【2013年中考攻略】专题8:几何最值问题解法探讨

【2013年中考攻略】专题8:几何最值问题解法探讨
【2013年中考攻略】专题8:几何最值问题解法探讨

【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】

A1.5 2

【答案】A

【考点】

【分析】

三点共线时,点

∴OD1。故选A。

例2.(2012湖北鄂州3分)在锐角三角形ABC中,BC=2

4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是▲ 。

【答案】4。新 -课-标-第-一-网

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D

在△AME 与△AMN ∴△BME≌△BMN(SAS )又∵CM+MN 有最小值,∴当CE 是点C 到直线

∵BC=的最小值为∴CM+MN 的最小值是4。

例3.(2011四川凉山5分)如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。

【答案】15π。

【考点】圆柱的展开,勾股定理,平行四边形的性质。

【分析】如图,圆柱展开后可见,棉线最短是三条斜线,第一条斜线与底面

圆周长、13高组成直角三角形。由周长公式,底面圆周长为4cm π,13

高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线

最短为15cm π。

例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是

▲ .

【答案】1<AD <4。

【考点】全等三角形的判定和性质,三角形三边关系。

【分析】延长AD 至E ,使DE=AD ,连接CE .根据SAS 证明△ABD≌△ECD,得CE=AB ,

再根据三角形的三边关系即可求解:

延长AD 至E ,使DE=AD ,连接CE 。

∵BD=CD,∠ADB=∠EDC,AD=DE ,∴△ABD≌△ECD(SAS )。

∴CE=AB。

在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <8。

∴1<AD <4。

练习题:

1. (2011湖北荆门3分)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开

始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】

2.(20116cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC P 的最短距离是【 】

A 、6

(4)π+㎝ B 、5cm C 、 D 、7cm

3.(2011广西贵港2分)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .

二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

【答案】245

。 【考点】动点问题,垂直线段的性质,勾股定理。

【分析】如图,根据垂直线段最短的性质,当BP′⊥AC 时,BP 取得最小值。

设AP′=x,则由AB =AC =5得CP′=5-x ,

又∵BC =6,∴在Rt△AB P′和Rt△CBP′中应用勾股定理,得

BP '∴()26x --,解得7x=5

。 ∴245。 例2.(AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则

A . 1 B

C . 2

D 1

【答案】B 。

【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。

【分析】分两步分析:

(1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对

称点P1,连接P1Q,交BD于点K1。

由线段中垂线上的点到线段两端距离相等的性质,得

P1K1 = P K1,P1K=PK。

由三角形两边之和大于第三边的性质,得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。

∴此时的K1就是使PK+QK最小的位置。

(2)点P,Q变动,根据菱形的性质,点P BC上任一点,点P1总在AB上。

P1Q最短。

过点A作AQ

1⊥DC于点Q1。

又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=2

综上所述,PK+QK

例3.(2012江苏连云港12分)已知梯形ABCD

=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?

问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

【答案】解:问题1:对角线PQ 与DC 不可能相等。理由如下:新|课 |标| 第 |一| 网

∵四边形PCQD 是平行四边形,若对角线PQ 、DC 相等,则四边形PCQD 是矩形,

∴∠DPC=90°。

∵AD=1,AB =2,BC =3,∴DC=。

设PB =x ,则AP =2-x ,

在Rt△DPC 中,PD 2+PC 2=DC 2,即x 2+32+(2-x)2+12=8,化简得x 2-2x +3=0,

∵△=(-2)2-4×1×3=-8<0,∴方程无解。

∴不存在PB =x ,使∠DPC=90°。∴对角线PQ 与DC 不可能相等。

问题2:存在。理由如下:

