40第三代生命科学论之——人体中枢神经系统可以得到功能恢复

40第三代生命科学论之——人体中枢神经系统可以得到功能恢复
40第三代生命科学论之——人体中枢神经系统可以得到功能恢复

《第三代生命科学论》之

——人体中枢神经系统可以得到功能恢复

作者:颜丙强张涛

成人的周围神经系统可以再生是普遍被认知的,日常生活中表皮伤口愈合时,周围神经系统也随之恢复。但是,中枢神经系统损伤不能再生已经是100多年来的结论。现代神经科学之父是1906年诺贝尔生理学或医学奖得主,西班牙神经学家,圣地亚哥·拉蒙-卡哈尔。他对于大脑的微观结构研究是开创性的,是“神经元理论”的主要代表人物,他最早提出了“成年哺乳类中枢神经损伤不能再生”的结论。

成人神经元不能再生的主要原因是:①成人中枢神经系统神经元生长能力本身的减退。②中枢神经系统中有大量抑制因子,不断抑制神经元再生。神经元就像电线,外面包裹着“少突胶质细胞”,这种细胞主要分泌神经元生长抑制的因子。其实这种抑制也并非没意义,正是因为神经元就像是电线一样,如果随处再生,就会造成四处短路。表现在大脑就是异常放电,我们称为“癫痫”。

目前认为,婴儿的中枢神经元是可以再生的,曾经有类似的研究:有婴儿切除一半的大脑,后来惊人的恢复了,四肢活动,说话言语都不受影响。但如若是

1岁以后,神经元的再生能力就急速减退,最后几乎丧失。

有人会提出疑问,既然中枢神经元不能再生,脑梗塞、脑出血、偏瘫的患者怎么会慢慢的好了呢?现在的主流观点认为,中枢神经受损之后功能可以恢复是因为周围的其他神经元进行了代偿,也就是说取代了已坏死神经元的功能。瘫痪的病人肢体能逐渐活动了,植物人逐渐苏醒了,都需要在这一种观念指导下进行理解。

虽然成人大脑无法再生新神经元是神经生物学界长达近一个多世纪的“教条”。但是,后来一些科学家也对此提出了质疑。1960年美国麻省理工学院生

物学家约瑟·奥特曼(Joseph Altman)通过对啮齿类动物实验,提出新神经元可能会在成年哺乳动物的大脑重新生成,但这种观点并未受到大家重视。1980

纽约洛克菲勒大学神经科学家 Fernando Nottebohm 证实,新的神经元确实在鸣禽动物大脑的某些区域生成并发挥作用。

1989年,美国率先推出了全国性的脑科学计划,把1990-2000年命名为“脑的十年”,并制定了以开发右脑为目的的“零点工程”。1990 年后又有更多实验证据不断冒出来。1998年,科学家们得到了第一份证据,在成年死亡癌症患

者脑中发现了由5-溴脱氧尿苷(BrdU)标记的新生神经元。2013年的一项研究更是令学界大振,通过分析55名死者脑组织的单个神经元,卡罗林斯卡研究所的研究者们得出了一个结论,人类大脑海马齿状回中,每天都能产生700个新的神经元。海马是人类大脑中的一个关键区域,它已经被证实,和学习、记忆、压

力、锻炼等多个生理过程有关,它的变化涉及到各类神经系统疾病。如果大脑可以通过产生新的神经元进行自我更新,那么提高先天再生能力来恢复受损大脑的活动就变成了一条可行的路。据文汇报2017年6月25日报道,伦敦大学国王学院神经生物学家杰克·普莱斯最新研究发现:把干细胞直接注射到大脑中,有助于诱导恢复受损的大脑,增强大脑中风后的自我修复能力。这些实验结果把人类能够实现脑再生的愿望推向了新高。

正当大家对脑神经再生有所期望的时候。曾是 Fernando Nottebohm 实验室旗下的研究生Arturo Alvarez-Buylla,现为以医科和生物技术闻名的加州大学旧金山分校(UCSF)神经外科教授,其实验室人员最近发布的新论文把刚刚燃起的希望又打回了冰点。该结论发表在,2018年3月《自然》杂志上,题目为:“成年之后大脑就不会再制造神经元了”。他们根据 59 份人脑部样本研究结果证明,神经生成在童年时期大幅下降,13 岁以后基本上再也检测不到新的神经元。论文中说,在人类胎儿或后天发育过程中,海马齿状回中的神经祖细胞在人类7岁以后就会枯竭。刚出生至7岁期间,年轻的神经元细胞密度从每平方毫米大约1618个细胞减少到每平方毫米约12个,13岁时更下降至平均仅存2.4个左右。18岁以上健康成人(18-77岁共计17例死后大脑样本,其中12例来自癫痫手术患者)齿状回内未发现年轻神经元。因此,在成人海马回发现神经生成是极其罕见的现象,人类大脑却自青春期之后就不会再发生这种神经生成现象。

