荷载内力计算和杆件截面选择计算

荷载内力计算和杆件截面选择计算
荷载内力计算和杆件截面选择计算

(1) 设计资料

昆明地区某工厂金工车间,屋架跨度为24m ,屋架端部高度2m ,长度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采用×6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三毡四油防水层,屋面坡度=i 1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400mm,混凝土C20,屋面活荷载 kN/m 2,屋面积灰荷载 kN/m 2,保温层自重m 2。

(2)钢材和焊条的选用

屋架钢材选用Q235,焊条选用E43型,手工焊。

(3)屋架形式,尺寸及支撑布置

采用无檩屋盖方案,屋面坡度10/1=i ,由于采用?预应力钢筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下:

屋架计算跨度:

mm L L 23700300240003000=-=-=

屋架端部高度取:

=o H 2000mm

跨中高度:

mm i L H H 3190318510

12237002000200≈=?+=+

= 屋架高跨比:

4.712370031900==L H 为使屋架节点受荷,配合屋面板宽,腹杆体系大部分采用下弦节间为

3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系,屋架跨中起拱48mm ,几何尺寸如图所示:

根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷载;在设置横向水平支撑的同一柱间,设置竖向支撑三道,分别设在屋架的两端

和跨中,屋脊节点及屋架支座处沿厂房设置通长刚性系杆,屋架下弦跨中设置一道通长柔性系杆,凡与横向支撑连接的屋架编号为GWJ-2,不与横向支撑连接的屋架编号为GWJ

屋架竖向支撑

(3)荷载和内力计算

1)荷载计算

永久荷载标准值:

预应力钢筋混凝土大型屋面板(包括灌缝): 24.1m kN

防水层(三毡四油,上铺小石子): 24.0m kN 找平层(20mm 厚水泥砂浆): 24.0m kN 屋架和支撑自重(按经验公式估算):

238.024011.012.0011.012.0m kN L =??=? 保温层: 24.0m kN 可变荷载标准值:

屋面活荷载: 25.0m kN 屋面积灰荷载: 275.0m kN

2)节点荷载计算

(1)当基本组合由可变荷载效应控制时,上弦节点荷载设计值为:

()()kN

S P 21.47507.1675.09.05.04.1507.164.04.038.04.04.12.1=???+?+??++++?=(2)当基本组合由永久荷载效应控制时,上弦节点荷载设计值为:

()()kN S P 35.49507.1675.09.05.07.04.1507.164.04.038.04.04.135.1=???+??+??++++?=由以上可知,本工程屋面荷载组合由永久荷载效应控制,节点集中力设计值取: kN P 35.49=

3)屋架节点荷载计算。计算屋架时应考虑下列三种荷载组合情况:

(1)全跨永久荷载+全跨可变荷载;

(2)全跨永久荷载+(左)半跨可变荷载;

(3)屋架和支撑自重+(左)半跨屋面板重+(左)半跨施工荷载。

设:1P ——由永久荷载换算得的节点集中荷载;

2P ——由可变荷载换算得的节点集中荷载;

3P ——由部分永久荷载换算得的节点集中荷载;

4P ——由部分永久荷载和可变荷载换算得的节点集中荷载。

则:(

)kN P 38.36507.164.04.038.04.04.135.11=??++++?= ()kN P 98.1275.09.05.07.04.12=?+??=

kN P 64.46507.138.035.13=???=

()kN P 39.21507.165.07.04.14.135.14=????+?=

4)内力计算

用图解法或结构力学求解器先求出全跨和半跨单位节点荷载作用下的杆件内力系数,然后乘以实际的节点荷载,即得杆件内力。屋架在上述第一种荷载组合作用下,屋架的弦杆,竖杆和靠近两端的斜腹杆,内力均达到最大,在第二种和第三种荷载作用下,靠跨中的斜腹杆的内力可能达到最大或发生变号。因此,在全跨荷载作用下所有杆件的内力均应计算,而在半跨荷载作用下仅需计算跨中的斜腹杆内力。计算结果如下表:

杆件截面选择

1)上弦杆GI 。整个上弦不改变截面,按最大内力计算,kN N GI 08.765-=,

cm l ox 8.150=,cm l oy 5.301=,截面宜选用两个不等边角钢,短肢相并。根据腹杆的最大内力KN N Bb 60.339=,查表节点板t=10mm ,支座节点板厚t=12mm 。 假定60=λ,对x 轴和y 轴均属于b 类截面,查表得807.0=?。

cm l i cm l i cm f N A oy y ox x 03.560

5.301,51.2608.150,09

6.4421580

7.0100

8.76523

=======??==λλ?选用10901402??L 短肢相并;cm i cm i cm A y x 77.6,56.2,522.442===。 验算:

[]1509.5856.28.150=<===λλx ox x i l ;[]1505.4477

.65.301=<===λλy oy y i l ; 6.12140301556.056.0141014011=?=>==l b oy 则[]1501.541407.521030*********.37.5217.322241221=<=???? ????+??=???? ?

?+=λλb t l t b oy yz 满足刚度要求

由9.58max ==x λλ,查表得814.0=x ?

