各水准高程起算基准面与黄海平均海水面关系

各水准高程起算基准面与黄海平均海水面关系
各水准高程起算基准面与黄海平均海水面关系

国家高程系统

来源:国家测绘局主站时间:2010-01-15 08:31

【大中小】

黄海高程系统和国家85高程基准:我国于1956年规定以黄海(青岛)的多年平均

海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统,从而

结束了过去高程系统繁杂的局面。但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以

青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫"1985国家高程基准",并

用精密水准测量位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程

和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m。1985

年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1956黄海高

程水准原点的高程是72.289米。1985国家高程系统的水准原点的高程是72.260米。

习惯说法是"新的比旧的低0.029m",黄海平均海平面是"新的比旧的高"。

(1) 波罗的海高程

波罗的海高程十0.374米=1956年黄海高程

中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。

(2) 黄海高程

系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。

该原点以“1956年黄海高程系”计算的高程为72.289米。

(3) 1985国家高程基准

由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:

1985年国家高程基准高程=1956年黄海高程-0.029m。

1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。

(5) 广州高程及珠江高程

广州高程=1985国家高程系+ 4.26(米)

广州高程=黄海高程系+4.41(米)

广州高程=珠江高程基准+5.00(米)

(6)大连零点

入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,

称为“大连零点”。该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为3.765米。原点设在吉林省长春市的人民广场内,已被毁坏。该系统于1959年以前在中国东北地区曾广泛使用。1959年中国东北地区精密水准网在山海关与中国东南部水准网连接平差后,改用1956年黄海高程系统。大连基点高程在1956年黄海高程系的高程为3.790米。

(7) 废黄河零点

江淮水利测量局,以民国元年11月11日下午5时废黄河口的潮水位为零,作为起算高程,称“废黄河口零点”。后该局又用多年潮位观测的平均潮水位确定新零点,其大多数高程测量均以新零点起算。“废黄河口零点”高程系的原点,已湮没无存,原点处新旧零点的高差和换用时间尚无资料查考。在“废黄河口零点”系统内,存在“江淮水利局惠济闸留点”和“蒋坝船坞西江淮水利局水准标”两个并列引据水准点。

85国家高程=废黄-012 ???

(8)坎门零点

民国期间,军令部陆地测量局根据浙江玉环县坎门验潮站多年验潮资料,以该站高潮位的平均值为零起算,称“坎门零点”。在坎门验潮站设有基点252号,其高程为6.959米。该高程系曾接测到浙江杭州市、苏南、皖北等地,在军事测绘方面应用较广。

原黄河流域采用的高程系统

黄河流域高程系统较为紊乱,目前使用的高程系统有9种之多(大沽、黄海、假定、冻结、1985国家高程基准、引据点III、导渭、坎门中潮值、大连葫芦岛)。目前已经全部统一为1985国家高程基准2. 吴凇(口)高程系统

该高程系统比较混乱,不同地区采用数值不一,如采用,需要仔细核对。

宁波:“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.87

嘉兴:“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.828(?)

吴淞=56黄海+1.89

闭合导线平差计算步骤

闭合导线平差计算步骤: 1、绘制计算草图。在图上填写已知数据和观测数据。 2、角度闭合差的计算与调整 (1)计算闭合差: (2)计算限差:(图根级) (3)若在限差内,则按平均分配原则,计算改正数: (4)计算改正后新的角值: 3、按新的角值,推算各边坐标方位角。 4、按坐标正算公式,计算各边坐标增量。 5、坐标增量闭合差的计算与调整 (1)计算坐标增量闭合差。有: 导线全长闭合差: 导线全长相对闭合差: (2)分配坐标增量闭合差 若 K<1/2000 (图根级),则将、以相反符号,按边长成正比分配到各坐标增量上去。并计算改正后的坐标增量。

6、坐标计算 根据起始点的已知坐标和经改正的新的坐标增量,来依次计算各导线点的坐标。 [ 例题 ] 如图所示闭合导线,试计算各导线点的坐标。 计算表格见下图:

闭合水准路线内业计算的步骤: (1) 填写观测数据 (2) 计算高差闭合差 h f =∑h ,若h f ≤容h f 时,说明符合精度要求,可以进行高差闭合差的调整;否则,将重新进行观测。 (3) 调整高差闭合差 各段高差改正数: i h i i h i L L f V n n f V ·· ∑-= ∑-= 或 各段改正高差: i i i V h h +=改 (4) 计算待定点的高程 闭合差(fh ) 水准路线中各点间高差的代数和应等于两已知水准点间的高差。若不等两者之差称为闭合差 高差闭合差的计算 .支水准路线闭合差的计算方法 .附合水准路线闭合差的计算方法 .闭合水准路线闭合差的计算方法 高差闭合差容许值 (n 为测站数,适合山地) (L 为测段长度,以公里为单位,适合平地) 水准测量中,消除闭合差的原则一般按距离或测站数成正比地改正各段的观测高差

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

高程控制方案

高程控制方案 1.2.1 网点布设 1.高程网点布设的准备工作:确定高程基准点和工作基点位置,选择应符合下列规定: (1)基准点和工作基点应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器振动区以及其他可能使标石、标志易遭腐蚀和破坏的地点。 (2)基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。在建筑区内,其点位与邻近建筑物的距离应大于建筑物基础最大宽度的2倍,其标石埋深应大于邻近建筑物基础的深度。 (3)基准点、工作基点之间宜便于进行水准测量。当使用电子测距三角高程测量方法进行观测时,应尽可能使各点周围的地形条件一致;当使用静力水准测量方法进行沉降观测时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,点间高差不应超过±10mm,当不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助点,以传递高程。 2. 高程网点布设的实施:高程基准点和工作基点标石的选型及埋设应符合下列规定: (1)水准点的标石应埋设在基岩层或原状土层中,可根据点位所在处的不同地质条件,选埋水准基点可按高程控制点标石的型式进行埋设; (2)高程控制点标石的型式: 1)基岩水准基点标石应按图1-1的型式埋设:

