立体几何空间中的平行关系

立体几何空间中的平行关系
立体几何空间中的平行关系

空间中的平行关系

1.平面的基本性质与推论

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;

◆公理2:过不在一条直线上的三点,有且只有一个平面;

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;

◆公理4:平行于同一条直线的两条直线平行;

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补

2.空间中的平行关系

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;

◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;

◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;

※◆两个平面平行,则一个平面内的任意一条直线与另一个平面平行

◆垂直于同一个平面的两条直线平行

例题

题型1:共线、共点和共面问题

例1.(1)如图所示,平面ABD 平面BCD=直线BD,M、N、P、Q分别为线段AB、BC、CD、DA上的点,四边形MNPQ是以PN、QM为腰的梯形。

试证明三直线BD、MQ、NP共点。

练习:如图所示,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相

交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线

题型2:异面直线的判定与应用

例.(1)已知异面直线a,b 所成的角为700

,则过空间一定点O ,与两条异面直线a,b 都成600

角的直线有( )条

A .1

B .2

C .3

D .4

练:异面直线a,b 所成的角为θ,空间中有一定点O ,过点O 有5条直线与a,b 所成角都是600

,则θ的取值可能是( )

A .300

B .500

C .600

D .900

题型3:线线平行 线面平行 面面平行的判定与性质 例1.设α和β为不重合的两个平面,给出下列命题:

(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;

(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。 上面命题中,真命题...

的序号 (写出所有真命题的序号). 例2:两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN , 求证:MN ∥平面BCE 。

α D C

B A E

F

H

Q

P

M

N

F E

D

C B A

D

E B 1

A 1

C 1

C A

B

F

M P

E

D

C

B

A

练1:如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE

练2, 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 证明:直线EE 1//平面FCC 1;

练3.已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:C 1D ∥平面B 1FM.

练4:在四棱锥P-ABCD 中,AB ∥CD ,AB=2

1

DC ,中点为PD E . 求证:AE ∥平面PBC ;

E

A

B

C

F

E 1

A 1

B 1

C 1

D 1

D

E

F

B

A

C

D

P

练5::正方体ABCD—A1B1C1D1的棱长为a。证明:平面ACD1∥平面A1C1B。

练6:如图所示,三棱柱ABC-A1B1C1,D是BC中点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.

练7:已知如图:E、F、G、H分别是正方体ABCD-A1B1C1D1的棱 BC、

CC1、C1D1、AA1的中点.

(1)求证:EG∥平面BB1D1D;

(2)求证:平面BDF∥平面B1D1H.

高中立体几何证明平行的专题

D B A 1 A F 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC。 (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分 析 : 连 EA , 易 证 C 1EAD 是 平 行 四 是 (第1题图)

P E D C B A MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFG 求证: AB 1 ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//= 1 2 AD BE //= 12 AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行 四边形的性质 【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O 2 1 中点为PD E 求证:AE ∥平面PBC ; 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。若M是线段AD的中点,求证:GM∥平面ABFE; (I )证法一: 因为 EF 90ACB ∠=? 90,EGF ABC ∠=??. EFG ?BC FG 2 1= ABCD BC AM 2 1=FA ?GM ? A B C D E F G M

立体几何--平行及位置关系教案

第四章立体几何--平行及位置关系 一.课标要求: 1.平面的基本性质与推论 借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理: ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内; ◆公理2:过不在一条直线上的三点,有且只有一个平面; ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线; ◆公理4:平行于同一条直线的两条直线平行; ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 2.空间中的平行关系 以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理: ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行; 通过直观感知、操作确认,归纳出以下性质定理,并加以证明: ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平 行; ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行; ◆垂直于同一个平面的两条直线平行 能运用已获得的结论证明一些空间位置关系的简单命题。 二.命题走向 立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识

立体几何平行证明题

立体证明题(2) 1?如图,直二面角 D- AB- E中,四边形 ABCD是正方形,AE=EB F为CE上的点,且 BF丄 平面ACE (1)求证:AE丄平面BCE (2)求二面角 B-AC- E的余弦值. 2?等腰△ ABC中, AC=BC= r, AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C到P,得到四棱锥 P- ABFE且AP=BP*. (1) 求证:平面 EFP1平面 ABFE (2) 求二面角 B-AP- E的大小. 02