如图2,在平行四边形PCQD 中,设对角线PQ 与DC 相交于点G ,

则G 是DC 的中点。

过点Q 作QH⊥BC,交BC 的延长线于H 。

∵AD∥BC,∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH。

∵PD∥CQ,∴∠PDC=∠DCQ。∴∠ADP=∠QCH。

又∵PD=CQ ,∴Rt△ADP≌Rt△HCQ(AAS )。∴AD=HC 。

。 同理可证∠ADP=∠QCH,∴Rt△ADP∽Rt△HCQ。∴

AD PD 1=CH CQ 2=。 ∵AD=1,∴CH=2。∴BH=BG +CH =3+2=5。

∴当PQ⊥AB 时,PQ 的长最小,即为5。

问题4:如图3,设PQ 与AB 相交于点G ,

∵PE∥BQ,AE =nPA ,∴

PA AG 1=BQ BG n+1

=。 ∴G 是DC 上一定点。

作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K。∵AD∥BC,AB⊥BC,

∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°

∠PAG=∠QBG,

∴∠QBH=∠PAD。∴△ADP∽△BHQ,∴AD PA1

=

BH BQ n+1

=,

∵AD=1,∴BH=n+1。∴CH=BH+BC=3+n+1=n+4。

过点D作DM⊥BC于M,则四边形ABND

∴BM=AD=1,DM=AB=2。∴CM=BC-

∴∠DCM=45°。∴∠KCH=45°。

+4),

∴当PQ⊥CD时,PQ

【考点】

【分析】问题1:四边形PCQD是平行四边形,若对角线PQ、DC相等,则四边形PCQD是矩形,然后利用矩形的性质,设PB=x,可得方程x2+32+(2-x)2+1=8,由判别式△<0,可知此方程无实数根,即对角线PQ,DC的长不可能相等。

问题2:在平行四边形PCQD中,设对角线PQ与DC相交于点G,可得G是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH=4,则可得当PQ⊥AB时,PQ的长最小,即为4。

问题3:设PQ与DC相交于点G,PE∥CQ,PD=DE,可得DG PD1

=

GC CQ2

=,易证得Rt△ADP∽Rt△HCQ,

继而求得BH的长,即可求得答案。

问题4:作QH∥PE,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,易证得AD PA1

=

BH BQ n+1

=

与△ADP∽△BHQ,又由∠DCB=45°,可得△CKH是等腰直角三角形,继而可求得CK的值,即可求得答案。例4.(2012四川广元3分)如图,点A的坐标为(-1,0),点B在直线y x

=上运动,当线段AB最短时,点B的坐标为【】

A.(0,0)

B.(2

1-,21-) C.(22,22-) D.(22-,22-)

例5.(2012四川乐山3分)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:

①△DFE 是等腰直角三角形;

②四边形CEDF 不可能为正方形;

③四边形CEDF 的面积随点E 位置的改变而发生变化;

④点C 到线段EF 的最大距离为

其中正确结论的个数是【 】

A .1个

B .2个

C .3个

D .4个

【答案】B 。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC

又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作

由②,知四边形CMDN是正方形,∴DM=DN。

由①,知△DFE是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL)。

∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。

∴四边形CEDF的面积不随点E位置的改变而发生变化。

故此结论错误。

④由①,△DEF是等腰直角三角形,∴DE=EF。

当DF与BC垂直,即DF最小时, EF取最小值。此时点C到线段EF。

故此结论正确。

故正确的有2个:①④。故选B。

例6.(2012四川成都4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);

第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;

第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.

(注:裁剪和拼图过程均无缝且不重叠)

则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.

【答案】20;12+

【考点】图形的剪拼,矩形的性质,旋转的性质,三角形中位线定理。

【分析】画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示。

图中,N1N2=EN1+EN2=NB+NC=BC,

M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理)。

又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,

其周长为2N1N2+2M1N1=2BC+2MN。

∵BC=6为定值,∴四边形的周长取决于MN的大小。

如答图2所示,是剪拼之前的完整示意图。

过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是

一个矩形,这个矩形是矩形ABCD的一半。

∵M是线段PQ上的任意一点,N是线段BC上的任意一点,

∴根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最

小值为4;

而MN=

∵四边形M1N1N2M2的周长=2BC+2MN=12+2MN,

∴四边形M1N1N2M2周长的最小值为12+2×4=20;最大值为12+2×

例7. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:

①△DFE是等腰直角三角形;

②四边形CEDF不可能为正方形;

③四边形CEDF的面积随点E位置的改变而发生变化;

④点C到线段EF的最大距离为.