但是,故事出现大反转。哥伦比亚大学的学者们提出了反对意见。2018年4月5日《Stem Cell》文章指出,成人海马体内存在大量神经前体细胞(或称未成熟的神经元),人类神经元形成并没有中止,老年人的海马也有大量年轻神经元储备。论文中,哥伦比亚大学神经生物学家Maura Boldrin团队研究了28例在14岁-79岁之间死亡的健康人的脑组织。采样时每位志愿者的死亡时间均不超过26小时。整个研究工作采用动物神经发生研究的金标准立体测量学(stereology)计算健康人类海马内未成熟和成熟神经元,立体测量学方法足以鉴定组织内个体细胞类型数量,不受样本是否切片影响,因此,这篇新文章具有重要意义。

2018年5月《美国科学院院刊》又一篇文章声称,长期困扰世界医学界的重大难题脊髓损伤修复获突破性进展,颠覆了100多年前神经科学大师卡哈尔提出的“成年哺乳类中枢神经损伤不能再生”的结论。这是由北京航空航天大学、首都医科大学、上海同济医院多名教授联合研究发表在的一篇文章。他们应用自主研发的活性生物材料改善损伤局部微环境,促进非人灵长类恒河猴的皮质脊髓束长距离再生,穿过损伤区且与宿主脊髓建立起功能性神经网络从而导致截瘫肢体功能恢复。研究人员分析了“成年内源性干细胞孵化学说”。他们将内源性干细胞的孵化看作育种,中枢神经系统的脑或脊髓的病损部位充满各种炎性因子和抑制因子,就像盐碱地,而存在于成年哺乳类脑和脊髓内的神经干细胞大多处于

静息状态,就像蛰伏的种子。研究团队自主研发的活性生物材料可长期释放神经营养因子,改善被认为是“盐碱地”的损伤局部微环境,激活“蛰伏的种子”,让其迁移至病损部位分化为成熟神经元。新生的神经元可与宿主细胞形成功能性神经环路最终促进功能恢复。

2019年3月25日,发表在《自然·医学》的一篇文章,让剧情又有了新后续。西班牙马德里自治大学的Jesús ávila和María Llorens-Martín博士和其研究团队改进了大脑样本的处理方法,发现健康成年人的海马体可以观察到数量上千的新生神经元!神经元更新起码持续到90岁!他们通过对18名52-97岁的AD患者大脑样本检测可以观察到,随着病情的加重,新生神经元的数量逐渐减少。虽然在人类正常生理老化的过程中,新生神经元的数量也会表现出一定程度的下降,但是在40-90岁之间任何年龄段,AD患者大脑中的新生神经元数量都是少于同年龄段的健康对照组的。

而颜丙强博士科研团队在利用中药萃取复合物的样本研究中,用复合再生诱导因子粉喂养老年痴呆大鼠模型,在3周内大鼠的震颤、瘫痪、痴呆的症状就已经解除,大鼠恢复到健康状态。用Ki67对治疗2周与3周的大鼠的脑组织切片染色,呈阳性。表明复合再生诱导因子粉正在诱导脑神经元再生。

目前还无法证明,该模型大鼠脑中再生的是中枢神经元,还是通过周围神经元细胞进行的补偿再生,还是成年内源性干细胞被孵化的原因。这一点,虽然从科学研究的角度十分重要,但是,从治疗学上作者认为并不重要。作者认为最重要的是在大鼠的大脑中确实已经再生了新的神经元,不管新的神经元来自哪里,关键它已经起到了中枢神经的作用。由于中枢神经系统的功能得到了恢复,从而使大鼠的疾病也得到了治愈。