223

2151.2112

.4452814.01008.765mm N mm N A N <=??==?σ 满足强度和稳定性要求

2)下弦杆d e 。整个下弦杆采用等截面,按下弦杆的最大内力kN N de 94.736=计算,cm l ox 0.300=,cm l oy 0.1185= 所需要面积23

276.34215

1094.736cm f N A de n =?==,选用10801002??L ,短肢相并,22276.34334.34cm cm A >=,cm i x 35.2=,cm i y 78.4= 验算:

[]3507.12735.2300=<===λλx ox x i l ,[]3509.24778

.41185=<===λλy oy y i l 64.6100118556.056.010*******=?=>==b l b oy

则,[]3500.381007.521011*********.37.5217.342241221=<=???? ????+??=???? ?

?+=λλb t l b oy yz 满足刚度要求

223

2156.2144

.34331094.736mm N f mm N A N =<=?==σ 满足强度要求

3)斜端杆Ba 。cm l l kN N oy ox Ba 1.253,82.437==-= 假定75=λ,对x 轴和y 轴均属于b 类截面,查表得720.0=?。

cm l i i cm f N A ox y x 37.375

1.253,283.28215720.0108

2.43723=====??==λ? 选用10801002??L ,长肢相并;cm i cm i cm A y x 5

3.3,12.3,33

4.342===。 验算:

[][]1507.7153

.31.253,1501.8112.31.253=<====<===λλλλy oy y x ox x i l i l 19.1580253148.048.08108022=?=<==l b oy 则,[]1507.761025318009.117.7109.112242242=<=???? ????+?=???? ?

?+=λλλt l b oy y yz 满足刚度要求

取1.81max ==x λλ,查表的680.0=x ?

223

2155.1874

.3433680.01082.437mm N f mm N A N =<=??==?σ 满足强度和稳定性要求

4)斜腹杆Bb 。cm l cm l kN N oy ox Bb 5.260,4.2085.2608.0,60.339==?==。 所需面积23

795.15215

1060.339cm f N A n =?== 选用cm i cm i cm A L y x 69.3,44.2,606.24;88022===?。 验算:

[][]3506.7069

.35.260,3504.8544.24.208=<====<===λλλλy oy y x ox x i l i l

内力组合计算书

5.4 内力组合 《抗震规范》第5.4条规定如下。 5.4截面抗震验算 5.4.1 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ (5.4.1) 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件承载能 力有利时,不应大于1.0; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表5.4.1 采用; γw ——风荷载分项系数,应采用1.4; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采 用0.2。 注:本规范一般略去表示水平方向的下标。 表5.4.1 地震作用分项系数 5.4.2 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表5.4.2采用; R ——结构构件承载力设计值。

表5.4.2 承载力抗震调整系数 5.4.3 当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用1.0。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为1.0,0.85,0.85,0.7,0.7。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图5.22。

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图

表2 各种载荷下剪力图与弯矩图的特征 表3 各种约束类型对应的边界条件 注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表 表2-5 注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4 )。基本计算公式如下:??= A dA y I 2 2.W 称为截面抵抗矩(mm 3 ),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A I i = 4.上列各式中,A 为截面面积(mm 2 ),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。 5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10) (1)简支梁的反力、剪力、弯矩、挠度 表2-6 (2)悬臂梁的反力、剪力、弯矩和挠度 表2-7 (3)一端简支另一端固定梁的反力、剪力、弯矩和挠度 表2-8 (4)两端固定梁的反力、剪力、弯矩和挠度 表2-9 (5)外伸梁的反力、剪力、弯矩和挠度 表2-10 3.等截面连续梁的内力及变形表 (1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14) 1)二跨等跨梁的内力和挠度系数 表2-11 注:1.在均布荷载作用下:M =表中系数×ql 2 ;V =表中系数×ql ;EI w 100ql 表中系数4 ?=。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3 ?=。 [例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为 24m ,屋架端部高度2m ,长 度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采 用1.5 >6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三 毡四油防水层,屋面坡度i 1/10。屋架两端铰支于钢筋混凝土柱上,上 柱截面400X400mm ,混凝土 C20,屋面活荷载0.50 kN/m 2,屋面积灰荷 载 0.75 kN/m 2,保温层自重 0.4kN/m 2。 (2) 钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3) 屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度i 1/10 ,由于采用1.5m 6m 预应力钢 筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: L 0 L 300 24000 300 23700 mm 屋架端部高度取: 为使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦 节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系, 屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间 两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系 杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷 载;在设置横向水平支撑的同一柱间, 设置竖向支撑三道,分别设在屋架的两端 跨中高度: 屋架高跨比: H o 2000mm 23700 1 H H o i 2000 3185 3190mm 2 2 10 H 3190 1 L 23700 7.4 u m J 启

多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算 基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算 w k=βzμsμz w0,建筑物高度<30m,故βz=1.0 迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3 计算过程见下表 计算简图(单位:kN) 14.60 15.44 16.85 13.98 17.04

(二)内力计算 1.抗侧刚度和反弯点高度确定 计算过程见下表 2.剪力在各层分配(单位:kN ) ∑ == 5 n i i Pi P V ,Pi k ik V D D V ?= ∑ V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m ) 4.风荷载作用下的内力图 M 图(单位:kN ?m ) 62.98 51.34 32.5132.51 24.71 24.71 14.826.27 19.12 8.67 7.77 4.73 3.95 2.181.11 42.16 41.69 28.77 28.45 19.88 19.65 12.77 12.624.36 4.3157.21 57.21 57.23 34.9522.2837.9 15.6222.289.2818.26 27.54 16.98 3.69 13.296.536.5357.23 22.28 15.62 27.5416.9837.99.283.6934.95 22.28 18.26 6.53 13.29 6.53