图1-1岩层水准基点标石(单位:cm)1-抗腐蚀金属标志;2-钢筋混凝土井圈;3-井盖; 4-砌石土丘;5-井圈保护层 2) 浅埋钢管水准标石应按图1-2的规格埋设: 图1-2浅埋钢管水准标石 3)混凝土三角高程点墩标标石应按图1-3的规格埋设:

(a)岩层点墩标(b)土层点墩标 图1-3混凝土三角高程点墩标标石 4) 铸铁或不锈钢墙水准标石应按图1-4的规格埋设: 图1-4铸铁或不锈钢墙水准标石(单位mm) 5) 混凝土三角高程点建筑物顶标石应按图1-5的规格埋设: 图1-5混凝土三角高程点建筑物顶标石(单位cm) (3)工作基点的标石可按点位的不同要求,选埋浅埋钢管水准标石、混凝土普通水准标石或墙脚、墙上水准标志等。 (4)标石的型式:可按本施工工艺高程控制点标石的型式的规定执行。特殊土地区和有特殊要求的标石规格及埋设,应另行设计。

四等水准测量顺序

四等水准测量顺序 This model paper was revised by the Standardization Office on December 10, 2020

三、四等水准测量 控制测量除了要完成平面控制测量外,还要进行高程控制测量。小区域地形测图或施工测量中,多采用三、四等水准测量作为高程控制测量的首级控制。 一、三、四等水准测量(leveling)的技术要求 1、高程系统:三、四等水准测量起算点的高程一般引自国家 一、二等水准点,若测区附近没有国家水准点,也可建立独立的水准网,这样起算点的高程应采用假定高程。 2、布设形式:如果是作为测区的首级控制,一般布设成闭合环线;如果进行加密,则多采用附合水准路线或支水准路线。三、四等水准路线一般沿公路、铁路或管线等坡度较小、便于施测的路线布设。 3、点位的埋设:其点位应选在地基稳固,能长久保存标志和便于观测的地点,水准点的间距一般为1—1.5km,山岭重丘区可根据需要适当加密,一个测区一般至少埋设三个以上的水准点。 4、三、四等及五等水准测量的精度要求和技术要求列于表中。 二、三、四等水准测量的观测方法

三、四等水准测量观测应在通视良好、望远镜成像清晰及稳定的情况下进行。一般采用一对双面尺。 1、三等水准一个测站的观测步骤:(后-前-前-后;黑-黑-红-红) (1)照准后视尺黑面,精平,分别读取上、下、中三丝读数,并记为(1)、(2)、(3)。 (2)照准前视尺黑面,精平,分别读取上、下、中三丝读数,并记为(4)、(5)、(6)。 (3)照准前视尺红面,精平,读取中丝读数,记为(7) (4)照准后视尺红面,精平,读取中丝读数,记为(8) 这四步观测,简称为“后一前一前一后(黑一黑一红一红)”,这样的观测步骤可消除或减弱仪器或尺垫下沉误差的影响。对于四等水准测量,规范允许采用“后一后一前一前(黑一红一黑一红)”的观测步骤。 2、一个测站的计算与检核: 观测记录参看书本表7-11。 ①视距的计算与检核 后视距 (9)=[(1)—(2)]X100m 前视距 (10)=[(4)—(5)]Xl00m 三等≯75m,四等≯l00m

基准点埋设方法

沉降观测方法 起算点的稳定性直接关系到沉降测量的成果,我司施工期间的施工监测工作中,拟在南北两岸均设置深式监测基准点。施工及运营期间对这些基准点进行保护,作为本工程长期变形监测的基准。 高程基准点位置的选择应符合下列规定: i.高程基准点应避开交通干道主路、地下管线、河岸、滑坡地段以及其它可能使标志易遭腐蚀和破坏的地方; ii.高程基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。 水准深埋基准点设计图及埋设方法 深埋水准点的埋设结构如下图,标杆和套管均选用优质镀锌 管,保护管采用Φ65mm,标杆采用Φ25mm,镀锌管性能较好 ,能满足长期使用的要求。 埋设施工流程如下: 1.钻孔,设备安装作到稳固、周正,并且天车、立轴、孔口 中心成一线,保证开孔质量,施工中采用正循环钻进方法, 钻孔同时记录地层分布,确保深入第二含水层5m以上深度; 2.清孔换浆,钻孔结束后,清除孔内沉渣,配置新鲜优质泥 浆,粘度18~19,比重1.05左右,注入钻孔替换孔内泥浆; 3.保护管安装,清孔同时作好下护管的准备工作,丈量好长 度,将标底连接在护管底部,按顺序逐节下入并记录,确保 一次准确到位; 4.压标,使用钻机主动钻杆将保护管压到设计位置,再将保 护管返提40cm,保证标底不受上部土体变形的影响; 5.标杆安装,按设计深度下入安装好扶正器的标杆,下入到 标底的接头处时将标杆顺时针旋转,使标杆、标底接头对接拟紧,注意上扣长度,并轻拉标杆确保与标底对接情况; 6.安装标头装置,做窨井保护。 平面基准点设计图 在水准基准点的砌体种插入平面控制点标志,平面控制点标志可采用长为30-40cm、Φ14-Φ20钢筋,钢筋顶端应锯十字标记,底端5cm处弯成勾状。如下图:

海图基准面、深度基准、标高等常用参考标准

1.平均海平面(mean sea level) 计算平均海面最简单的方法是算术平均方法。可分为日平均、月平均、年平均和多年平均海平面等。一般以多年的年平均海面的平均值作为长期的平均海面。 2.高程基准 目前,我国采用的是“1985国家高程基准”。它采用了1952-1979年的资料,对青岛验潮站的平均海面重新计算,以19年的资料为一组,滑动步长为一年,得到10组以19年作为一个周期的平均海面,然后再取其平均值作为高程基准。吴淞零点是以比实测最低水位略低的高程作为水尺零点。系根据吴淞站(现东海船厂内)1871年至1900年实测资料,于1901年确定一个略低于最低潮位作为吴淞零点,并于1920年引测到松江佘山,建立永久性测量标志,吴淞零点比全国统一基准面黄海平均海面(青岛)低1.63米(又说低1.717米)1985年国家高程基准高程=1956年黄海高程-0.029m。 3.深度基准 就大地测量而言,采用平均海面作为水深测量的基准面,可以使水深与陆地高程得以统一。但在海图编制中,常采用一个低于平均海面的参考面作为深度基准面。 4.理论深度基准面(theoretical sea level datum) 1956年起,海军司令部海道测量部在全国海洋测绘中,统一采用理论深度基准面作为深度基准面,同时也作为潮水位高度和潮汐预报水位的起算面。 根据1990年12月1日开始实施的国家标准《海道测量规范》(GB12327-90)规定,原来作为海洋测绘深度基准面的理论深度基准面改名为理论最低潮面。同时规定,在计算理论最低潮面时,增加2个长周期分潮进行长周期改正,因此计算理论最低潮面的分潮从11个增加到13个。 5.海图基准面(chart datum) 即海图所载水深的起算面,又叫深度基准面。 定义1:海图及各种水深资料所载深度的起算面。 定义2:海图及港口航道图中水深的起算水平面。 水深测量通常在随时升降的水面上进行,因此不同时刻测量同一点的水深是不相同的,这个差数随各地的潮差大小而不同,在一些海域十分明显。为了修正测得水深中的潮高,必须确定一个起算面,把

高差闭合差计算原理及公式

建筑工程测量中高差闭合差的计算与调整 摘 要:在高程控制测量中,可以通过计算高差闭合差来检核观测成果的质量。而高差闭合差这一概念,在建筑工程测量的实际应用中容易混淆。文章从高差闭合差计算、调整和高程计算三个方面入手, 给出了对高差闭合差理解的思路,以及在控制测量中高差闭合差平差的新方法。经实践验证,有益于工作效率的提高。 关键词:水准测量;高差闭合差;平差 0 前言 在建筑工程测量中,当待测点距已知点较远时,必须进行高程控制测量。高程测量的方法有多种,其中水准测量是精确测量地面点高程的主要方法,在实际工作中应用十分广泛。 沿线布设临时水准点,从已知点出发,沿闭合路线、附合路线、支路线等三种路线进行水准测量,三种水准路线的区别见表1。由于支水准路线缺乏检核条件,规定在支水准路线中必须进行往返测量。这样,在三种水准路线中,终点都是已知点。 表1 水准路线的区别 水准路线 起点 终点 起点与终点的位置 备注 闭合水准路线 BM1 BM1 相同 环线 附合水准路线 BM1 BM2 不相同 支水准路线 BM1 BM1 相同 沿原路线返回。如:BM1→1→2→3→4→3→2→1→BM1 由于仪器(工具)误差、观测误差、外界条件的影响等测量误差的存在,在水准测量中不可避免地会出现测量误差。当待测点距已知点较远时,经过多测站的观测后,在待测点上必然积累了一定的误差,这些误差的多少只有通过多余观测才可得知。 多余观测在这里体现为对终点进行观测。用终点的实测高程与终点的理论高程去进行比较,从而得知产生了多少误差,这个误差就是高差闭合差。 对水准测量的成果进行检核,当测量误差在容许范围之内就必须对产生的测量误差,即高差闭合差进行调整,这就是控制测量中的平差。 1 高差闭合差的计算 在相关书目 [1] 中,高差闭合差可以定义为:在控制测量中,实测高差的总和与理论高差的总和之间的差值,表示为∑∑-= 理测 h h f h 。 在外业时,可用该公式检验外业的质量,判断是否结束外业。三种水准路线计算高差闭合差所用的公式如下:

闭合水准路线测量

项目一闭合水准路线测量 一、目的与要求 1.了解水准仪各部件的名称及作用。 2.练习水准仪的安置、粗平、瞄准、精平与读数。 3.测量地面两点间的高差。 4.掌握路线水准测量的观测、记录和检核的方法。 5.掌握水准测量的闭合差调整及推求待定点高程的方法。 二、计划与设备 1.实训安排3~4学时,实训小组由6~7人组成。 2.实训设备为每组水准仪一台,水准尺2根,脚架1个,记录板1块,记录表格。 3.实训场地选定一条闭合水准路线,包含5个水准点,其中第一点(A点)作为已知点,每组点号不同。 4.从已知水准点A出发,水准测量至B、C、D、E点,然后再测至A点。根据已知点高程(或假定高程)及各测站的观测高差,计算水准路线的高差闭合差,并检查是否超限。如外业精度符合要求,对闭合差进行调整,求出待定点B、C、D、E的高程。各测站的操作可以轮流进行,其余同学必须确认操作及读数结果,各自记录、计算在记录表中。 三、方法与步骤 1.背离已知点方向为前进方向,第1测站安置水准仪在A点与B点之间,前、后距离大约相等,其视距约为20~40米,粗略整平水准仪。 2.后视A点上的水准尺,精平,用中丝读取后尺A读数,记入表中。前视B点上的水准尺,精平并读数,记入表中。然后立即计算该站的高差。 3.变换仪器高,重复第2步操作。两次测得的高差值相差不得超过5mm。 4.迁至第2测站,继续上述操作程序,直到最后回到A点。 5.根据已知点高程及各测站高差,计算水准路线的高差闭合差,并检查高差闭合差是否超限。 6.若高差闭合差在容许范围内,则对高差闭合差进行调整,计算各待定点的高程。 四、注意事项 1.在每次读数之前,要消除视差,并使符合水准气泡严格居中。 2.弄清每一个测站的前视点、后视点、前视读数、后视读数、转点、中间点的概念,不要混淆。 3.在路线水准测量过程中必须十分小心地测量转点的后视读数和前视读数并认真记录计算,一旦有错将影响后面的所有测量,造成后面全部结果错误。 4.分清测量路线、测段、测站的概念。每个测段、每个测站的记录和计算与路线水准测量的成果计算不要混淆。要搞清各自的计算步骤和计算公式。 5.水准尺一定要放在水准点上,不要直接放在地上。 5.每一站要变换仪器高度测2次。 7.粗平时先合拢脚架对其长度,再撑开脚架架在平地上;连接仪器,使三个脚螺旋位于中间,望远镜与视线等高;先固定一脚,移动另两脚,同时观察圆水准器,使气泡位于中心即可;然后调脚螺旋,注意同时同方向旋转。 8.精平时使用微倾螺旋,看长水准器(望远镜左侧),先看外面再看里面,每次观测长气泡都要调整,但此时不调脚螺旋,只调微倾螺旋。

工程测量规范GB-(高程控制)

工程测量规范GB-(高程控 制)

作者: 日期:

《工程测量规范》GB50026-2007条文说明--高程控制测量 4. 1 一般规定 4. 1 . 1高程控制测量精度等级的划分,仍然沿用《93规范》的等级系列。 对于电磁波测距三角高程测量适用的精度等级,《93规范》是按四等设计的,但未明确 表述它的地位。本次修订予以确定。 本次修订初步引入GPS拟合高程测量的概念和方法,现说明如下: 1从上世纪90年代以来,GPS拟合高程测量的理论、方法和应用均有很大的进展。 2从工程测量的角度看,GPS高程测量应用的方法仍然比较单一,仅局限在拟合的方 法上,实质上是GPS平面控制测量的一个副产品。就其方法本身而言,可归纳为插值和拟合两类,但本次修订不严格区分它的数学含义,统称为“GPS拟合高程测量”。 3从统计资料看(表9),GPS拟合高程测量所达到的精度有高有低,不尽相同,本次修订将其定位在五等精度,比较适中安全。 4. 1 . 2区域高程控制测量首级网等级的确定,一般根据工程规模或控制面积、测图比例尺或用途及高程网的布设层次等因素综合考虑,本规范不作具体规定。 本次修订虽然在4. 1. 1条明确了电磁波测距三角高程测量和GPS拟合高程测量的地位,但在应用上还应注意: 1四等电磁波测距三角高程网应由三等水准点起算(见条文4. 3. 2条注释)。 2 GPS拟合高程测量是基于区域水准测量成果,因此,其不能用于首级高程控制。 4. 1 . 3根据国测[1987]365号文规定采用“ 1985国家高程基准”,其高程起算点是位于青岛的“中华人民共和国水准原点”,高程值为72. 2604m。1956年黄海平均海水面及相应的水准原点高程值为72. 289m,两系统相差-0. 0286m。对于一般地形测图来说可采用该差值直接换算。但对于高程控制测量,由于两种系统的差值并不是均匀的,其受施测路线所经 过地区的重力、气候、路线长度、仪器及测量误差等不同因素的影响,须进行具体联测确定 差值。 本条“高程系统”的含义不是大地测量中正常高系统、正高系统等意思。 假定高程系统宜慎用。 4. 1 . 4高程控制点数量及间距的规定,是根据历年来工程测量部门的实践经验总结出来的,便于使用且经济合理。 4. 2水准测量 4. 2 . 1关于水准测量的主要技术要求: 1本规范水准测量采用每千米高差全中误差的精度系列与现行国家标准《国家一、二等水准测量规范》GB 12897和《国家三、四等水准测量规范》GB 12898相同。虽然这一系列对程 测量来讲并不一定恰当适宜,但从水准测量基本精度指标的协调统一出发,本规范未予变动。五等水准是因工程需要而对水准测量精度系列的补充,其每千米高差全中误差仍沿用《93 规范》的指标。 2本条所规定的附合水准路线长度,在按级布设时,其最低等级的最弱点高程中误差为3cm左右(已考虑起始数据误差影响)。 3本条中的附合或环线四等水准测量,工测部门都采用单程一次测量。实践证明是能达到规定精度的;因为四等水准与三等水准使用的仪器、视线长度、操作方法等基本相同,只 有单程和往返的区别;按此估算,四等水准单程观测是能达到规定精度指标的。 4关于山地水准测量的限差。