至于大脑神经元为什么可以再生出来?我们在大鼠模型的实验中明确发现,大脑神经元的再生与大脑微血管密度的增加有着直接的关系。当把大鼠的双颈动脉结扎后,迅速导致脑前庭的供血不足,6周后大鼠就呈现出多种神经衰退性疾病。脑组织切片证实了此时的大鼠脑内血管密度明显降低,脑神经元的密度也明显降低。而喂养再生诱导因子粉2-3周后,大鼠的健康状态逐渐恢复,脑组织切片证实了此时大鼠脑血管密度提高了;同时,大量的脑神经元正在活跃的再生。由此,可以说明脑神经元作为调控系统与脑内的作为营养供给的微血管系统是“相辅相成,相反相成”的。结扎导致的供血系统的损伤,必然也导致神经系统的损伤;而侧枝循环供血系统与微血管系统的重新建立,必然也伴随着神经系统的共生调节。因此,进一步证明了人体内存在巨大的共生协同效应,只要利用好这种效应,就可以形成促使中枢神经元再生的方法。

当然,以上都是针对大鼠模型实验所得出结论。该结论是否在人体治疗上也有同样的效果,还需要在灵掌类动物模型上再进行更加深入的实验与研究。

作者简介:

颜丙强,男,山东省济南人,中国共产党党员,《第三代生命科学论》作者。2007年博士毕业于山东大学生命科学学院,2009年9月份得到国家主席党总书记胡锦涛同志的亲切接见与勉励,并在中央电视台《新闻联播》节目中播出,一直致力于坚持利用钱学森先生的人体复杂系统论思想,思考与重建当代生命科学技术体系,总结分析了人体生命系统的六大基本原理。

颜丙强博士领导的团队在系统论思想与理论的指导下,充分论证了“癌症是一种代谢性疾病”,应主要遵循代谢调理的治疗思路,并研究出了一套综合调理方案;在利用中草药提取成份诱导人体组织器官原位再生领域取得巨大突破,实现了人体多组织器官的原位修复与再生,归纳出干细胞移植科研思路的理论缺陷,提出了“回归真正再生医学”的理论,倡导医学应该恢复“人医学模式”。

张涛,男,山东省临沂市人,产业经济学专家,《第三代生命科学论》作者。师从陈清泉院士,担任陈清泉院士科创中心项目负责人,一直致力于产业发展规律与哲学的研究,开展科技成果转化以及战略咨询研究工作。2009年结识颜丙强博士,接触到钱学森先生的人体复杂系统论思想,开始系统研究人体科学与系统论。

“自主创新,方法先行”,方法创新是自主创新的根本之源。学的是经济学,写的是生命科学,研究过创新方法论、系统论、肿瘤学、生物物理学,与生命科学专家一起科研与工作,如此跨领域的生活经历,注定会有与一般人不同的感悟。

人体三大功能系统

人体内的三大供能系统 在人体内有三大供能系统,它们是:ATP-磷酸肌 酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。 (1)ATP在肌肉中的含量低,当肌肉进行剧烈运 动时,供能时间仅能维持约1?3秒。 (2)之后的能量供应就要依靠ATP的再生。这时, 有罠序噸 细胞内的高能化合物磷酸肌酸的高能磷酸键水 解将能量转移至ADP,生成ATP。磷酸肌酸在 体内的含量也很少,只能维持几秒的能量供应。 人在剧烈运动时,首 先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大 约维持 6?8秒左右的时间。 (3)这两项之后的供能,主要依靠葡萄糖和糖元的无 氧酵解所释放的能量合成ATP。无氧 酵解约能维持2?3分钟时间。 (4)由于无氧呼吸产生的乳酸易导致肌肉疲 劳, 所以长时间的耐力运动需要靠有氧呼吸释 放的能量来合成ATP。 综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时 间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。 运动项目总需氧量(升)实际摄入氧量(升)血液乳酸增加量 马拉松跑600589略有增加 400米跑162显著增加 100米跑80未见增加 人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸 一、运动时供能系统的动用特点 (一)人体骨骼肌细胞的能量储备 (二)供能系统的输出功率 运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。

