Baidu
LABORATORY OF INTENSITY AND VIBRATION
相关文档
最新文档