命题与证明的经典测试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.若 , ,那么
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
【详解】ห้องสมุดไป่ตู้. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C.若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a= ,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
B、逆命题为:面积相等的两三角形全等,此逆命题为假命题;
C、逆命题为:两直线平行,同位角相等,此逆命题为真命题;
D、逆命题为,若a2=b2,则a=b,此逆命题为假命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
9.下列命题是假命题的是( )
A.同角(或等角)的余角相等
B.三角形的任意两边之和大于第三边
C.三角形的内角和为180°
D.两直线平行,同旁内角相等
【答案】D
【解析】
【分析】
利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.
【详解】
A、同角(或等角)的余角相等,正确,是真命题;
16.已知:在 中, ,求证: 若用反证法来证明这个结论,可以假设
A. B. C. D.
【答案】C
【解析】
【分析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在 中, ,求证: 若用反证法来证明这个结论,可以假设 ,由“等角对等边”可得AB=AC,这与已知矛盾,所以
4.下列语句正确的个数是()
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线 ,交直线 于点
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
故选C.
7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
13.39.下列命题中,是假命题的是()
A.同旁内角互补
B.对顶角相等
C.直角的补角仍然是直角
D.两点之间,线段最短
【答案】A
【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.
14.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
15.下列四个命题中:
①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为()
A.1个B.2个C.3个D.4个
【答案】A
【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.
A.如果两个角是直角,那么它们相等B.全等三角形的面积相等
C.同位角相等,两直线平行D.若 ,则
【答案】C
【解析】
【分析】
交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.
【详解】
解:A、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题;
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线 ,交直线 于点 ,正确;
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向,正确;
故语句正确的个数有3个
故答案为:C.
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
详解:①在同一平面内,互相垂直的两条直线一定相交,正确;
②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;
③两条平行直线被第三条直线所截,同位角相等,错误;
④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;
真命题有1个.
故选A.
点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
【答案】A
【解析】
【分析】
根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
12.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
故选C
【点睛】
本题考核知识点:反证法.解题关键点:理解反证法的一般步骤.
17.下列说法正确的是( )
①函数 中自变量 的取值范围是 .
②若等腰三角形的两边长分别为3和7,则第三边长是3或7.
③一个正六边形的内角和是其外角和的2倍.
④同旁内角互补是真命题.
⑤关于 的一元二次方程 有两个不相等的实数根.
C.对函数y= ,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y= x+1向右平移2个单位后所得函数的解析式为y= x,正确,符合题意;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
2.下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;
C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;
D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.
故选:D.
【点睛】
命题与证明的经典测试题附答案
一、选择题
1.下列命题中真命题是()
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角D.相等的两个角是对顶角
【答案】B
【解析】
【分析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤 在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
8.下列命题中,是真命题的是( )
A.将函数y= x+1向右平移2个单位后所得函数的解析式为y= x
B.若一个数的平方根等于其本身,则这个数是0和1
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y= ,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
B、三角形的任意两边之和大于第三边,正确,是真命题;
C、三角形的内角和为180°,正确,是真命题;
D、两直线平行,同旁内角互补,故错误,是假命题,
故选D.
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
10.下列命题的逆命题正确的是()
B.如果a2=9,那么a=3
C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
5.下列命题是假命题的是()
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
【答案】C
【解析】
试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
【详解】
A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;
故选A.
【点睛】
此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.
C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
故选C.
考点:命题与定理.
6.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
11.在下列各原命题中,其逆命题为假命题的是()
A.直角三角形的两个锐角互余
B.直角三角形两条直角边的平方和等于斜边的平方
C.等腰三角形两个底角相等
D.同角的余角相等
【答案】D
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;
B、逆命题为:如果a=3,那么a2=9.是真命题;
C、逆命题为:相等的角是对顶角.是假命题;
D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.
故选C.