(三)供能系统的相互关系 1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。 2.最大功率输出的顺序,由大到小依次为:磷酸原系统> 糖酵解系统> 糖有氧氧化>脂 肪酸有氧氧化,且分别以近50%的速率依次递减。 3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3 分钟主要依赖有 氧代谢途径。运动时间愈长强度愈小,脂肪氧化供能的比例愈大。脂肪酸是长时间运动的基本燃料。 4?由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。 二、不同活动状态下供能系统的相互关系安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。 (一)安静时:安静时,骨骼肌内能量消耗少,ATP 保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。在静息状态下,呼吸商为0. 7,表明骨骼肌基本燃料是脂肪 酸。 (二)长时间低强度运动时:在长时间低强度运动时,骨骼肌内ATP 的消耗逐渐增多, ADP 水平逐渐增高, NAD+ 还原速度加快,但仍以有氧代谢供能为主。血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。同时,肌糖原分解速度加快,加快的原因有两点: (1)能量代谢加强。(2)脂肪酸完全氧化需要糖分解的中间产物草酰乙酸协助才能实现。 在低强度运动的最初数分钟内,血乳酸浓度稍有上升,但随着运动的继续,逐渐恢复到安静时水平。 (三)大强度运动:随着运动强度的提高,整体对能量的要求进一步提高,但在血流量调整后,机体对能量的需求仍可由有氧代谢得到满足,即有氧代谢产能与总功率输出之间保持平衡。在这类运动中,血乳酸浓度保持在较高的水平上,说明在整体上基本依靠有氧代谢供能时,部分骨骼肌内由糖酵解合成ATP。血乳酸浓度是由运动肌细胞产生乳酸与高氧化型肌细胞或其他组织细胞内乳酸代谢之间的平衡决定的。 (四)短时间激烈运动时:在接近和超过最大摄氧量强度运动时,骨骼肌以无氧代谢供能。极量运动时,肌内以 ATP、CP供能为主。超过10秒的运动,糖酵解供能的比例增大。随着运动时间延长,血乳酸水平始终保持上升趋势,直至运动终止。 总之,短时间激烈运动(10秒以内)基本上依赖ATP、CP储备供能;长时间低、中强度 运动时,以糖和脂肪酸有氧代谢供能为主;而运动时间在10秒一10分内执行全力运动时, 所有的能源储备都被动用,只是动用的燃料随时间变化而异:运动开始时,ATP、CP被动用,然后糖酵解供能,最后糖原、脂肪酸、蛋白质有氧代谢也参与供能。运动结束后的一段时间,骨骼肌等组织细胞内有氧代谢速率仍高于安静时水平,它产生的能量用于运动时消耗的能源物质的恢复,如磷酸原、糖原等。

人体三大供能系统

人体内的三大供能系统 在人体内有三大供能系统,它们是: ATP-磷酸肌酸供能系统、无氧呼吸供能系 统和有氧呼吸供能系统。 (1) A TP 在肌肉中的含量低,当肌肉进 行剧烈运动时,供能时间仅能维持 约1~3秒。 (2) 之后的能量供应就要依靠ATP 的再 生。这时,细胞内的高能化合物磷 酸肌酸的高能磷酸键水解将能量转 移至ADP ,生成ATP 。磷酸肌酸在 体内的含量也很少,只能维持几秒 的能量供应。人在剧烈运动时,首 先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。 (3) 这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。无氧 酵解约能维持2~3分钟时间。 (4) 由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释 放的能量来合成ATP 。 综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。 人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。 一、运动时供能系统的动用特点 (一)人体骨骼肌细胞的能量储备 (二)供能系统的输出功率 运动时代谢供能的输出功率取决于能源物质合成ATP 的最大速率。 (三)供能系统的相互关系 1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只