PADL 底面ABCD 且 ABCD 3?如图,在四棱锥 P- ABCD 中,底面是正方形,侧面 PA=PD=2 AD,若E 、F 分别为PC BD 的中点. (I) 求证:EF//平面PAD 4?如图:正△ ABC 与Rt △ BCD 所在平面互相垂直,且/ (1)求证:AB 丄CD

BCD=90°,Z CBD=30° 5?如图,在四棱锥 P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形 是平行四边形,/ ADC=120 , AB=2AD 6?如图,在直三棱柱 ABC- A i BQ 中,/ ACB=90°, AC=CB=CC2, E是 AB中点. (I)求证:AB丄平面A i CE (H)求直线 AG与平面A i CE所成角的正弦值. (1)求证:平面PADL平面PBD

7?如图,在四棱锥 P- ABCD中, PA丄平面 ABCD / DAB为直角,AB// CD, AD=CD=2AB=2 E, F分别为PC, CD的中点. (I)证明:AB丄平面BEF; (H)若PA=丄,求二面角 E- BD- C. 8?如图,在四棱锥 P-ABCD 中,PA丄平面 ABCD , PA=AB=AD=2,四边形 ABCD 满足 AB 丄 AD , BC // AD 且 BC=4,点 M 为 PC 中点. (1)求证:DM丄平面PBC ; BE (2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角 P- DE - B的 EC 2 余弦值为-?若存在,求出实数入的值;若不存在,请说明理由. 3

最新空间几何—平行垂直证明(高一)

空间几何平行垂直证明专题训练知识点讲解 (一)直线与直线平行的证明 1)利用某些平面图形的特性:如平行四边形的对边互相平行 2)利用三角形中位线性质 3)利用空间平行线的传递性:m//a,m//b = a//b 平行于同一条直线的两条直线互相平行。 4)利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 a II - ' a= a II b -b - 5)利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. -// I _ o(nY = a〉= a // b 6)利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行 a _ :' b _ = a // b 7)利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行 8)利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 两个平面互相平行,则其中一个平面内的任一直线平行于另 (二)平面与平面平行的证明 常见证明方法: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 、“垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如 直角三角形的两条直角边互相垂直 等。 2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质: 1) 利用直线与平面平行的判定定理: 2) a // b 丿 利用平面与平面平行的性质推论: 个平面 3) 1) 利用平面与平面平行的判定定理: 2) 3) // // b = P :?:〃: 利用某些空间几何体的特性:如 利用定义:两个平面没有公共点 利用定义:直线在平面外,

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何平行问题专题(学生版)

高三复习——立体几何平行问题专题(学生版) ——李洪波一、基础过关 1. 定理性质梳理 2.平行关系的总结 面面平行 线面平行线线平行

二、概念理解——判断下列命题真假 (1)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;( ) (2)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;( ) (3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点;( ) (4)平行于同一平面的两条直线互相平行;( ) (5)αα//,//a b b a ??; ( ) (6)b a b a ////,//?αα; ( ) (7)αα////,//a b b a ?; ( ) (8)b a b a //,//??αα; ( ) (9)已知平面 α,β 和直线 m ,若,//,m m αβ?,则 α

练习:如图13,正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 .求证:PQ∥平面BCE. 点P、Q,且AP DQ

解法二:(简要过程) A B C D F E P Q 解法三:(简要过程) A B C D F E P Q 四、举一反三 1.(17文科1)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 2.(17文科2)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC = 1 2 AD ,

∠BAD =∠ABC =90°.证明:直线BC∥平面PAD ; 3.(16文科3)如图,四棱锥中,平面,AD BC ,AB , 4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.证明MN 平面PAB .