V N V ,N 图(单位:kN ) 5.梁端柱边弯矩(单位:kN?m ) 28.11 19.18 13.25 8.51 2.91 35.13 36.8321.39 22.46 12.17 12.5 5.62 5.8 13.74 21.57 9.22 18.06 6.55 13.73 4.11 9.43 1.51 1.4 4.15 17.39 12.38 1.51 2.84 6.27 9.41

高层建筑混凝土内力组合建筑结构设计计算书

高层建筑混凝土力组合建筑结构设计计算 书 7 力组合 7.1 选取荷载组合 “《高层建筑混凝土结构技术规程》”规定,抗震设计时要同时考虑无地震作用效应时的组合和有地震作用效应时的组合: 无地震作用效应组合时,荷载效应组合的设计值应按下式确定: d G GK L Q Q Qk w w wK S S S S γγψγψγ=++ d S ——荷载效应组合的设计值; G γ——永久荷载分项系数; Q γ——楼面活荷载分项系数; w γ——风荷载分项系数; L γ——考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使用年限为100年时取1.1 GK S ——永久荷载效应标准值; GK S ——永久荷载效应标准值; QK S ——楼面活荷载效应标准值; wK S ——风荷载效应标准值; ,Q w ψψ——楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时分别取0.7和0.0;当可变荷载效应起控制作用时应分别取1.0和0.6或0.7和1.0。 结合本工程情况作出如下基本组合: 1.由永久荷载效应起控制的组合: 1.35G γ=, 1.4Q γ=, 1.4w γ=,0.7Q ψ=,0.0w ψ= 选用组合为: 1.350.7 1.4GK Qk S S S =+? 2.由可变荷载(只考虑可变荷载)效应起控制的组合: 1.20G γ=, 1.4Q γ=, 1.0Q ψ= 选用组合为: 1.20 1.0 1.4GK Qk S S S =+?

有地震作用效应组合时,荷载效应和地震作用效应组合的设计值应按下式确定: wK w w Evk Ev Ehk Eh GE G S S S S S γψγγγ+++= S ——荷载效应和地震作用效应组合的设计值; GE S ——重力荷载代表值的效应; Ehk S ——水平地震作用标准值的效应,尚应乘上相应的增大系数或调整系数; Evk S ——竖向地震作用标准值的效应,尚应乘上相应的增大系数或调整系数; wK S ——风荷载效应标准值; G γ——重力荷载分项系数; w γ——风荷载分项系数; Eh γ——水平地震作用分项系数; Ev γ——竖向地震作用分项系数; w ψ——风荷载组合值系数,一般取0.0,对60米以上的高层建筑取0.2。承载 力计算时,7度抗震设计,60m 以下的高层建筑,分项系数取如下: 1.2G γ=, 1.3Eh γ=,不考虑Ev γ,w γ。 选用组合为: 1.2 1.3GE Ehk S S S =+ 7.2 构件的承载力能力验算 根据“GB50010-2010《混凝土结构设计规》第11.1.6条和表11.1.6规定”对结构抗震承载力进行调整。 无地震作用效应: 0S R γ≤ 有地震作用效应: RE R S γ≤ 式中0γ——结构重要性系数,对安全等级为一级或设计使用年限为100年以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件 ,不应小于1.0; S ——作用效应组合的设计值; R ——构件承载力设计值; 1.1c η= RE γ——构件承载力抗震调整系数,按照下表选取:

内力组合计算书

内力组合 《抗震规范》第条规定如下。 截面抗震验算 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ () 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有 利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。 注:本规范一般略去表示水平方向的下标。 表 地震作用分项系数 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用; R ——结构构件承载力设计值。 表 承载力抗震调整系数

当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图。 图 梁截面标号示意图

门式刚架计算模板

一、设计资料 某单层工业厂房,采用单跨双坡门式刚架,刚架跨度24m ,长度48m ,柱距6m ,檐口标高11m ,屋面坡度1/10。屋面及墙面板均为彩色钢板,内填充保温层,考虑经济、制造和安装方便,檩条和墙梁 均采用冷弯薄壁卷边C 型钢,钢材采用Q345钢,2 /310mm N f =,2/180mm N f v =,基础混凝土标号C30,2 /3.14mm N f c =,焊条采用E50型。刚架平面布置图,屋面檩条布置图,柱间支撑布置草图, 钢架计算模型及风荷载体形系数如下图所示。 刚架平面布置图 屋面檩条布置图

柱间支撑布置草图 计算模型及风荷载体形系数 二、荷载计算 2.1 计算模型的选取 取一榀刚架进行分析,柱脚采用铰接,刚架梁和柱采用等截面设计。 2.2 荷载取值计算: (1) 屋盖永久荷载标准值 彩色钢板 0.40 2kN m 保温层 0.60 2kN m 檩条 0.08 2kN m 钢架梁自重 0.15 2kN m 合计 1.23 2 kN m (2) 屋面活载和雪载 0.30 2 /KN m 。