是时间、顺序和相对比率随运动状况而异,不是同步利用。 2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。 3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。运动时间愈长强度愈小,脂肪氧化供能的比例愈大。脂肪酸是长时间运动的基本燃料。 4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。 二、不同活动状态下供能系统的相互关系 安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特点表现如下。 (一)安静时: 安静时,骨骼肌内能量消耗少,A TP保持高水平;氧的供应充足,肌细胞内以游离脂肪酸和葡萄糖的有氧代谢供能。线粒体内氧化脂肪酸的能力比氧化丙酮酸强,即氧化脂肪酸的能力大于糖的有氧代谢。在静息状态下,呼吸商为0.7,表明骨骼肌基本燃料是脂肪酸。 (二) 长时间低强度运动时: 在长时间低强度运动时,骨骼肌内ATP的消耗逐渐增多,ADP水平逐渐增高,NAD+还原速度加快,但仍以有氧代谢供能为主。血浆游离脂肪酸浓度明显上升,肌内脂肪酸氧化供能增强,这一现象在细胞内糖原量充足时就会发生。同时,肌糖原分解速度加快,加快的原因有两点: (1)能量代谢加强。 (2)脂肪酸完全氧化需要糖分解的中间产物草酰乙酸协助才能实现。 在低强度运动的最初数分钟内,血乳酸浓度稍有上升,但随着运动的继续,逐渐恢复到安静时水平。 (三) 大强度运动: 随着运动强度的提高,整体对能量的要求进一步提高,但在血流量调整后,机体对能量的需求仍可由有氧代谢得到满足,即有氧代谢产能与总功率输出之间保持平衡。在这类运动中,血乳酸浓度保持在较高的水平上,说明在整体上基本依靠有氧代谢供能时,部分骨骼肌内由糖酵解合成ATP。血乳酸浓度是由运动肌细胞产生乳酸与高氧化型肌细胞或其他组织细胞内乳酸代谢之间的平衡决定的。 (四)短时间激烈运动时: 在接近和超过最大摄氧量强度运动时,骨骼肌以无氧代谢供能。极量运动时,肌内以ATP、CP供能为主。超过10秒的运动,糖酵解供能的比例增大。随着运动时间延长,血乳酸水平始终保持上升趋势,直至运动终止。 总之,短时间激烈运动(10秒以内)基本上依赖A TP、CP储备供能;长时间低、中强度运动时,以糖和脂肪酸有氧代谢供能为主;而运动时间在10秒—10分内执行全力运动时,所有的能源储备都被动用,只是动用的燃料随时间变化而异:运动开始时,ATP、CP被

中枢神经主要部位损害的症状

中枢神经主要部位损害的症状 一、大脑半球 大脑半球的表面为大脑皮质所覆盖,在脑表面形成脑回和脑沟,内部为白质、基底节及侧脑室。大脑半球由外侧裂、中央沟、顶枕裂划分为额叶、顶叶、颞叶、枕叶及岛叶。常见病因有脑血管病、肿瘤、感染、颅脑外伤等。下面叙述大脑半球及各叶受损的局部症状(图2—34)。 大脑两半球的功能既对称又不完全对称。如言语中枢大多数在左侧半球,部分左利手者则位于右侧。习惯上称左侧为优势大脑半球。近代神经生理学家认为左侧大脑半球在言语、逻辑思维、分析能力以及计算等方面起决定作用;右侧大脑半球有高级的认识中枢,主要在音乐、美术、综合能力、空间和形状的识别、短暂的视觉记忆和认识不同人的面容等方面起决定作用。但大脑的整体功能很重要,大脑皮质各部是在整体功能的基础上各有其独特的生理作用。 (一)额叶病变时主要引起随意运动、言语以及精神活动方面的障碍。额叶前部以精神障碍为主,表现为记忆力和注意力减退,表情淡漠,反应迟钝,缺乏始动性和内省力。思维和综合能力下降,故表现为痴呆和人格改变。可有欣快或易激怒。可产生对侧肢体共济失调,步态不稳,这是由于影响了额叶脑桥小脑径路的额桥束纤维。额叶前部的病变早期症状往往不明显。额中回后部有侧视中枢,受损时引起两眼向病灶侧同向斜视刺激性病变时则向病灶对侧斜视。额叶后部受损可产生对侧上肢强握与摸索反射。中央前回处皮质为运动中枢,刺激性病灶产生对侧上肢、下肢或面部的抽搐(Jackson 癫痫),破坏性病灶多引起单瘫,中前回上部受损产生下肢瘫痪;下部受损则产生面、舌或上肢的瘫痪。旁中央小叶损害,如矢窦旁脑膜瘤因影响双侧下肢运动区,产生痉挛性截瘫、尿潴留和感觉障碍。一侧额叶底部占位性疾病(肿瘤)可引起同侧嗅觉缺失和原发性视神经萎缩,对侧视乳头水肿、(Foster—Kenndey综合征)。左侧(优势侧)半球受损,可产生运动性失语(额下回后部)或书写不能(额中回后部)。 (二)顶叶中央后回为皮质感觉中枢,故受损以感觉症状为主。中央后回的刺激性病灶产生对侧身体局限的感觉性癫痫发作,常常为针刺、电击、偶为疼痛的感觉异常发作,从一处向邻近部位扩展,或扩展至中央前回运动中枢,引起局部抽搐发作。破坏性病变引起精细感觉障碍,如实体觉、两点辨别觉和皮肤定位觉的丧失,一般感觉(触、痛、温度觉)则不受影响。左侧角回皮质损害引起失读。左侧缘上回皮质损害引起两侧运用不能。主侧角回的损害可引起古茨曼(Gerstmann)综合征,此征有计算不能、不能识别手指、左右侧认识不能及书写不能四个症状,有时伴失读。右侧顶叶邻近角回损害可引起病人不认识对侧身体的存在,病人穿衣,刮胡子都用右手,认为左侧上下肢不是自己的,称自体认识不能(autotopagnosis)右侧顶叶邻近缘上回处损害有时可见到病人不认为自己有缺陷,否认左侧偏瘫之存在,称病觉缺失(anosognosia)。二者均属体象障碍。任一侧的顶叶病变出现触觉忽略(tactileinattention),即每侧分别试触觉时,病人能认知,如两侧同时给予触觉刺激时,病灶对侧则会不感觉。顶叶占位性病变因可损害视辐射的上部,故可引起对侧同向下象限盲。 (三)颞叶一侧颞叶的局部症状常较轻,尤其在右侧时,故有时也称“静区”。颞叶前部病变影响内侧面的嗅觉味觉中枢即钩回时,即出现特殊的症状,称钩回发作,是一种颞叶癫痫,病人有幻嗅或幻味,作舐舌、咀嚼动作。当癫痫放电向后扩散时,也可出现颞叶癫痫的一些其他症状,如错觉、幻觉、自动症、似曾相识症(deja vu)、旧事如新症或生疏感(jamaisvu)、情感异常、精神异常、内脏症状或抽搐。如白质中视辐射受损害,引起两眼对侧视野的同向上象限性盲。左侧颞叶受损产生感觉性失语(颞上回后部)租健忘性去语(颞中、下回后部)。一侧颞上回后部听中枢受损时常无听觉障碍,或为双耳听力轻度减退,听中枢周围的听觉联络区受损时,偶现幻听。双侧颞叶损害则引起严重的记忆缺损,见于脑炎后遗症、脑变性病。 (四)枕叶围绕矩状裂的皮质是视觉中枢,故枕叶病变主要引起视觉障碍。根据视辐射损害范围的大小,可表现为两眼对侧视野的同向偏盲或象限盲,或对侧视野外周新月状缺损。一侧视中枢损害引起的偏盲不影响黄斑区视觉(黄斑回避),对光反射不消失。视中枢刺激性病变引起不成形幻视发作(闪光、暗影、色彩等),可继以癫痫大发作。视中枢周围视觉联络区的刺激性病灶则引起成形的幻视发作。左侧顶枕区可引起视觉失认,即对寻常物体失去认识能力,如给他看钥匙他不认得,但放在他手中接触一下,他即能认