其中正确结论的个数是【】

A.1个B.2个C.3个D.4个

【答案】B。

【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。

【分析】①连接CD(如图1)。

∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。

∵AE=CF,∴△ADE≌△CDF(SAS)。

∴ED=DF,∠CDF=∠EDA。

∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。

∴△DFE是等腰直角三角形。

故此结论正确。

②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于1

2 BC。

∴四边形CEDF是平行四边形。

又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。又∵∠C=90°,∴四边形CEDF是正方形。

故此结论错误。

③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,

由②,知四边形CMDN 是正方形,∴DM=DN。

由①,知△DFE 是等腰直角三角形,∴DE=DF。

∴Rt△ADE≌Rt△CDF(HL )。

∴由割补法可知四边形CEDF 的面积等于正方形CMDN 面积。

∴四边形CEDF 的面积不随点E 位置的改变而发生变化。

故此结论错误。

④由①,△DEF EF 。

当DF 与BC 垂直,即DF 最小时, EF 。此时点。 故此结论正确。

故正确的有2个:①④。故选B 。

例8. (2012浙江宁波3分)如图,△ABC 个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F

值。 【分析的边BC 上的高时,直径AD 最短,此时线段EF 最短。如图,连接OE ,OF ,过O 点作OH⊥EF,垂足为H 。

∵在Rt△ADB 中,∠ABC=45°,,

∴AD=BD=2,即此时圆的直径为2。

由圆周角定理可知∠EOH=

12

∠EOF=∠BAC=60°,

∴在Rt△EOH 。

由垂径定理可知

例9. (2012四川自贡12分)如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.

(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;

(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

【答案】解:(1)证明:如图,连接AC

∵四边形ABCD 为菱形,∠BAD=120°,

∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,

∴∠BAE=∠FAC。

∵∠BAD=120°,∴∠ABF=60°。

∴△ABC 和△ACD 为等边三角形。

∴∠ACF=60°,AC=AB 。∴∠ABE=∠AFC。

∴在△ABE 和△ACF 中,∵∠BAE=∠FAC,AB=AC ,∠ABE=∠AFC,

∴△ABE≌△ACF(ASA )。∴BE=CF。

(2)四边形AECF 的面积不变,△CEF 的面积发生变化。理由如下:

由(1)得△ABE≌△ACF,则S △ABE =S △ACF 。

∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。

作AH⊥BC 于H 点,则BH=2,

AECF ABC 11S S BC AH BC 22

?==??=四形边 由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.

故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,

又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.X k B 1 . c o m

∴S △CEF =S 四边形AECF ﹣S △AEF 12=?=。

∴△CEF

【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。

【分析】(1)先求证AB=AC ,进而求证△ABC、△ACD 为等边三角形,得∠ACF =60°,AC=AB ,从而求证△ABE≌△ACF,即可求得BE=CF 。

(2)由△ABE≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AEC F=S △AEC +S △ACF =S △AEC +S △AB E=S △ABC 即可得四边形AECF 的面积是定值。当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,根据S △CEF =S 四边形AECF -S △AEF ,则△CEF 的面积就会最大。 例10.(2012浙江义乌10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.

(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;

(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;

(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.

【答案】解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,

∴∠CC 1B=∠C 1CB=45°。

∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°。

(2)∵由旋转的性质可得:△ABC≌△A 1BC 1,

∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1。 ∴11

BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1。∴∠ABA 1=∠CBC 1。 ∴△ABA 1∽△CBC 1。∴

1

122ABA CBC S AB 416S CB 525??????=== ? ?????。 ∵S △ABA1=4,∴S △CBC1=254

(3)过点B作BD⊥AC,D为垂足,

∵△ABC为锐角三角形,∴点D在线段AC上。

在Rt△BCD

①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋

转,使点P的对应点P1在线段AB上时,EP1最小。

最小值为:EP1=BP1﹣BE=BD﹣2。

②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使

点P的对应点P1在线段AB的延长线上时,EP1最大。

最大值为:EP1=BC+BE=5+2=7。

【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角

形的判定和性质。

【分析】(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形

的性质,即可求得∠CC1A1的度数。

(2)由旋转的性质可得:△ABC≌△A1BC1,易证得△ABA1∽△CBC1,利用相

似三角形的面积比等于相似比的平方,即可求得△CBC1的面积。

(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值。

例11. (2012福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)

答:结论一:;结论二:;结论三:.

(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),

①求CE的最大值;

②若△ADE是等腰三角形,求此时BD的长.