(3) 轻质墙面及柱自重标准值 0.50 2 /KN m (4) 风荷载标准值 基本风压:m kN /525.050.005.10=?=ω。根据地面粗糙度类别为B 类,查得风荷载高度变化系数:当高度小于10m 时,按10m 高度处的数值采用,z μ=1.0。风荷载体型系数s μ:迎风柱及屋面分别为+0.25和-1.0,背风面柱及屋面分别为-0.55和-0.65。 2.3 各部分作用的荷载标准值计算 (1) 屋面荷载: 标 准 值: m kN /42.7cos 1 623.1=??θ 柱身恒载: m kN /00.3650.0=? (2) 屋面活载 屋面活载雪载m kN /81.1cos 1 630.0=? ?θ (3) 风荷载 以左吹风为例计算,右吹风同理计算,根据公式0ωμμωs z k =计算,z μ查表m h 10≤,取1.0,s μ取值如图1.2所示。(地面粗糙度B 类) 迎风面 侧面2 /131.050.005.10.125.0m kN k =???=ω,m kN q /79.06131.01=?= 屋顶2 /525.050.005.10.100.1m kN k -=???-=ω,m kN q /15.36525.02-=?-=

竖向荷载统计和内力计算

荷载统计 一、恒荷载统计(标准值) 1.屋面(不上人屋面) 防水层:SBS改性沥青防水卷材0.4 KN/m2 找平层:15厚水泥砂浆0.015?20=0.3 KN/m2 找坡层:40厚水泥石灰焦渣砂浆0.3%找平0.04?14=0.56 KN/m2 找平层:15厚水泥砂浆0.015?20=0.3 KN/m2 保温层:80厚矿渣水泥0.08?14.5=1.16 KN/m2 结构层:100厚钢筋混凝土板0.1?5=2.5 KN/m2 20厚混合砂浆纸筋石灰面0.02?18=0.36 KN/m2 合计g k=5.58 KN/m2 2.楼面 10厚陶瓷地砖面层0.01?22=0.22KN/m2 10厚1:2.5水泥砂浆结合层0.01?20=0.2KN/m2 20厚1:3水泥砂浆找平层0.02?20=0.4 KN/m2 100厚钢筋混凝土板0.1?25=2.5 KN/m2 20厚混合砂浆纸筋石灰面0.02?18=0.36 KN/ m2 合计g k=3.68 KN/m2 3.墙体自重 (1)外墙

240mm厚烧结空心砖及贴砖0.24?18+0.5=4.82 KN/ m2 保温层:80厚矿渣水泥0.08?14.5=1.16 KN/m2 两面10mm厚混合砂浆抹灰0.01?17?2=0.34 KN/m2 合计g k=6.32 KN/m2(2)内墙 240mm厚烧结空心砖及贴砖0.24?18+0.5=4.82 KN/ m2两面10mm厚混合砂浆抹灰0.01?17?2=0.34 KN/m2 合计g k=4.66 KN/m2(3)女儿墙 100mm厚现浇钢筋混凝土0.1?25?0.24=0.6KN/ m2 240mm厚烧结空心砖及贴砖0.24?18+0.5=4.82 KN/ m2两面10mm厚混合砂浆抹灰0.01?17?2=0.34 KN/m2 合计g k=5.76 KN/m2 4.门窗自重 (1)铝合金门窗0.4 KN/m2 (2)木门0.2 KN/m2 (3)玻璃门0.2 KN/m2 5.构件自重 (1)梁自重:(横向框架梁) 教室:(300mm?600mm) 0.3?0.6?25=4.5 KN/m 10mm厚水泥砂浆0.01?17?[(0.6-0.1)?2+0.3]=0.221 KN/m

用位移法计算图示刚架

综合练习2 2. 绘制图示结构的弯矩图。 3a a 答: 3a a 3. 绘制图示结构的弯矩图。 q 答: A

4. 绘制图示结构的弯矩图。 答: l P 5. 绘制图示结构的弯矩图。 答: 6. 绘制图示结构的弯矩图。 l l 答: 2 2ql 四、计算题

1.用力法计算图示结构,作弯矩图。EI =常数。 l l /2l /2 解:(1) 选取基本体系 (2) 列力法方程 011111=?+=?P X δ (3) 作1M 图、P M 图 1M 图 P M 图 (4) 求系数和自由项 由图乘法计算δ11、?1P ∑?= =s 2111d EI M δEI l 343 ; ==?∑?S P P d EI M M 11EI Pl 48293 -

解方程可得 =1X 64 29P (5) 由叠加原理作M 图 (2) 列力法方程 011111=?+=?P X δ (3) 作1M 图、P M 图 A B C 4 A B C 40 1M 图(单位:m ) P M 图 (单位:m kN ?) (4) 求系数和自由项 由图乘法计算δ11、?1P

∑?==s 2111d EI M δEI 3128 ;= =?∑?S P P d EI M M 11EI 3480 解方程可得=1 X kN 75.3- (5) 由叠加原理作M 图 A B C 32.5 15 M 图(单位:m kN ?) 3. 利用对称性计算图示结构,作弯矩图。EI =常数。 2m 4m 2m 解: (1) 将荷载分成对称荷载和反对称荷载。 (2) 简化后可取半边结构如所示。