立体几何证明平行的方法及专题训练

D B A 1 立体几何证明平行的方法及专题训练 罗虎胜https://www.360docs.net/doc/c517904576.html, 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行的性质,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB (第1题图)

M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是 平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证: AM ∥平面EFG 。 分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG 6、如图,直三棱柱///ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。 A B C D E F G M

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

立体几何平行关系

立体几何---空间平行关系 【基础知识梳理】 1、平行关系知识框图 【基础知识检测】 一、选择题 1、平行于同一个平面的两条直线的位置关系是( ) A.一定平行 B.平行或相交 C.一定相交 D.平行或相交或异面 2、过直线l 外两点,作与直线l 平行的平面,这样的平面的个数是( ) A.有无 数个 B.不能作出 C.只能作出一个 D.以上都有可能 3、已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .,,//,////m n m n ααββαβ??? B . //,,//m n m n αβαβ??? C .,//m m n n αα⊥⊥? 4、下列命题正确的为 ( ) A.0 B.1 C.2 D.3 (1)平行于同一直线的两平面平行 (2)垂直于同一直线的两平面平行. (3)若α ∥β, 则平面α 内任一直线 a ,a ∥β. (4)若n ?α ,m ? α,n ∥β,m ∥β,则α∥β. 二、填空题 5、点A 是平面α 外的一点,过A 和平面α 平行的直线有 条. 6、点A 是直线l 外一点,过点A 和直线l 平行的平面有 个. 7、过两条平行线中的一条和另一条直线平行的平面有 个.

8、过两条异面直线中的一条和另一条直线平行的平面有 个. 9、如果21//l l ,1l 平行于平面α,则2l 与平面α 10、如果两直线b a ,相交,a 平行于平面α,则b 与平面α的位置关系是—— 三、解答题 11、如图,已知Q P 、是正方体1111-D C B A ABCD 的面ABCD 和面1111D C B A 的中心, 求证:PQ //平面11A ADD 立体几何---空间平行关系答案 1-3D4C 5-7无数个8、一个9、平行或在平面内

(完整版)立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβαI I β α ⊥⊥b a b a ∥?α a b

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα??α ∥a ?

2015-2017立体几何全国卷高考真题

2015-2017立体几何高考真题 1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B 【分析】设圆锥底面半径为r ,则 12384r ??==16 3 r =,所以米堆的体积为211163()5433????=3209,故堆放的米约为 320 9 ÷1.62≈22,故选B. 考点:圆锥的性质和圆锥的体积公式 2、(2015年1卷11题)圆柱被一个平面截去一部分后和半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( ) (A )1 (B )2 (C )4 (D )8 【答案】B 【分析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径和球的半径都为r ,圆柱的高为2r ,其表面积为221 42222 r r r r r r πππ?+?++?=2254r r π+=16 + 20π,解得r=2,故选B. 考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 3、(2015年1卷18题)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.

重点高中立体几何证明平行的专题

重点高中立体几何证明平行的专题

————————————————————————————————作者:————————————————————————————————日期: 2

3 F G G A B C D E C A B D E F D E B 1 A 1 C 1C A B F M 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1 +3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。 (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA E F B A C D P (第1

4 【例4】如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 【例5】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 【例6】如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 【例7】如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 A B C D E F G M

高中立体几何证明线面平行的常见方法

D E B 1 A 1 C 1 C A B M 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证: AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 3、如图所示, 四棱锥P ABCD 底面是直角梯形, E F B A C D P (第

,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC A B C D E F G M

P E D C B A 的中点. 求证:AB 12 1中点为PD E 求证:AE ∥平面PBC ; (4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、 BD 上的点,且SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥ABC P -中,PB ⊥底面,90BCA ∠=o ,PB=BC=CA , 为的中点,为的中点,点在上,且2AF FP =. (1)求证:BE ⊥平面; (2)求证://CM 平面;