(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

【答案】解:(1)AB=AC ;∠AED=∠ADC;△ADE∽△ACD。

(2)①∵∠B=∠C,∠B=45°,∴△ACB 为等腰直角三角形。

∴AC 2==

∴AD:AC=AE :AD ,∴2AD AE AC ==当AD 最小时,AE 最小,此时

∴AE 的最小值为21=

②当AD=AE ∴点D 与B 重合,不合题意舍去。

BC 。∴BD=1。

:DC 。

。 BD 的长的长为1或

2。

【考点】相似三角形的判定和性质,勾股定理,等腰(直角)三角形的判定和性质。

【分析】(1)由∠B=∠C,根据等腰三角形的性质可得AB=AC ;由∠1=∠C,∠AED=∠EDC+∠C 得到∠AED=∠ADC;又由∠DAE=∠CAD,根据相似三角形的判定可得到△ADE∽△ACD。

(2)①由∠B=∠C,∠B=45°可得△ACB 为等腰直角三角形,则AC 222

==?=∠1=∠C ,∠DAE=∠CAD ,根据相似三角形的判定可得△ADE∽△ACD ,则有AD :AC=AE :AD ,即

22

AD AE

AC ==22=,当AD⊥BC,AD 最小,此时AE 最小,从而由CE=AC -AE 得到CE 的最大值。

②分当AD=AE,,EA=ED,DA=DE三种情况讨论即可。

练习题:

1. (2011浙江衢州3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】

A、1

B、2

C、3

D、4

2.(2011四川南充8分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;

(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

3.(2011浙江台州4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】

A.13 B.5 C.3 D.2

4.(2011河南省3分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为▲ .

5.(2011云南昆明12分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.

(1)求AC、BC的长;

(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;

(3)当点Q在CA上运动,使PQ⊥A B时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.

三、应用轴对称的性质求最值:典型例题:例1. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点

C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲ cm.

【答案】15。

【考点】圆柱的展开,矩形的性质,轴对称的性质,三角形三边关系,勾股定理。

【分析】如图,圆柱形玻璃杯展开(沿点A竖直剖开)后侧面是一个长

18宽12的矩形,作点A关于杯上沿MN的对称点B,连接BC交MN于点P,

连接BM,过点C作AB的垂线交剖开线MA于点D。

由轴对称的性质和三角形三边关系知AP+PC为蚂蚁到达蜂蜜

的最短距离,且AP=BP。

由已知和矩形的性质,得DC=9,BD=12。

在Rt△BCD中,由勾股定理得BC=

∴AP+PC=BP+PC=BC=15

例2. (2012甘肃兰州4分)如图,四边形CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM

A.130° B.120° C.110° D.100°

【答案】B。

【考点】轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。

【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M +∠A″)即可得出答案:

如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值。作DA延长线AH。

∵∠BAD=120°,∴∠HAA′=60°。

∴∠AA′M+∠A″=∠HAA′=60°。

∵∠MA′A=∠MAA′,∠NAD=∠A″,

且∠MA′A+∠MAA′=∠AMN,

∠NAD+∠A″=∠ANM,

∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°。

故选B。

例3. (2012福建莆田4分)点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角 坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点, 则OP OQ ?= ▲ .

【答案】5。

【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。

【分析】连接AB 并延长交x 轴于点P ,作A 点关于y 轴的对称点A′连接A′B 交y 轴于点Q ,求出点Q 与y 轴的交点坐标即可得出结论:

连接AB 并延长交x 轴于点P ,

由三角形的三边关系可知,点P 即为x 轴上使得|PA -PB|的值最大的点。

y 轴于点Q ,则A′B 即为QA+QB 的最小值。

0,53 ),即OQ=53。 ∴OP?OQ=3×53

=5。 例4. (2012四川攀枝花4分)如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 ▲ .w W w .x K b 1.c o M

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

2018年专题10(几何)最值问题(含详细答案)

专题10 几何最值问题【十二个基本问题】

1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为() A.61cm B.11cm C.13cm D.17cm 2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________. 3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,则EF的最小值为() A.2 B.C.D. 4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,

则BM+MN的最小值为() A.10 B.8 C.5 3 D.6 5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处. (1)请你画出蚂蚁能够最快到达目的地的可能路径; (2)当AB=4,BC=4,CC=5时,求蚂蚁爬过的最短路径的长. (3)在(2)的条件下,求点B到最短路径的距离. 6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P、P分别在OA、OB上,求作点P、P,使△PPP的周长最小,连接OP,若OP=10cm,求△PPP的周长. 7.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.