竖向荷载作用下的内力计算16054

竖向荷载作用下的内力计算 4.1竖向荷载作用下荷载计算 由于二至六楼的楼面的完全采用一种做法,为了计算方便,我们只选取了二楼楼面进行计算,导荷方式如图所示: 标准层屋面荷载计算 (1)对2层楼板B1进行计算(7.8/4.2=1.86为双向板): 传至纵向框架梁(KL 250×500)D轴、梁(KL 250×500)F轴上的荷载为三角形荷载。 恒载:3.99X4.2/2=8.379KN/m 活载:3.5X4.2/2=7.35KN/m 若化为均布荷载:

恒载:8.379X5/8=5.24KN/m 活载:7.35X5/8=4.59KN/m 传至框架梁(KL 250×700)3轴上的荷载为梯形荷载。 恒载:3.99X4.2/2=8.379KN/m 活载:3.5X4.2/2=7.35KN/m 若化为均布荷载.06 .625.4=?=a 4.2/2x7.8=0.27 恒载:(1-2X 227.0+3 27.0)X8.379=7.33KN/m 活载:(1-2X 227.0+3 27.0)X4.2=3.671KN/m 对2层楼板B2进行计算(4.2/3=1.4为双向板): 传至纵向框架梁(KL 250×400)3轴上的荷载为三角形荷载。 恒载:3.99X3/2=5.985KN/m 活载2.5X3/2=3.75KN/m 若化为均布荷载: 恒载:5.985X5/8=3.741KN/m 活载:3.75X5/8=2.34KN/m 传至框架梁(KL 250×500)C 轴、梁(KL 250×500)D 轴上的荷载为梯形荷载。 恒载:3.99X3/2=5.985KN/m 活载:2.5X3/2=3.75KN/m 若化为均布荷载.06 .625.4=?=a 3/2x4.2=0.357 恒载:(1-2X 2357.0+3 357.0)X5.985=4.74KN/m 活载:(1-2X 2357.0+3 357.0)X3.75=2.97KN/m (2)梁(KL 250×500)传给边柱(KZ-1)的集中荷载为: 恒载=梁自重 + 墙自重+ B1传荷载?2 ()()KN G G 30.56225.498.425.45.476.4772.21114=?÷?++?+==(2.64+2.8)X (4.2+4.2)/2+5.24x4.2x2/2=44.86KN 活载=B1传荷载×2 Q Q 65.12225.481.21411=?÷?== 4.59x4.2x2/2=19.28KN 由于梁的形心与柱的形心不一致,因此梁传给柱的集中荷载可向柱形心简化为一个集中荷载与一个力矩 恒荷载作用下()m KN G M M G G ?=?=-?==04.7125.030.56125.025.0111411(0.25-0.125)=44.86x0.125=5.61KN/m 活荷载作用下()m KN Q M M Q Q ?=?=-?==58.1125.065.12125.025.0111411(0.25-0.125)=19.28x0.125=2.41KN/m 梁(KL 250×500)传给中柱(KZ-1)的集中荷载为: 恒载=梁自重 + 墙自重 + B1传荷载×2 + B2传荷载×2 )KN G G 07.72225.4723.3225.498.425.45.4254.590.4272.21312=?÷?+?÷?++??? ? ??++==(2.64+5.72)x(4.2x4.2)/2+5.24x4.2x2/2+4.732x4.2x2/2=77.03KN 活载=B1传荷载×2+ B2传荷载×2 Q Q 5 .24225.4634.2225.481.21312=?÷?+?÷?== 4.59x4.2x2/2+2.97x4.2x2/2=31.75KN 由于梁的形心与柱的形心不一致,因此梁传给柱的集中荷载可向柱形心简化为一个集中

刚架结构计算参考

一、设计资料 某加工厂一厂房,该厂房为单层,采用单跨双坡门式刚架,刚架跨度18m ,柱高 6m ;共有12榀刚架,柱距6m ,屋面坡度1:10。刚架平面布置见图1(a),刚架形式 及几何尺寸见图1(b)。屋面及墙面板均为彩色压型钢板,内填充以保温玻璃棉板,详 细做法见建筑专业设计文件;钢材采用Q235钢,焊条采用E43型。 112 A B 图1(a).刚架平面布置图 图1(b).刚架形式及几何尺寸 18000 6000900 二、荷载计算 (一)荷载取值计算 1.屋盖永久荷载标准值(对水平投影面) YX51-380-760型彩色压型钢板 0.15 KN/m 2