高中立体几何证明平行的专题训练

高中立体几何证明平行的专题训练 深圳市龙岗区东升学校一一罗虎胜 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。 (2)利用三角形中位线的性质。 (3)利用平行四边形的性质。 (4)利用对应线段成比例。 (5)利用面面平行,等等。 ⑴通过“平移”再利用平行四边形的性质 1. 如图,四棱锥P—ABCD的底面是平行四边形,点E、F 分另为棱AB、PD的中点.求证:AF //平面PCE; P 分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形 F E A (第1题 图) 2、如图,已知直角梯形ABCD 中,AB // CD,AB 丄BC,AB = 1,BC = 2,CD = 1 + -?. 3,过A作AE丄CD,垂足为E,G、F分别为AD、CE的中点,现将△ ADE沿AE折叠,使得DE 丄EC. (I)求证:BC 丄面CDE ; (H)求证:FG //面BCD ; 分析:取DB的中点H,连GH,HC贝惕证FGHC是平行四边形

的中点,证明:EB//平面PAD ; 分析::取PD 的中点F ,连EF,AF 则易证 ABEF 是 平行四边形 (2)利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱 AD AM //平面 EFG 。 3、已知直三棱柱 ABC — A 1B 1C 1中,D, E, F 分别为 AA 1, CC 1, AB 的中点, M 为BE 的中点,AC 丄BE.求证: (i) C 1D 丄BC ; (n) C 1D //平面 B i FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是 MF//EA D A A 1 4、如图所示,四棱锥P ABCD 底面是直角梯形, BA AD, CD AD ,CD=2AB, E 为 PC 分析:连 MD 交GF 于H ,易证EH 是厶AMD 的中位线 6、如图,ABCD 是正方形,0是正方形的中心, E 是PC C

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

立体几何平行证明题常见模型及方法

__________________________________________________ 立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 平行转化:线线平行 线面平行 面面平行; 类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法) (1) 方法一:中位线法 以锥体为载体 例1:如图,在底面为平行四边形的四棱锥P ABCD -中, 点E 是PD 的中点. 求证:PB ∥平面AEC ; 变式1:若点M 是PC 的中点,求证:PA||平面BDM ; 变式2:若点M 是PA 的中点,求证:PC||平面BDM 。 变式3如图,在四棱锥S ABCD -中,底面ABCD 是菱形, , 点M 是SD 的中点,求证://SB 平面ACM _ B _ C S P A B C D E

__________________________________________________ (2)以柱体为载体 例2 在直三棱柱111ABC A B C -,D 为BC 的中点,求证:1A C ||平面1AB D 变式1 在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式2在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式 3 如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=5,AC=BC=2,∠C=90°,点D 是A 1C 1的中点. 求证:BC 1//平面AB 1D ; 方法2:构造平行四边形法 例1如图,在四棱锥S ABCD -中,底面ABCD 为正方形,E 、F 分别为AB SC ,的中点.证明○1EF ∥平面SAD ○2BF ∥平面SDE 变式1:若E 、F 分别为AD SB ,的中点.证明EF ∥平面SCD 变式2 若E 、F 分别为SD B ,A 的中点.证明EF ∥平面SCB 例2 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, F E S A B C D E C E 1 A 1 B 1 C 1 D 1 D

立体几何中的平行问题

1 思维拓展: 如图,ABCD 是平行四边形,M,N 分别是AB,PC 的中点. 求证MN//面PAD (你能思考出几种方法?) 【例3】如图,已知正方体 中,面对角线,上分别有两点E 、F ,且.求证:EF ∥平面ABCD . 例2、已知 正方体ABCD-A 1B 1C 1D 1求证:平面AB 1D 1//平面BC 1D 【例2】如图,设平面∥平面,AB 、CD 是两异面直线,M 、N 分别是AB 、CD 的中点,且A 、C∈,B 、D∈. 求证:. 1111 A B C D A B C D -1A B 1 B C 11B E C F =αβαβ//M N αA B C D F E C 1 B 1A 1 D 1 D 1 B 1 A 1 D C B A C 1α β A B C D M N P C