水准点引测要求精编版

当盛、36脚湖站水准点设计要求 一、水准点设计与埋设 1、在当盛、36脚湖监测站()附近不同位置各设三个水准点,并作好编号。二个基本水准点为暗标水准点,一个校核水准点为明标水准点。相互间距离以300~500米为宜,且不在一直线上。 2、水准点标石选点及埋设应按照GB 12897-91相关规定进行。具体要求如下: 1)基本水准点(暗标水准点)由垫层、基座、标准盖及水准点封盖组成。垫层尺寸为700×700×200(mm),砼强度等级为C10,基座尺寸为上部截面300mm×300mm,下部截面400mm×400mm,高400mm,混凝土强度等级为C25,标志盖尺寸200 mm×100mm,水准点砌筑维护坑上盖钢筋混凝土盖尺寸为900×900×450mm,壁厚100mm,见图1。

图1 基本水准点结构示意图 2)校核水准点(明标水准点)由垫层、基座、标志盖组成。垫层尺寸为700×700×200(mm),砼强度等级为C10,基座尺寸为上部截面300mm×300mm,下部截面400mm×400mm,高400mm,混凝土强度等级为C25,标志盖尺寸200 mm×100mm,见图2 。

图2校核水准点剖面图 3)、每个水准石顶面的中央应嵌入一个圆球部主铜或不锈钢的金属水准标志。标志须安放正直,镶接牢固,其顶部应高出标石面1~2cm。 3、每个水准点点位选定后,应设立一个注有点号、标石类型的点位标记,并按GB 12897-91附录A中的A2格式,填绘水准点之记。在选定水准线路线的过程中,须按附录A中的A1规定绘制水准路线图。对于水准网的结点,须按附录A中的A3格式填绘结点接测图。 4、高程引测 1)基本水准点高程,应从不低于国家三等水准点按三等水准测量标准接测,据以引测的国家水准点,在复测或校测时,不宜更换。 2)从不低于国家三等水准点或基本水准点按四等水准测量标准接测校核水准点、井口固定点、井口附近地面固定点高程。 3)水准基面采用1985年国家高程基准。

基点施工要求

一、基准点设置 1、竖向位移基准点布置竖向位移观测的高程基准点不应少于3 个,基准点离所测建筑距离较远致使变形测量作业不方便,设置工作基点。高程基准点与观测点的距离不宜太远,以保证足够的观测精度。基准点须埋设在变形影响范围以外且稳定、易于长期保存的地方,其点位与邻近建筑物的距离应大于建筑基础深度的2 倍,高程基准点也可选择在基础深且稳定的建筑物上。在工程压力传播范围之外预先合理埋设BM1、BM 2、BM3 三个基准点,为了测量方便,视现场情况设置基准点。可选用浅埋钢管水准标石或墙上水准标志等。 2、竖向位移基准点测量基准点使用前,采用假定高程系统使用精密水准仪对三个基准点联测,经平差计算后的高程数据作为本工程三个基准点高程依据。 3、水平位移基准点布点水平位移基准点应基坑变形区域以外,宜设置有强制对中的观测墩,采用精密的光学对中装置,对中误差不宜大于0.5mm。 4、水平位移基准点测量基准点平面坐标数据以假定相对坐标系为依据,布设导线联测三个基准点,经平差后的坐标数据做为工程基准点平面已知数据。 二、监测点布置 1、基坑及支护结构 1)围护墙或基坑边坡顶部的水平和竖向位移监测点应沿基坑周边布置,周边中部、阳角处应布置监测点。监测点水平间距不宜大于20m,每边监测点数目不宜少于3 个。水平和竖向位移监测点宜为共用点,监测点宜设置在围护墙或基坑坡顶上。围护墙或土体深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位。监测点水平间距宜为20m~50m,每边监测点数目不应少于1 个。围护墙内力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和水平间距视具体情况而定。竖直方向监测点应布置在弯矩极值处,竖向间距宜为2m~4m。 2)支撑内力监测点的布置应符合下列要求:监测点宜设置在支撑内力较大或在整个支撑系统中起控制作用的杆件上。每层支撑的内力监测点不应少于3 个,各层支撑的监测点位置在竖向上宜保持一致。钢支撑的监测截面宜选择在两支点间1/3 部位或支撑的端头;混凝土制成的监测截面宜选择在两支点间1/3 部位,并避开节点位置。每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。 3)立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、地质条件复杂处的立柱上,监测点不宜少于立柱总根数的5%,逆作法施工的基坑不宜少于10%,且不应少于3 根。立柱的内力监测点宜布置在受力较大的立柱上,位置宜设在坑底以上各层立柱下部的1/3 部位。