50mm厚保温玻璃棉板0.05 KN/m2 PVC铝箔及不锈钢丝网0.02 KN/m2 檩条及支撑0.10 KN/m2 刚架斜梁自重0.15 KN/m2 悬挂设备0.20 KN/m2 合计0.67 KN/m2 2.屋面可变荷载标准值 屋面活荷载:按不上人屋面考虑,取为0.50 KN/m2。 雪荷载:基本雪压S0=0.45 KN/m2。对于单跨双坡屋面,屋面坡角 α=5°42′38″,μr=1.0,雪荷载标准值Sk=μr S0=0.45 KN/m2。 取屋面活荷载与雪荷载中的较大值0.50 KN/m2,不考虑积灰荷载。 3.轻质墙面及柱自重标准值(包括柱、墙骨架等)0.50 KN/m2 4.风荷载标准值 按《门式刚架轻型房屋钢结构技术规程》CECS102:2002附录A的规定计算。 基本风压ω0=1.05×0.45 KN/m2,地面粗糙度类别为B类;风荷载高度变化系数按《建筑结构荷载规范》(GB50009-2001)的规定采用,当高度小于10m时,按10m 高度处的数值采用,μz=1.0。风荷载体型系数μs:迎风面柱及屋面分别为+0.25和-1.0,背风面柱及屋面分别为+0.55和-0.65(CECS102:2002中间区)。 5.地震作用 据《全国民用建筑工程设计技术措施—结构》中第18.8.1条建议:单层门式刚架轻型房屋钢结构一般在抗震设防烈度小于等于7度的地区可不进行抗震计算。故本工程结构设计不考虑地震作用。 (二)各部分作用的荷载标准值计算 屋面: 恒荷载标准值:0.50×6=3.00KN/m 活荷载标准值:0.65×6=3.00KN/m 柱荷载: 恒荷载标准值:0.45×6=2.70KN

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为24m ,屋架端部高度2m ,长度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采用×6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三毡四油防水层,屋面坡度=i 1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400mm,混凝土C20,屋面活荷载 kN/m 2,屋面积灰荷载 kN/m 2,保温层自重m 2。 (2)钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3)屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度10/1=i ,由于采用?预应力钢筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: mm L L 23700300240003000=-=-= 屋架端部高度取: =o H 2000mm

跨中高度: mm i L H H 3190318510 12237002000200≈=?+=+ = 屋架高跨比: 4 .712370031900==L H 为使屋架节点受荷,配合屋面板宽,腹杆体系大部分采用下弦节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系,屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷载;在设置横向水平支撑的同一柱间,设置竖向支撑三道,分别设在屋架的两端和跨中,屋脊节点及屋架支座处沿厂房设置通长刚性系杆,屋架下弦跨中设置一道通长柔性

荷载内力计算汇总

第二章荷载内力计算 2.1恒活载计算: 2.1.1屋面框架梁 100厚钢筋混凝土楼板: 100厚憎水膨胀珍珠岩块保温层(「乞250K g m 3 ): 30厚1:3水泥砂浆 4@200双向箍筋: 满涂胶黏剂一层: 20厚1:3水泥砂浆抹平压光: 屋面恒载汇总: 屋面板均布恒载标准值: AB 跨上屋面梁恒载标准值: BC, DE 跨上屋面梁恒载标准值 框架梁自重 框架梁粉刷 0.02T0 = 0.6 K%? 6.37KN 口2 6.37KN /2 g wk1 =+%. 37 2 5. KN 6m O wk^ 7^9 6. 37 2 5 KN 6m 0. 25 0. 7 =2 5 K4N^8 框架梁总自重 屋面不上人,活载标准值为,则: AB 跨上屋面梁活载标准值: BC,DE 跨上屋面梁活载标准值: 1: 8水泥膨胀珍珠岩找坡层(均厚105mm ): 0.105 13 2% 0.1 2=5 旳给2 30 x 0.03 + 25沃 0.03 = 1.65 K%? 0.4X0.01 =0.004 (0.7 -0.1) 2 0.02 17=0.408 KN m q wk1 =}9 0. 5 1. Kr 8m q wkz^ 0.5=1.98 KN m

2.1.2屋面纵向梁传来的作用于柱顶的集中荷载 女儿墙自重标准值(600mm高240mm厚双面抹灰砖墙0.6x5.24 =3.14 0. 2 5 0. 5 =2 5 踽点' 纵向框架梁自重 纵向框架梁粉刷(0. 5 0. 1 ) 2 0. 02 1 7KN0. 2 72 / m ■纵向框架梁自重标准值 3. 4K% 次梁自重0. 2 5 0. 5 =2 5 踽点' 次梁粉刷(0. 5 0. 1 ) 2 0. 02 1 7心曙2 7 2 ■次梁自重标准值 3. 4K% 女儿墙自重 3. 1 4 7.9 2KN 8 1 纵向框架梁自重 3. 4 7.=9 2KN8 6 纵向次梁自重 7 9 3.4 13.43KN 2 屋面恒载传来[8. 4^-9 2 n 7. 9 8 4-— 8 4 7 9 -(Z )] 6. 3 7 KN0. 2 6 2 2 4 A轴纵向框架梁传来恒载标准值G wk^ 1 9 5 . KN 女儿墙自重 3. 1 4 7.9 2KN8 1 纵向框架梁自重 3. 4 7.=9 2KN8 6 纵向次梁自重 3. 4 乙 9 2 1 3.KN3 屋面恒载传来[7. 2亠9 2 7.2乙9 彳9 6.37 KN1 5. 2 B轴纵向框架梁传来恒载标准值G wk2 二1 8 0 KN 纵向框架梁自重 3. 4 7.=9 2KN8 6 纵向次梁自重 1 3.KN3