人体内的三大供能系统

(一)人体内的三大供能系统 在人体内有三大供能系统,它们是:磷酸原供能系统、糖酵解供能系统和有氧氧化供能系统。ATP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。之后的能量供应就要依靠ATP 的再生。这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP ,生成ATP (C ATP CP ADP +???→?+磷酸激酶 ) 。磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。人在剧烈运动时,首先是ATP-CP 供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。无氧酵解约能维持2~3分钟时间。由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP 。 综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-CP 供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。 (二)三大供能系统的供能特点 运动时,代谢供能的输出功率取决于能源物质合成ATP 的最大速率。(1)运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。(2)最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。(3)当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟以上主要依赖有氧代谢途径。运动时间愈长强度愈小,脂肪氧化供能的比例愈大。脂肪酸是长时间运动的基本燃料。(4)由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。 (三)不同活动状态下三大供能系统的相互关系 安静时,不同强度和持续时间的运动时,骨骼肌内无氧代谢和有氧代谢供能的一般特

第12章中枢神经系统功能衰竭的护理

第12章中枢神经系统功能衰竭的护理 学习目标: 1.阐述中枢神经系统功能衰竭的护理评估内容 2.列出中枢神经系统功能衰竭的护理诊断 3.阐述中枢神经系统功能衰竭的护理措施 一、引言 中枢神经功能衰竭(central nervous system function failure , CNSF)即急性脑功能衰竭(CF),是多种病因所致的一种以意识障碍为主要表现的临床综合征,是临床上常见的病死率最高的脏器功能衰竭。常为许多全身疾病和颅内疾病的严重后果,在抢救危重病人的过程中,要早期监测脑功能,及时采取有效措施保护脑组织,控制脑缺血缺氧的发展。 链接 中枢神经系统功能衰竭的常见病因 一、颅内疾病:1. 感染乙型脑炎、化脓性脑膜炎、流脑等。 2.脑血管病脑出血、脑栓塞和脑血栓形成、蛛网膜下腔出血等。 3.颅内占位性病变脑肿瘤、脑寄生虫病等。 4.颅脑外伤 5.癫痫 二、全身疾病: 1.多系统功能衰竭 2.心脏骤停 3.内分泌与代谢性疾病肺性脑病、肝性脑病、尿毒症性脑病、 粘液性水肿昏迷及低血糖昏迷等 4.中毒 二、护理评估 (一)健康史在询问病史中应注意有无原发病如高血压、脑血管疾病等; 是否存在相关诱发因素如外伤、中毒等。 (二)身心状况 1.症状、体征