2 变式1、如图,直线相交于点O ,,, 求证:平面ABC //平面 6、设是单位正方体的面、面的中心,如图 8-4,证明:⑴∥平面;⑵面 ∥面. 变式2、如图:空间四边形ABCD 中,E 、F 、 G 、H 分别为AB 、BC 、CD 、DA 上的点,若AC//平面EFGH ,BD//平面EFGH, 求证: EFGH 为平行四 边形 3.判断正误 (1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) (3)设l 为直线,α,β是两个不同的平面,若l∥α,l∥β,则α∥β.( ) ' '' ,,CC BB AA ,'O A AO =O B BO ' =O C CO ' =' ' ' C B A ,P Q 1A C 11A A D D 1111A B C D P Q 11A A B B 1D P Q 1C D B

立体几何中线面平行的方法题附详细解答

F G G A B C D E C A B D E F D E B 1A 1C 1C A B F M 高中立体几何证明平行 的专题(基本方法) 立体几何中证明线面平行或面面平行都可 转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。 (4)利用对应线段成比例。(5)利用面面平行,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别 为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四 边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1, BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将 △ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥ ⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 E F B A C D P (第1题图) A B C D E F G M

高一必修2立体几何--平行与垂直关系强化练习(含答案)

高一数学 必修二 空间中平行与垂直关系 强化练习 1.空间中,垂直于同一直线的两条直线 A. 平行 B .相交 C .异面 A.若 m//l, n//l ,则 m//n B .若 m 〃 ,n 〃 ,则 m//n C.若m ,m ,则 D .若m , ,则m 〃 或m 3. 下列说法正确的是() A. 如果一条直线与一个平面内的无数条直线平行,则这条直线与这个平面平行 B. 两个平面相交于唯一的公共点 C. 如果一条直线与一个平面有两个不同的公共点,则它们必有无数个公共点 D. 平面外的一条直线必与该平面内无数条直线平行 4. 如图,ABCD- A i BiGD 为正方体, A. BD// 平面 CBD B. AG 丄B i C C. AC 丄平面CBD D. 直线CC 与平面CBD 所成的角为45° 5. 如图,四棱锥 V ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧 棱长为.5的等腰三角形,则二面角 V AB C 的大小 ( ) A. 30 B . 45 C . 60 D . 120 6. 下列四个结论: ⑴两条直线都和同一个平面平行,则这两条直线平行。 ⑵两条直线没有公共点,则这两条直线平行。 ⑶两条直线都和第三条直线垂直,则这两条直线平行。 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。 其中正确的个数为( ) A. 0 B . 1 C . 2 D . 3 7.在四面体ABCD 中,已知棱AC 的长为.2,其余各棱长都为1,则二面角 A CD B 的 余弦值为( ) A. 1 B .1 C .-D 2 3 3 .3 2.已知互不相同的直线l,m,n 与平面 ,则下列叙述错误的是( () D .以上均有可能

(完整)高中立体几何证明平行的专题

1 D B A 1 A F 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。 (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA (第1题图)

2 【例4】如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 (2) 利用三角形中位线的性质 【例5】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 【例6】如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 【例7】如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1; 分析:连B 1C 交BC 1于点E ,易证ED 是 △B 1AC 的中位线 A B C D E F G M

(完整word版)立体几何(平行关系的证明)

立体几何(平行关系的证明) 线面平行的证明 利用中位线 1.在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F 。证明 :∥PA 平面EDB 。 2.如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且 ACE BF 平面⊥.求证;BFD AE 平面//; 3.如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点, 'A A ⊥平面ABCD 。求证:C A '//平面BDE 。 B C

N M A B D C O A B C E F P 1 A 1 C 1 B 利用平行四边形 4.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点, N 为BC 的中点。证明:直线MN OCD 平面‖ 5.在直三棱柱111C B A ABC -中, AC=4,CB=2,AA 1=2 ο60=∠ACB ,E 、F 分别是BC C A ,11的中点。 证明://1F C 平面ABE 。 6.如图,PA 垂直于矩形ABCD 所在的平面,AD PA 2==,CD 22=,E 、F 分别 是AB 、PD 的中点。求证:AF//平面PCE ;

利用比例 7.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NP DN ,求证:直线MN ∥平面PBC. 8.如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13, M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶.求证:直线MN //平面PBC 。 9 正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。求证:MN //平面BCE A B C E N D M P D A B C F E M N

相关文档
最新文档