第六章 框架内力组合

第六部分 框架内力组合 一. 框架梁内力组合见横向框架KJ-2内力组合表 对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。 对于框架梁的最不利内力组合有: 对梁端截面:max M +、max M -、m ax V 对梁跨间截面:max M +、max M - 荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时, 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35. (2) 当其效应对结构有利时, 一般情况下应取1.0; 对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4 对标准值大于4KN/m 2 的工业房屋楼面结构的活荷载应取1.3 荷载规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=WK W W EVK EV EhK EH GE G S S S S γψγ γ γ+++ 式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件 承载能力有利是,不应大于1.0; Eh γ、Ev γ——分别为水平、竖向地震作用分项系数,应按表6―1采用; w γ——风荷载分项系数,应采用1.4; GE S ——重力荷载代表值的效应, 有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; wK S ——风荷载标准值的效应; w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采用0.2

竖向荷载作用下的内力计算

第6章 竖向荷载作用下内力计算 §6.1 框架结构的荷载计算 §6.1.1.板传荷载计算 计算单元见下图所示: 因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将 区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三 角形或梯形荷载可等效为均布荷载。 一.A ~B, (C ~E)轴间框架梁: 屋面板传荷载: 恒载:()()[ ]++?-??3 226.6/25.26.6/25.22125.2KN/m 06.7 ()()[]m KN /44.226.6/5.16.6/5.1215.106.732=+?-?? 活载:()()[] ++?-??3226.6/25.26.6/25.22125.2KN/m 2

()()[] m KN /36.66.6/5.16.6/5.1215.1232=+?-?? 楼面板传荷载: 恒载:()()[ ] ++?-??3 226.6/25.26.6/25.22125.2.1KN/m 4 ()()[]m KN /03.136.6/5.16.6/5.1215.11.432=+?-?? 活载:()()[]++?-??3 226.6/25.26.6/25.22125.2.5KN/m 2 ()()[] m KN /95.76.6/5.16.6/5.1215.15.232=+?-?? 梁自重:3.34KN/m A ~B, (C ~E)轴间框架梁均布荷载为: 屋 面 梁:恒载=梁自重+板传荷载 =3.34 KN/m+22.44 KN/m=25.78 KN/m 活载=板传荷载=6.36 KN/m 楼面板传荷载:恒载=梁自重+板传荷载 =3.34 KN/m+13.03 KN/m=116.37 KN/m 活载=板传荷载=7.95 KN/m 二. B ~C 轴间框架梁: 屋面板传荷载: 恒载:()()[]++?-??3222.7/25.22.7/25.22125.2.06KN/m 7 () []m KN .10.142.7/5.12.7/5.1215.1.6KN/m 032 2=+?-?? 活载:()()[]++?-??322.7/25.22.7/25.22125.22 ()[]m KN .17.42.7/5.12.7/5.1215.1.3KN/m 0322=+?-?? 楼面板传荷载: 恒载:()()[ ]++?-??3222.7/25.22.7/25.22125.2.1KN/m 4 ()[]m KN .38.132.7/5.12.7/5.1215.1.1KN/m 432 2=+?-?? 活载:()()[]++?-??3 222.7/25.22.7/25.22125.2.5KN/m 2 ()[] m KN .16.82.7/5.12.7/5.1215.1.5KN/m 2322=+?-?? 梁自重:3.34KN/m B ~ C 轴间框架梁均布荷载为: 屋 面 梁:恒载=梁自重+板传荷载 =3.34 KN/m+14.10 KN/m=17.44 KN/m 活载=板传荷载=4.17 KN/m 楼面板传荷载:恒载=梁自重+板传荷载

静定刚架的内力计算及内力图

静定刚架的内力计算及内力图(步骤) 求如图所示的刚架内力图: q XD 解:(1)求支座反力。 ΣΧ=0 求得XD=q α( ) ΣMA=0 求得YD= 32 q α ( ) ΣY=0解得YA= 12 q α( ) (2)画轴力图N N AB =- 1 2 q α(压) N AC =- q α (压) N CD =- 32 q α(压) 求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。 注:轴力图画在哪侧皆可,但一定要标出正负号。 轴力图N 如下; q α 32 q α (3)剪力图V

V AE =0 V EB =- q α V DC =q α V BC = 12 q α V CB =- 32 q α v cd=q α 特点:没有荷载部分为平直线,有均布荷载部分为斜直线。 剪力图V 如下 剪力图画在哪侧皆可, (4)画弯矩图(刚架内侧受拉为正,外侧受拉为负) 区段叠加的控制点为 1 端部 2均布荷载的起止点 3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。) 先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。 M 图特点:1均布荷载:抛物线 2无荷载:直线 3集中力:与力一致的方向产生尖点 叠加大小 集中力点处:力的方向叠加 Fab l (特别地,当α=b 时代入式子为fl 41 ) 均 布荷载中点:2 8 ql M AB =0 M BA =q α2 (左) M DC =0 M CD = q α×2α=2q α2 (右) M BC = q α2(上) M CB

