自动自偶降压启动的控制线路图

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动自偶降压启动的控制线路图(一次二次)

自偶降压一次线路的接法:

利用三相自耦变压器将降低的电压加到电机定子绕组上,使电机在低于额定电压下起动,以减小起动电流。等电机转速成达到或接近额定转速时,通过操作机构甩开自耦变压器,使电机在额定电压下正常运行。为了满足不同的要求,自耦变压器一般都设有0.65、0.80两组电压抽头。自偶降压一次线路的原理接线就一种接法,其控制手法有自动和手动两种方法。

鼠笼式电动机自耦降压启动手动控制电路

自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。

1、合上空气开关QF接通电源.

2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。KM1线圈通电其主触头闭合,由自耦变压器

的65%抽头端将电源接入电动机,电动机在低电压下启动。

3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通

电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。

4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮

SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。

5、电动机运行中的过载保护由热继电器FR完成.

6、互锁环节;

接触器互锁:KM2常闭触点接入KM3、KM1线圈回路

KM1常闭触点接入KM2线圈回路

按纽互锁:按纽SB2常开触点接入KM3、KM1线圈回路

按纽SB2常闭触点接入KM2线圈回路

按纽SB3常开触点接入KM2线圈回路

按纽SB3常闭触点接入KM3、KM1线圈回路

鼠笼式电动机自耦降压启动手动控制电路接线示意图

安装与调试

1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。

2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。

3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。

4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。

5、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM3动作吸合,KM2与KA不动作。再按下SB3

运行按钮,KM1和KM3释放,KA和KM2动作吸合切换正常,反复试验几次检查线路的可靠性。

6、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带

电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。

7、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应

停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。

常见故障

1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接

换到运行时有很大的冲击电流,这是为什么?

分析现象;电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。

处理;将自耦变压器的抽头改接在80%位置后,在试车故障排除。

2、电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。

分析现象;这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还未下降转速为接近额定转速就切换到全压运行状态所至。处理;延长起动时间现象排除。

一种自耦变压器降压起动控制线路的改进

前言

自耦变压器降压起动,又称为补偿器降压起动,可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起

动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来,运行稳定、可靠,没有出现故障。

1原动作原理

原电路的控制原理如图1所示

控制电路的本意是,按下起动按钮SB2,交流接触器1KM和2KM线圈得电,触头1KM和2KM闭合,自耦变压器串入电动机降压起动;同时时间继电器KT线圈也

得电,KT的触头延时动作,KT常闭触头延时先断开,1KM、2KM和KT线圈先后失电,1KM和2KM主触头断开,变压器脱离电动机电路,而KT常开触头后闭合, 1KM常闭闭合,3KM线圈在1KM和2KM失电之后得电,3KM主触头闭合,电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路,电动机的“起动-自动延时-运行”一次操作完成,非常方便和安全。但是在正式运行时,会产生这种现象:在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行,即按下起动按钮SB2之后,电动机降压起动了,当转到全压运行时,便停下来,3KM线圈通不了电。

2线路的弊病-竞争冒险现象

分析其图1控制线路的弊病是遇到了电磁元件之间的“触点竞争”问题,即出现了竞争冒险现象,造成整个电路工作的不可靠。电路运行过程中,当KT 延时到后,其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合,当延时常闭触点先断开后,1KM线圈随即断电,1KM1常闭闭合为3KM线圈通电做准备,同时1KMr常开断开,KT线圈随即断电,由于磁场不能突变为零和衔铁复位需要时间,故有时候延时常开触点来得及闭合,这时3KM线圈可通电, 3KM常开触点闭合自锁,电动机转入全压运行。但有时候因受到某些干扰而失控, KT延时常开触点来不及闭合,KT的磁场已消失和衔铁已复位,3KM线圈通不了电,从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系,而忽略了触点系统动作时间性和滞后性对系统的影响,从而造成竞争冒险。

3改进后的接线方法

经过分析,主要是控制电路中辅助触点使用不合理造成线路设计的不完善,针对此线路存在的缺点对原控制电路部分进行改进,其接线方法见图2。

4改进后的工作原理

接通电源后,按下起动按钮SB2,交流接触器1KM、2KM线圈得电吸合,1KM 和2KM主触头闭合,自耦变压器串入电动机降压起动;同时,时间继电器KT线圈也得电吸合,KT瞬时常开触点闭合自锁。经一定时间延时后,KT延时常开触头闭合,KT延时常闭触头断开,1KM线圈断电,1KM1常闭闭合,3KM线圈通电, 3KM1常开触头闭合自锁,3KM1常闭触头断开联锁,使2KM及KT线圈断电复位,电动机进入全压运行,整个启动过程结束。将图1改成图2后控制系统就达到了安全可靠运行的目的了。

相关文档
最新文档