水准高程测量试题及答案.doc

高程测量测试题 部门:姓名:得分: 一、单项选择题:(每题 2 分,共 30 分) 1. 在水准测量中设 A 为后视点, B 为前视点,并测得后视点读数为 1.124m,前视读数为 1.428m ,则 B 点比 A点( B )。 A. 高 B. 低 C. 等高 D. 无法判断 2. 视准轴是连接物镜光心与( C )的连线。 A.目镜光心 B.调焦透镜光心 C.十字丝分划板中心 D.光学对中器光心 3. 水准测量中, A,B分别为前、后视点,后视读数为 1.235m,前视读数为 1.450m,则 h BA(= A )。 A.-0.215m B. 0.215m C. 0.140m D. -0.140m 4.水准测量中, A、B 分别为后、前视点, H A=2 5.000m,后视读数为 1.426m,前视读数为 1.150m,则仪器 的视线高程为(D)。 A. 24.724m B. 26.150m C. 25.276m D. 26.426m 5. 在下列型号的水准仪中,精度最高的是( A )。 A. DS05 B. DS1 C. DS3 D. DS10 6. 转动物镜对光螺旋的目的是( B )。 A. 看清十字丝 B. 使目标成像清晰 C. 整平水准管 D. 对中 7. 视差产生的原因是( A )。 A.目标成像与十字丝分划板平面不重合 B.目标成像与目镜平面不重合 C.目标成像与调焦透镜平面不重合 D.目标成像与观测者视界面不重合 8.某附合水准测量路线,已知水准点A,B 高程 HA=18.552m,HB=25.436m。实测高差总和为 6.870m,则该水准路线的高差闭合差为(B)mm。 B. -14 C. 12 D. -12 9.水准仪的使用中双手调节脚螺旋,使圆水准气泡居中,气泡移动方向与( B )运动的方向 一致。 A.右手大拇指 B.左手大拇指 C.以上都不对 10.右图塔尺读数应为 ( A )m A. 1.534m B. 1.554m C. 1.538m D. 1.544m 11.高程测量的基本原理是: 利用水准仪提供的( B ),测量两点间高差, 从而由已知点高程推算出未知点高程。 A.相对视线 B.水平视线 C.相对高程 D.大地水准面 12.右图塔尺读数应为 ( A )m A. 0.437m B. 0.432m C. 0.442m D. 0.447m 13. 要进行水准仪精确整平,需调节什么螺旋(C) A目镜调焦螺旋 B物镜调焦螺旋

工程测量规范GB50026-2007高程控制测量

工程测量规范 GB50026-2007 高程控制测量 一般规定 高程控制测量精度等级的划分,依次为二、三、四、五等。各等级高程控制宜采用水准测量,四等及以下等级可采用电磁波测距三角高程测量,五等也可采用 GPS 拟合高程测量。 首级高程控制网的等级,应根据工程规模、控制网的用途和精度要求合理选择。首级网应布设成环形网,加密网宜布设成附合路线或结点网。 测区的高程系统,宜采用 1985 国家高程基准。在已有高程控制网的地区测量时,可沿用原有的高程系统;当小测区联测有困难时,也可采用假定高程系统。 高程控制点间的距离,一般地区应为 1~3km,了业厂区、城镇建筑区宜小于 lkm。但一个测区及周围至少应有 3 个高程控制点。 水准测量 水准测量的主要技术要求,应符合表 4.2.1 的规定。 水准测量所使用的仪器及水准尺,应符合下列规定: 水准仪视准轴与水准管轴的夹角 i,DSl 型不应超过15″;DS3 型不应超过 20"。 补偿式自动安平水准仪的补偿误差△a 对于二等水准不应超过 0.2″,三等不应超过 0.5″。水准尺上的米间隔平均长与名义长之差,对于因瓦水准尺,不应超过 0.15mm;对

于条形码尺,不应超过 0.10mm;对于木质双面水准尺,不应超过 0.5mm。 水准点的布设与埋石,除满足 4.1.4 条外还应符合下列规定: 应将点位选在土质坚实、稳固可靠的地方或稳定的建筑物上,且便于寻找、保存和引测;当采用数字水准仪作业时,水准路线还应避开电磁场的干扰。 宜采用水准标石,也可采用墙水准点。标志及标石的埋设应符合附录 D 的规定。 埋设完成后,二、三等点应绘制点之记,其他控制点可视需要而定。必要时还应设置指示桩。水准观测,应在标石埋设稳定后进行。各等级水准观测的主要技术要求,应符合表 4.2.4 的规定。 两次观测高差较差超限时应重测。重测后,对于二等水准应选取两次异向观测的合格结果,其他等级则应将重测结果与原测结果分别比较,较差均不超过限值时,取三次结果的平均数。 当水准路线需要跨越江河(湖塘、宽沟、洼地、山谷等)时,应符合下列规定: 水准作业场地应选在跨越距离较短、土质坚硬、密实便于观测的地方;标尺点须设立木桩。 两岸测站和立尺点应对称布设。当跨越距离小于 200m 时,可采用单线过河;大于200m 时,应采用双线过河并组成四边形闭合环。往返较差、环线闭合差应符合表 4.2.1 的规定。 水准观测的主要技术要求,应符合表 4.2.6 的规定。

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 2010-11-28 01:58:11| 分类:工程测量|举报|字号订阅 [教程]第二章水准测量 未知2009-12-13 16:21:06 网络 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling) (4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

基准点埋设技术交底

埋桩技术要求 一、埋设加密控制桩的外观要求 1、控制桩选用不锈钢材料或者铜质标芯,表面加工成凸形球面状,中线十字丝应该清晰而且不能太粗以保证对中的精度。应统一定做。 2、控制桩点号应采用标准字模板刻注在混凝土上,混凝土上方标注项目名称+点号,(点号由分部区分如一分部第一个加密点可写成 QN1-001以此类推),下方标注XXXX测绘或XXXXXXXX文字”,字体统一为5CM高*4CM宽,仿宋体GB2312,字体应该美观、清晰。字体和点号刻注完采用红色油漆进行喷底。 3、混凝土台使用模板浇注,提前做好埋设所用的模板,提前选好位置并把底板浇筑好(注意底板与上部的接茬)。埋石在现场浇灌,先浇灌底部(70×70×30厘米),待基本凝固后再用模板浇灌上部,并插入铜质标心,保持标心垂直和半球露出混凝土。待顶部表面基本凝固后写上点名。表面应该人工抹面,大小为30cm*30cm的标准正方形,混凝土表面不宜太高或者太低,以高于周围地面2—5cm为宜。也可以采用先预制,后现场埋设,但是埋设时也必须采用现浇混凝土进行固定。 4、控制桩应高于混凝土表面5—10mm。 整个埋设过程如下图所示: 挖坑浇底 抹面点号刻注