第7题 第8题 第9题 8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接 BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 . 9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧(⌒)AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( ) A .1 2 B . 22 C . 32 D . 34 10.如图,已知抛物线y =-x +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交 于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN +MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

走进2018年中考数学专题复习几何最值问题解题策略

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】 最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题. 【知识归纳】 1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可. 2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可. 【题型解析】 题型1: 三角形中最值问题 例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0) 【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标. 【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示. 令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4); 令y=x+4中y=0,则x+4=0,解得:x=﹣6,

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

中考几何最值问题归类解析

中考几何最值问题归类解析(1) -实验中学周记民 教学目标 1.了解解决几何最值问题的基本原理和方法。 2.初步掌握利用平面几何知识及几何图形、平面直角坐标系、函数等知识解决几何最值问题,培养学生几何探究、推理的能力。 3.进一步体验数形结合思想,转化思想等思想方法。 教学重点:几何最值问题原理的运用; 教学难点:寻求几何最值问题解决的有效途径及方法。 教学过程: 一、引入 1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等; 2.几何最值问题的基本原理。 ①两点之间线段最短②垂线段最短③利用函数关系求最值 二、典例剖析 1.线段最值问题。 例1:(2010年黄冈)如图1,某天然气公司的主输气管道从A市 的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小 区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处, 测得小区M位于C 的北偏西60°方向,请你在主输气管道上寻找支 管道连接点N,使到该小区铺设的管道最短,并求AN的长。 分析:本题可直接转化为数学问题,即利用“垂线段最短”的基本原理,找到点N的位置,然后利用解直角三角形可求出问题的答案。 答案:过点M作MN⊥AC于N,点N即为所求AN=1500米 2.线段和的最值问题。 例2:(2010年宁德)如图2,四边形ABCD是正方形△ABE是 等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕

点B 逆时针旋转60°得到BN ,连接EN,AM,CM. (1)求证:△AMB ≌△ENB ; (2)①当M 点在何处时,AM+CM 的值最小; ②当M 点在何处时,AM+BM+CM 的值最小,并说明理由; 分析:本题第(2)小题利用BM 绕点B 逆时针旋转60°得到△BMN 是等边三角形的特殊结构,将三条线段的和转化为“两点之间,线段最短的问题”,再结合图形的特殊对应结构进行分析,从而确定AM+BM+CM 取最小值时,点M 的位置。 答案:(1)略 (2)①点M 为BD 中点;②M 为BD 与CE 的交点 3.线段差的最值问题。 例3:(2010年晋江)已知:如图3,把矩形OCBA 放置于直角坐标系中,OC=3,BC=2,取AB 的中点M,连接MC ,把△MBC 沿x 轴的负方向平移OC 的长度后得到△DAO 。 (1)试直接写出点D 的坐标; (2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作PQ ⊥x 轴于点Q ,连接OP. ①若以O,P,Q 为顶点的三角形与△DAO 相似,试求出点P 的坐标; ②试问在抛物线的对称轴上是否存在一点T,使得︱TO-TB ︱的值最大。 分析的对称性,将两条线段的差的最值转化为一条线段的最值,再利用一次函数的相关知识求出点T 的坐标。 答案:(1)D (-122 3,) (2)P 1 (64 1531651,) P 2 (3,2) 图3

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

公开课:几何“最值问题”常见解题思路

《专题:几何“最值问题”常见解决思路》公开课 蓝溪中学林子旭2016.04.20 一、教学目标:让学生通过复习、练习、比较熟悉地掌握解决几何最值问题的通常思路和常见模型 二、教学重点:掌握解决最值问题的理论依据与常用模型,能根据不同特征转化成相应的模型是解决最值问题的关键. 三、主要理论依据及模型 1、两点之间线段最短; 2、直线外一点与直线上所有点的连线段中,垂线段最短; 3、三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 4、构造函数,利用函数的性质解决 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向1、2、3依据靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN 为直线l上的一条动线段,求 AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重 合,然后作其中一个定点关于 定直线l的对称点 作其中一个定点关于定直线 l的对称点 四、模型应用与练习: (一)线段和(PA+PB)最小: 1、正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一点,则PE+PB的最小值为. 2、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC 的最小值是; 3、如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR 周长的最小值是. 4、如图2,点A(a,1)、B(-1,b)都在双曲线y= 3 x -(x<0)上,点P、Q分别是x轴、y轴上 的动点,当四边形PABQ的周长取最小值时,PQ在直线的解析式是(). A、y=x B、y=x+1 C、y=x+2 D、y=x+3 图3 5、如图5,当四边形P ABN的周长最小时,a=. (二)线段差(PA-PB)最大 1、如图6,一次函数y=-2x+4的图象与x、y轴分别交于点A,B, D为AB的中点,C、A关于原点对称.P为OB上一动点,请直接写出︱ PC-PD︱的范围:___________________. A A C D O P x y 图6

