文本挖掘算法总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文本数据挖掘算法应用小结
1、基于概率统计的贝叶斯分类
2、ID3决策树分类ﻫ
3、基于粗糙集理论Rough Set的确定型知识挖掘ﻫ
4、基于k-me
6、SOM神经元网络聚类ﻫ
7、ans聚类ﻫ5、无限细分的模糊聚类Fuzzy Clustering ﻫ
基于Meaning的文本相似度计算ﻫ8、文本模糊聚类计算ﻫ9、文本k-means聚类
13、PCA主成分分析
12、序列模式发现ﻫ
10、文本分类ﻫ11、关联模式发现ﻫ
1、基于概率统计的贝叶斯分类
算法概述:贝叶斯公式是由英国数学家(Thomas Bayes1702-1763 )创造,用来描述两个条件概率之间的关系,比如P(A|B)为当“B”事件发生时“A”事件发生的概率,按照乘法法则:
P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),可导出
贝叶斯公式:P(A|B)=P(B|A)*P(A)/P(B)
贝叶斯分类基本思想为:设决策变量为D,D1,D2,Di,…,Dk为n条记录组成的样本空间S的一个划分,将n条记录划分成k个记录集合,如果以P(Di)表示事件Di发生的概率,且P(Di)> 0( i=1,2,…,k)。对于任一事件x,P(x)>0,则有:
贝叶斯分类的基本原理,就是利用贝叶斯条件概率公式,将事件X视为多个条件属性Cj各种取值的组合,当x事件发生时决策属性Di发生的条件概率。贝叶斯分类是一种概率型分类知识挖掘方法,不能百分之百地确定X事件发生时Di一定发生。
解决问题:预测所属分类的概率。通过已知n条样本集记录,计算各种条件属性组发生的概率,得出“贝叶斯分类”规则,给定一个未知“标签”记录,选择最大概率为其所属“分类”。
2、ID3 决策树分类
算法概述:ID3算法是J. Ross Quinlan在1975提出的分类算法,当时还没有“数据挖掘”的概念。该算法以信息论为基础,以信息熵和信息增益度来确定分枝生成决策树D-Tree。ID 3算法以决策树D-Tree构建分类知识模型,D-Tree中最上面的节点为根节点Root,每个分支是一个新的决策节点,或者是树的叶子。每个决策节点代表一个问题或决策,每一个叶子节点代表一种可能的分类结果,沿决策树在每个节点都会遇到一个测试,对每个节点上问题的不同取值导致不同的分支,最后会到达一个叶子节点为确定所属分类。
解决问题:预测所属分类。通过已知样本集记录,生成一颗“分类知识树”,给定一个未知“标签”记录,通过“分类知识树”来确定其所属分类。
3、基于粗糙集理论Rough Set的确定型知识挖掘
算法概述:1982年波兰学者Z. Paw lak 提出了粗糙集理论Rough Sets Theory,它是一种刻划不完整性和不确定性的数学工具,能有效分析不精确、不一致(Inconsistent)、不完整(Incomplete)等各种不完备信息,利用数据进行分析和推理,从中发现隐含的知识,揭示潜在的规律。粗糙集理论是继概率论、模糊集、证据理论之后的又一个处理不确定性事物的数学工具。粗糙集理论是建立在分类机制的基础上的,它将分类理解为在特定空间上的等价关系,而等价关系构成了对该空间的划分。粗糙集理论将知识理解为对数据的划分,每一被划分的集合称为概念。其主要思想是利用已知的知识库,将不精确或不确定的知识用已知的知识库中的知识来(近似)刻画。
解决问题:预测所属分类。粗糙集分类将样本空间S划分为上近似集(Upperapproximatio n)、下近似集(Lower approximation)、边界集(Boundaryregion),挖掘条件属性C与决策属性D集合所包含的不可分记录(不能再细分,该集合中的所有记录都属于某一决策属性Di的取值),这些记录形成不可辨识的关系(Indiscernibilityrelation),由此确定分类规则:
IF <条件属性C成立>THEN <决策属性Di发生>
即,如果满条件C,则其所属分类为Di。IF中的条件C可以是单一条件,也可以是组合and(并且)组合条件。
BIC给出的是“最小分类规则”。所谓“最小分类规则”是,最少的条件组合。例如一个人属于“高”、“富”、“帅”,条件为:“身高”、“财富”、“工资性收入”、“财产性收入”、“产业收入”、“脸型”、“眼睛大小”、“鼻梁形状”、“英俊”等条件来判别,通过“粗糙集”分类计算,得出最小分类规则可能是
“IF 财富>=XXX1 and身高>=185cm and 相貌=英俊”
其他条件可以忽略不计,这就是“最小分类规则”。
“粗糙集”分类规则为“百分之百确定型”分类规则,这是对样本集的统计结果,如果出现非“样本集”中出现过的条件变量属性,将无法得出“粗糙集”,可转而使用概率型“贝叶斯分类”进行计算。
4、基于k-means聚类
算法概述:给定一个包括n条记录、每条记录有m个属性的样本集,再给出分类数k,要求将样本集中的记录,按记录间的相似性大小(或距离远近),将相似性最大(或距离最近)的记录划分到k个类中,相同分类中记录间的距离要尽可能地小,而分类之间的距离要尽可能地大。
BIC改进了常规的k-means聚类算法,在聚类过程中,同时计算分类质量(类内均差、类
间均距和),并求解最优聚类max{ }。
解决问题:将n条记录聚成k个分类。对n个样本集记录,指定分类个数k,为k个分类指定初始迭代记录为k个分类中心,通过计算其他记录对k个分类中心的距离,对不断变换分类、变换类中心,收敛都当分类不再变化时,计算结束。由此,将n个样本集记录分配到k个分类中,得到k个分类中心指标。
5、无限细分的模糊聚类Fuzzy Clustering
算法概述:在实际解决聚类问题时,很多数事物是“模糊”的,其特征属性A无法确进行量化,如:人的相貌、人与人之间的关系、人的性格、购买商品的意愿等,这就需要用模糊数