200 1 00300450 300250450 1501 2 3 4 5 6 广大铁路埋设控制点参考图 二、埋设的技术要求 (一)、平面控制点 1、点位分布均匀,图形结构好,在特大桥两侧均匀布设,同时考虑在基础施工完成,桥墩起来后两侧不好通视,最好在桥梁一侧也埋设一个相互通视的控制点。 2、控制点在线路横向方向50—150米之间,沿线路纵向方向在300米以上,控制点至少能和相邻的一个控制点通视。 3、考虑GPS 观测的技术要求,桩点的视野开阔、对天通视良好(障碍物仰角大于15度);距离高压电线至少300米。

实验10 高程控制测量(四等水准闭合路线)

姓名:班级:学号(短号):实验十高程控制测量(四等水准闭合导线) 一、实验目的 1、进一步熟悉水准仪的构造及使用方法。 2、学会控制测量的水准测量实际作业过程。 3、掌握闭合水准路线测量的观测、记录和数据整理校核的方法;掌握闭合差的调整及计算待测点高程的方法。 二、实验设备及器件:DS3水准仪、三脚架、尺垫、记录板和测伞,另外自备2H铅笔和 计算器。 三、课时安排:2学时 四、实验步骤及要求 1. 全组共同施测一条闭合水准路线,设计安置4个测站(A B、B C、C D、D A)。确定起始点及水准路线的前进方向。人员分工是:两人扶尺,一人记录,一人观测。施测1~2站后轮换工作。 2. 在每一站上,观测者首先选好距离前后测点/转点大致相等处安置仪器,进行仪器的粗略整平,然后照准水准尺,对光、调焦、消除视差,然后精平读取中丝读数,记录员将读数记入记录表中。 3. 第一站(A B)首先瞄准后视尺A黑面,读取后视尺读数a 1 ,紧接着照准后视尺 红面,并读取读数a 2,然后照准前视尺B黑面,用同样的方法读取前视读数b 1 ,紧接着照 准前视尺红面,并读取读数b 2 。记录员把前、后视读数记好后,分别采用黑面和红面计算 高差h 1和h 2 ,检查互差是否超限(小于5mm,若未超限,计算平均高差h=(h 1 +h 2 )/ 2。 4. 用步骤3叙述的方法依次完成闭合线路上测站(B C、C D、D A)的测量工作,最后回到了起点。 5. 观测结束后,立即算出高差闭合差f h =Σh i 。如果f h 小于f h容 ,说明观测成果合格, 即可算出各立尺点(B、C、D)高程(假定起点高程为H A =62 m)。否则,要进行重测。 f h容 = ±20 L ,L单位为km。 6. 高差改正与高程计算: 高差闭合差改正数V i =-L i /L x f h或V i =-n i /n x f h,高程计算 为H i=H(i-1) + V i。

水文的高程基准

水文的高程基准 水文资料的利用不会仅限于单站,因此站网观测资料就一定需要有系统性,各项要素也需要具有技术上的一致性。水面相对于某个起算面的自由高度即是水位。因此在水文站网实施水文测验,水位观测必须要有统一的高程基准,由于历史等原因,我国各地曾经采用各自的高程基准,以致不同测站的水位无法直接相互衡量、比较,给资料的使用带来不少麻烦。由此可见,高程基准的控制不仅是水位观测的重要基础也是整个水文测验最重要的基础,水位起算基准面、水尺零点基准等就成为关键的技术内容之一 1 基面与高程控制系统 1.1 基面 静止的水面所形成的曲面被称之为水准面,水准面是重力等位面。水准面的重要物理特征是曲面上各处重力相等,物体在水准面上作平移运动时重力不做功,也可以说水准面上水面是静止不流动的。以水为平,海拔为高,水准面就是用以衡量高度的参照面。为了得到可以普遍适用的高程基准面,需要一个能符合整个地球物理性质的统一的水准面,这个环绕地球的封闭的水准面被称之为大地水准面。因为客观条件不同,人们实际确定的大地水准面就会有所不同,把经过某一个特定位置点的大地水准面称为基面,作为高程的起算基准面。例如经过青岛验潮站平均海平面的“黄海基面”。 1.2 高程及其方向 在很多水文测验和测量教材中都给出了高程的定义:高程是地面点到高度起算面的垂直距离。但是,都没有细说高程的方向和从起算面出发去往某地面点的高程增长路径。测绘学意义上,高程是某地面点在地球重力方向上的高度。由于地球内部质量分布的不均匀,致使地球重力场不是一个简单和规则变化的力场,水准面也就呈现为不规则起伏的曲面。空间上每一个高度都可以有一个水准面,水准面之间的距离就是高差,俗话说“水往低处流”,其实所谓高低,虽然表现出是空间落差,实际上是重力位差。高程既然沿重力线为方向增减,那么某一地点精确的高程,其方向线是曲线。因此,椭球体的地球表面上每个点高程其方向都是不同的。某一位置点沿着地球重力线(曲线),相对于大地水准面的距离,称