主要表现为意识障碍,意识障碍按程度分为嗜睡、意识模糊、昏睡、昏迷。 (1)嗜睡:病理性睡眠过多、过深,能被各种刺激唤醒,并能正确做出反应及回答问题,但刺激去除后,又很快入睡。 (2)意识模糊:病人反应慢,回答语言简单、迟钝。注意力不集中,对刺激的反应不及时、不确切,定向能力发生障碍。 (3)昏睡:病人多不易被唤醒,只有在持续强烈刺激(如压迫眶上神经)下能做出睁眼、呻吟、躲避及模糊而简短回答,很快又入睡。 (4)昏迷是意识障碍的严重阶段,临床上将昏迷份三个阶段: ①轻度昏迷(浅昏迷)意识大部分丧失,无自主运动,病人对强烈刺激仍有防御性反应。瞳孔对光反射、角膜反射等基本生理反应存在。生命体征(呼吸、血压、脉搏等)一般无明显改变。 ②中度昏迷对剧烈刺激可出现防御反射,角膜反射减弱、瞳孔对光反射迟钝,呼吸、血压、脉搏出现异常。 ③深度昏迷对各种刺激均无反应,瞳孔散大,对光反射及角膜反射消失,肌肉松弛、大小便失禁,呼吸不规则,血压下降。 2.体查 (1)意识可按照Glasgow昏迷计分法,总分为A+B+C,正常人为15分,小于8分提示预后不良,该评分简单易行,比较适用。 链接 Glasgow昏迷量表 (2)体温下丘脑体温调节中枢损伤时,可有中枢性高热。

中枢神经系统药物(详细)

中枢神经系统药物 1.持续应用中到大剂量的苯二氮卓类引起的下列现象中有一项是错的 A. 精细操作受影响 B. 持续应用效果会减弱 C. 长期应用突停可诱发癫痫病人惊厥 D. 长期应用会使体重增加 E. 加重乙醇的中枢抑制反应 2.应用巴比妥类所出现的下列现象中有一项是错的 A. 长期应用会产生身体依赖性 B. 酸化尿液会加速苯巴比妥的排泄 C. 长期应用苯巴比妥可加速自身代谢 D. 苯巴比妥的量效曲线比地西泮要陡 E. 大剂量的巴比妥类对中枢抑制程度远比苯二氮卓类要深 3.对惊厥治疗无效的药物是 A. 苯巴比妥 B. 地西泮 C. 氯硝西泮 D. 口服硫酸镁 E. 注射硫酸镁 4.下列不属于吗啡的临床用途的是0 A. 急性锐痛 B. 心源性哮喘 C. 急消耗性腹泻 D. 麻醉前给药 E. 慢消耗性腹泻 5.下列对阿斯匹林水杨酸反应叙述错误的是 A. 阿司匹林剂量过大造成的 B. 表现为头痛, 恶心, 呕吐, 耳鸣,视力减退 C. 对阿司匹林敏感者容易出现 D. 一旦出现可用碳酸氢钠解救 E. 一旦出现可用氯化钾解救 6.下列药效由强到弱排列正确的是 A. 二氢埃托啡、芬太尼、吗啡、度冷丁 B. 二氢埃托啡、吗啡、芬太尼、度冷丁 C. 芬太尼、二氢埃托啡、度冷丁、吗啡 D. 芬太尼、吗啡、度冷丁、二氢埃托啡 E. 度冷丁、吗啡、二氢埃托啡、芬太尼 7.吗啡呼吸抑制作用的机制为 A. 提高呼吸中枢对CO2的敏感性 B. 降低呼吸中枢对CO2的敏感性 C. 降低呼吸中枢对CO2的敏感性 D. 降低呼吸中枢对 CO2的敏感性 E. 激动κ受体