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
3.下列命题是真命题的是( )
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
【详解】ห้องสมุดไป่ตู้. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C.若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a= ,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
B、逆命题为:面积相等的两三角形全等,此逆命题为假命题;
C、逆命题为:两直线平行,同位角相等,此逆命题为真命题;
D、逆命题为,若a2=b2,则a=b,此逆命题为假命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
9.下列命题是假命题的是( )
A.同角(或等角)的余角相等
B.三角形的任意两边之和大于第三边
C.三角形的内角和为180°
D.两直线平行,同旁内角相等
【答案】D
【解析】
【分析】
利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.
【详解】
A、同角(或等角)的余角相等,正确,是真命题;
16.已知:在 中, ,求证: 若用反证法来证明这个结论,可以假设
A. B. C. D.
【答案】C
【解析】
【分析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在 中, ,求证: 若用反证法来证明这个结论,可以假设 ,由“等角对等边”可得AB=AC,这与已知矛盾,所以
4.下列语句正确的个数是()
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线 ,交直线 于点
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
故选C.
7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
13.39.下列命题中,是假命题的是()
A.同旁内角互补
B.对顶角相等
C.直角的补角仍然是直角
D.两点之间,线段最短
【答案】A
【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.
14.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
15.下列四个命题中:
①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为()
A.1个B.2个C.3个D.4个
【答案】A
【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.
A.如果两个角是直角,那么它们相等B.全等三角形的面积相等
C.同位角相等,两直线平行D.若 ,则
【答案】C
【解析】
【分析】
交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.
【详解】
解:A、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题;
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线 ,交直线 于点 ,正确;
⑤若小明家在小丽家的南偏东 方向,则小丽家在小明家的北偏西 方向,正确;
故语句正确的个数有3个
故答案为:C.
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
详解:①在同一平面内,互相垂直的两条直线一定相交,正确;
②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;
③两条平行直线被第三条直线所截,同位角相等,错误;
④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;
真命题有1个.
故选A.
点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
【答案】A
【解析】
【分析】
根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
12.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
故选C
【点睛】
本题考核知识点:反证法.解题关键点:理解反证法的一般步骤.
17.下列说法正确的是( )
①函数 中自变量 的取值范围是 .
②若等腰三角形的两边长分别为3和7,则第三边长是3或7.
③一个正六边形的内角和是其外角和的2倍.
④同旁内角互补是真命题.
⑤关于 的一元二次方程 有两个不相等的实数根.
C.对函数y= ,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y= x+1向右平移2个单位后所得函数的解析式为y= x,正确,符合题意;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
2.下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;
C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;
D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.
故选:D.
【点睛】
命题与证明的经典测试题附答案
一、选择题
1.下列命题中真命题是()
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角D.相等的两个角是对顶角
【答案】B
【解析】
【分析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤 在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
8.下列命题中,是真命题的是( )
A.将函数y= x+1向右平移2个单位后所得函数的解析式为y= x
B.若一个数的平方根等于其本身,则这个数是0和1
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y= ,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
B、三角形的任意两边之和大于第三边,正确,是真命题;
C、三角形的内角和为180°,正确,是真命题;
D、两直线平行,同旁内角互补,故错误,是假命题,
故选D.
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
10.下列命题的逆命题正确的是()
B.如果a2=9,那么a=3
C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
5.下列命题是假命题的是()
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
【答案】C
【解析】
试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
【详解】
A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;
故选A.
【点睛】
此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.
C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
故选C.
考点:命题与定理.
6.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
11.在下列各原命题中,其逆命题为假命题的是()
A.直角三角形的两个锐角互余
B.直角三角形两条直角边的平方和等于斜边的平方
C.等腰三角形两个底角相等
D.同角的余角相等
【答案】D
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;
B、逆命题为:如果a=3,那么a2=9.是真命题;
C、逆命题为:相等的角是对顶角.是假命题;
D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.
故选C.
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
3.下列命题是真命题的是( )
A.如果一个数的相反数等于这个数本身,那么这个数一定是0