观测点要求

路基、桥梁沉降观测的有关要求 为检验路基和桥梁稳定状况,并为后续路面施工提供依据,根据技术规范第201.03条第8小条和401.02条第10小条的有关规定,结合南光高速公路实际情况,对路基和桥梁沉降观测提出以下要求,请 监理办监督落实。 一、路基沉降观测 当路基施工完成达到设计路床标高后,即开始进行路基沉降观测。 1、路基沉降观测点的设置 (1)观测点沿路基纵向设置要求: a.填挖交界处:观测点设在填挖交界处向填方侧延伸1m处; b.高填方中间点:凡填方高度大于10m均需进行沉降观测,除需在填方最高点处设观测点外,另需 在最高点沿路线两侧各20米处设观测点。 c.桥头填方段:观测点设在距台背50cm处; (2)观测点沿路基横向设置要求: 对应于上述路基纵向观测点的设置桩号,对于整体式路基每断面设置两点,位置在两侧路基边缘向内50cm处;对于分离式路基在路基内侧(行车方向左侧)边缘向内50cm处;对于桥头路基可在桥头路基中央距桥头50cm处设一点。具体设置点数及位置,由各相关承包人提出意见后报监理工程师审查确定。 二、桥梁沉降观测 桥梁沉降观测点的布置位置: 1.桥台的观测点布置在桥台耳墙上方的外侧防撞墙上; 2.桥墩观测点设在桥墩地面线上方1~5米处的墩身上; 3.另外,各桥隔跨在跨中部位的外侧防撞墙上增设观测点。 观测对象施工完成后,即开始进行沉降观测,具体设置点数及位置,由各相关承包人提出意见后报 监理工程师审查确定。 三、观测点设置方法: 路基观测点:取直径100mm、厚大于10mm的钢板一块,上焊长度与路面结构厚度相当的大于φ16的钢筋,钢板在路基表面以下30cm处埋设稳当,覆土坚实平整,钢筋杆端头处理成半圆锚头,作好防锈 处理,编号、登记、测定高程。 桥梁观测点:先钻孔,清楚孔内浮渣,用环氧树脂灌入孔内1/3厚度后插入观测钢钉,钢筋杆端头处理成半圆锚头,作好防锈处理,编号、登记、测定高程。 四、观测要求: a.观测点设置后抓紧观测,第一次测定的高程即为原始高程;

85高程基准和测绘方面的一些专业名词解释

85国家高程基准及高程系简介85国家高程基准是指以青岛水准原点和青岛验潮站1952年到1979年的验潮数据确定的黄海平均海水面所定义的高程基准,其水准点起算高程为72.260米。 吴淞与废黄河、黄海、八五基准点的关系: 1、吴淞=废黄河+1.763m; 2、吴淞=黄海+1.924m; 3、吴淞=八五基准+1.953m。 一、吴淞零点和吴淞高程系:清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高 程起算基准。 二、吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精密水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程控制网,参加国家测绘

总局主持的1957年中国东南部地区精密水准网平差。平差后的水准点高程均为1956年黄海高程系,佘山水准基点既有黄海高程(44.4350米),又有吴淞高程(46.0647米),两者之差为1.6297米,即在上海地区吴淞高程系基面比1956年黄海高程系基面低1.6297米,远离上海的地区,同一点的两个高程值之差会略有不同。 三、1956黄海高程水准原点的高程是72.289米。1985国家高程系统的水准原点的高 程是72.260米。

四等水准测量步骤

三、四等水准测量(2008-10-10 23:27:42) 标签:教育 三、四等水准测量 控制测量除了要完成平面控制测量外,还要进行高程控制测量。小区域地形测图或施工测量中,多采用三、四等水准测量作为高程控制测量的首级控制。 一、三、四等水准测量(level in g)的技术要求 1、高程系统:三、四等水准测量起算点的高程一般引自国家一、二等水准点,若测区附近没有国家水准点,也可建立独立的水准网,这样起算点的高程应采用假定高程。 2、布设形式:如果是作为测区的首级控制,一般布设成闭合环线;如果进行加密,则多采 用附合水准路线或支水准路线。三、四等水准路线一般沿公路、铁路或管线等坡度较小、便于施 测的路线布设。 3、点位的埋设:其点位应选在地基稳固,能长久保存标志和便于观测的地点,水准点的间距一般为1 —1. 5km,山岭重丘区可根据需要适当加密,一个测区一般至少埋设三个以上的水准点。 4、三、四等及五等水准测量的精度要求和技术要求列于表中。 二、三、四等水准测量的观测方法 三、四等水准测量观测应在通视良好、望远镜成像清晰及稳定的情况下进行。一般采用一对双面尺。 1、三等水准一个测站的观测步骤:(后-前-前-后;黑-黑-红-红) (1)照准后视尺黑面,精平,分别读取上、下、中三丝读数,并记为(1)、(2)、(3)。 (2)照准前视尺黑面,精平,分别读取上、下、中三丝读数,并记为(4)、 (5 )、(6)。 (3)照准前视尺红面,精平,读取中丝读数,记为(7) (4)照准后视尺红面,精平,读取中丝读数,记为(8) 这四步观测,简称为“后一前一前一后(黑一黑一红一红)”,这样的观测步骤可消除或减 弱仪器或尺垫下沉误差的影响。对于四等水准测量,规范允许采用“后一后一前一前(黑一红一黑一红)”的观测步骤。 2、一个测站的计算与检核: 观测记录参看书本表7-11 。

相关文档
最新文档