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

中考数学专题八~ 几何最值问题解法探讨.docx

【2013年中考攻略】专题&几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何瑕值问题的常用的方法有:(1)应用两点间线段垠短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值; (5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值: 1?(2012山东济南3分)如图,ZM0N二90° ,矩形ABCD的顶点A、B分别在边0M, 0N ±,当B在边 0N 上运动时,A随之在边0M上运动,矩形ABCD的形状保持不变,其中AB二2, BC二1,运动过程中,点D到点0的最大距离为【】 A* E 氏厉 U琴''D?j 2.(2012湖北鄂州3分)在锐角三角形ABC中,BC二4血,ZABC二45° , BD平分ZABC, M—N分别是BD、BC上的动点,则CM+MN的最小值是一▲ 3.(2011四川凉山5分)如图,圆柱底面半径为2c加,高为9/rcm,点A、 B分别是圆柱两底而圆周上的点,HA、B在同一母线上,用一?棉线从A顺着圆柱侧而绕3圈到B,求棉 线最短为▲ cm C

4. (2012四川眉山 3分)在△ABC 中,AB = 5, AC=3, AD 是BC 边上的中线,则AD 的収值范围是 5. (2012山东莱芜4分)在AABC 中,AB = AC=5, BC = 6.若点P 在 边AC 上移动,则BP 的垠小值是一 ▲ B C 6. (2012浙江台州4分)如图,菱形ABCD 中,AB 二2, ZA=120°,点P, Q, K 分别为线段BC, CD, BD ± 的任意一点,贝'J PK+QK 的最小值为【 7. (2012 江苏连云港 12 分)C 知梯形 ABCD, AD/7BC, AB 丄BC, AD = 1, AB=2, BC = 3, 二、应用垂线段最短的性质求最值: A. 1 B. 73 G / X

2018中考---几何最值问题规律总结

你会“几何中的最值问题”吗? 一、几何中最值问题包括:①“面积最值”②“线段(和、差)最值”. (1)求面积的最值 方法:需要将面积表达成函数,借助函数性质结合取值范围求解; (2)求线段及线段和、差的最值 方法:需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理. 一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系 PA+PB最小, 需转化,使点在线异侧 二、精讲精练 1. 如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂 蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 __________ m. 蚂蚁A

A 8. PA PB 的最大值等于 ____________ B --------------- C 第6题图 第7题图 女口图,在△ ABC 中,AB=6, AC=8, BC=10, P 为边 BC 上 于F , M 为EF 中点,贝U AM 的最小值为 ___________ . 动点,PE 丄AB 于E , PF 丄AC 正半轴上,OA=3, OB=4, D 为边OB 的中点.若E 、F 为边OA 上的两个动点,且 EF=2, 当四边形CDEF 的周长最小时,则点F 的坐标为 _— 7.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8, B 到MN 的距离BD=5, 2. 如图,点P 是/AOB 内一定点,点 M 、N 分别在边OA 、OB 上运动, 若/AOB=45°,OP=3 2,则△ PMN 周长的最小值为 ______ ._ 3.如图,正方形 ABCD 的边长是4,/ DAC 的平分线交DC 于点E , 若点P , Q 分别是AD 和AE 上的动点,贝U DQ+PQ 的最小值为 . 4.如图,在菱形 ABCD 中,AB=2,/ A=120°,点P 、Q 、K 分别为 线段BC 、CD 、BD 上的任意一点,贝U PK+QK 的最小值为 ______ . 5.如图,当四边形PABN 的周长最小时,a= ___________ 6. 在平面直角坐标系中,矩形 OACB 的顶点O 在坐标原点,顶点 A 、B 分别在x 轴、y 轴的 则 第5题图 P

相关文档
最新文档