最新10竖向荷载作用下内力计算汇总

10竖向荷载作用下内 力计算

精品资料 第六章竖向荷载作用下横向框架结构的内力计算 6.1 计算单元 取H轴线横向框架进行计算,计算单元宽度为6m,荷载传递方式如图中阴影部分所示。“荷载时以构件的刚度来分配的”,刚度大的分配的多些,因此板上的竖向荷载总是以最短距离传递到支撑上的。于是就可理解到当双向板承受竖向荷载是,直角相交的相邻支撑梁总是按45°线来划分负荷范围的,故沿短跨方向的支撑承受梁承受板面传来的三角形分布荷 载;沿长跨方向的支撑梁承受板传来的梯形分布荷载,见图5.1: 图5.1 横向框架计算单元 仅供学习与交流,如有侵权请联系网站删除谢谢- 36 -

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢- 37 - 6.2 荷载计算 6.2.1 恒载计算 图5.2 各层梁上作用的荷载 在图5,2中,1q 、 1q '代表横梁自重,为均布荷载形式, 1、对于第五层, m kN q 0764.41= m kN q 2.2'1= 2q 为梯形荷载,2q '为三角形荷载。由图示几何关系可得, m kN q 18.30603.52=?= m kN q 07.124.203.5' 2=?= 节点集中荷载1P : 边纵梁传来: (a) 屋面自重: 5.03?6?3=90.54kN (b) 边纵梁自重: 4.0764?6=24.45kN 女儿墙自重: 4.320?6=25.93kN 次梁传递重量: 2.2?6=13.2kN 上半柱重: 6.794?1.5=10.191kN 墙重以及窗户:0.24?6?2.4?18-1.5?1.8?18?2?0.24+0.4?1.5? 1.8?0.24?2)?0.5=25.53kN 合计: 1P =189.84kN 节点集中荷载2P :

内力组合,配筋

一、一般规定 1、两端负弯矩调幅 当考虑结构塑性内力重分布的有利影响,应在内力组合之前对竖向荷载作用下的内力进行调幅(本设计梁端负弯矩调幅系数取),水平 荷载作用下的弯矩不能调幅。 2、控制截面 框架梁的控制截面通常是梁端支座截面和跨中截面。在竖向荷载作用下,支座截面可能长生最大负弯矩和最大剪力;在水平荷载作用 下,支座截面还会出现正弯矩。跨中截面一般产生最大正弯矩,有时 也可能出现负弯矩。框架梁的控制截面最不利内力组合有一下几种:梁跨中截面:+Mmax及相应的V(正截面设计),有时需组合-M。 梁支座截面:-Mmax及相应的V(正截面设计),Vmax及相应的M (斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的N、V; Nmax及相应的M、V; Nmin及相应的M、V; Vmax及相应的M、N; |M|比较大(不是绝对最大),但N比较小或N比较大(不是绝对最小或绝对最大)。 3、内力换算 梁支座边缘处的内力值:=M-V =V-q 4、荷载效应组合的种类 (1)非抗震设计时的基本组合 以永久荷载效应控制的组合:×恒载+××活载=×恒载+×活载; 以可变荷载效应控制的组合:×恒载+×活载; 考虑恒载、活载和风载组合时,采用简化规则:×恒载+××(活载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为0):×重力荷载+×水平地震。 (3)荷载效应的标准组合 荷载效应的标准组合:×恒载+×活载。 二、框架梁内力组合 选择第四层BF框架梁为例进行内力组合,考虑恒载、活载、重力荷载代表值、风荷载和水平地震作用五种荷载。 1、内力换算和梁端负弯矩调幅根据式:

第五章.竖向荷载作用下的框架内力计算

5.1 计算单元的确定 取6号轴线一榀框架进行计算,计算宽度为(6.6+6.6)/2=6.6m 。如图下图所示 横向框架荷载传递图 5.2 荷载计算 5.2.1 恒荷载的计算 1、五层、 (1)q 、q 0、q 0′、q 0″分别为女儿墙、边跨横梁(走道纵梁)、走道横梁、次梁自重(扣除板自重),为均布荷载形式;β为考虑梁粉刷自重时的放大系数,取β=1.05。 女儿墙:q=3.47×0.9=3.12 kN/m 边跨横梁(走道纵梁):q 0=1.05×0.3×(0.6-0.1)×25=3.94kN/m 走道横梁:q 0′=1.05×0.3×(0.4-0.1)×25=2.36kN/m 次梁:q 0″=1.05×0.2×(0.5-0.1)×25=2.1kN/m (2)q 1、q 1′分别为屋面板自重传给横梁的梯形和三角形荷载等效为均布荷载值 q 1=[1-2×(3.3/6.6×2) 2+(3.3/6.6×2) 3]×4.38×3.3/2=6.44kN/m q 1′=8 5 ×4.38×3.0/2=4.11kN/m (3)q 2、q 2′分别为屋面板自重传给纵梁上的梯形和三角形荷载等效为均布荷载值 梯形:q 2=[1-2×(3.0/6.6×2) 2+(3.0/6.6×2) 3]×4.38×3.0/2=5.96kN/m 三角形:q 2′=8 5 ×4.38×3.3/2=4.52kN/m P 1为由板传给次梁及次梁自重传给纵梁的集中力 P 1= q 1×6.6+ q 0″×6.6/2=49.43kN P 2为由板传给外纵梁及外纵梁、女儿墙自重传给柱子的集中力 P 2=( q 2′+ q 0+q )×3.3×2=76.42 kN P 3为由板传给内纵梁及内纵梁自重传给柱子的集中力。

相关文档
最新文档