8.可预防阿司匹林引起的凝血障碍的维生素是 A. VA B. VB1 C. VB2 D. VE E. VK 9.氯丙嗪治疗精神病的机理是 A. 阻断脑内胆碱受体 B. 阻断中脑边缘系统和中脑边缘系统和中脑皮层通路的爸爸受体 C. 激动脑内胆碱受体 D. 激动脑内阿片受体 E. 激动网状结构的α受体 10.下列对布洛芬的叙述不正确的是 A. 具有解热作用 B. 具有抗炎作用 C. 抗血小板聚集 D. 胃肠道反应严重 E. 用于治疗风湿性关节炎 11.用的吗啡和海洛因所致的药物依赖脱毒治疗时重要的替代药是 A. 哌替啶 B. 二氢埃托啡 C. 美沙酮 D. 安那度 E. 强痛定 12.左旋多巴对何种药物引起的锥体外系不良反应无效 A. 地西泮 B. 扑米酮 C. 氯丙嗪 D. 丙咪嗪 E. 尼可刹米 13.解热镇痛抗炎药的解热作用机制为 A. 抑制外周PG合成 B. 抑制中枢PG合成 C. 抑制中枢IL-1合成 D. 抑制外周IL-1合成 E. 以上都不是 14.左旋多巴对抗精神病药物引起的椎体外系不良症状无效是因为 A. 药物阻断阿片受体 B. 药物阻断M受体 C. 药物激动阿片受体 D. 药物阻断多巴受体 E. 药物激动多巴受体 15.苯海索抗帕金森病的机制为 A. 激动中枢内的多巴受体

中枢神经系统功能障碍的诊治

中枢神经系统功能障碍的诊治 蚌医一附院ICU 邓晰明 收住ICU的重症患者中,相当一部分病人会发生不同程度的神经系统损害,多数病人症状轻微,短时期即可消失。严重者往往预后不良,应予以重视,最大限度地预防脑并发症的发生。 中枢神经系统功能障碍,即脑功能障碍,是多种病因所致的,以意识障碍和颅内压增高为主要表现的综合征,常为许多全身疾病和颅内疾患的严重后果,是临床各科常见的、致残率和病死率最高的脏器功能障碍。 脑是调节身体各器官的中枢,全身各系统的疾病、代谢紊乱或中毒以及神经系统本身疾患均可影响到脑,严重时导致不同程度的脑功能受损,直至脑死亡。临床上脑功能障碍多见于循环骤停、严重感染、缺氧、代谢紊乱及中枢神经系统本身的感染、出血、栓塞及创伤等。因而在抢救这类危重病患者时,应尽早实施脑保护、及时纠正缺氧及代谢紊乱和清除内、外源性毒性物质。脑功能障碍的预后除与原发病种类有关外,主要与衰竭程度和治疗措施有关。轻型脑功能障碍患者多可恢复,重型每遗有智力、意识和运动障碍,严重者可致死亡。 【病因】 导致中枢神经系统功能障碍的病因分为颅内疾病和全身性疾病两大类(表1)。 表1 中枢神经系统功能障碍常见病因 【发病机制】 脑组织耗氧量很大,脑内能源贮备很少,对缺血缺氧的耐受性极差。缺氧使组织氧分压<30 mmHg即发生脑内乳酸血症,严重缺氧伴有低血压时脑细胞可死亡。心搏停止2~4 min脑内代谢停止,4~5 min时ATP耗尽,脑细胞肿胀。8 min时即发生不可逆性脑损害。 脑缺血、缺氧后脑组织内液体积聚形成脑水肿。大脑的不同部位对缺氧的耐受性时限

不尽相同:大脑皮层为6 min,中脑为15 min,延髓为30 min。脑缺氧4~5 min后,一切需能的代谢停止,“钠泵”衰竭,细胞膜失去完整性,细胞内渗透压升高,导致细胞肿胀。血脑屏障的损害,使其通透性增高,发生组织间水肿和出血。颅内压力的增高,首先可以通过脑脊液的生成速率减少和蛛网膜绒毛对脑脊液的吸收增加来代偿。代偿极限是颅腔容积的8~10%,超过此极限必将出现脑功能障碍。弥漫性颅内压增高较少形成脑疝,解除后功能恢复较快,如脑水肿、蛛网膜下腔血、弥漫性脑膜炎等。局限性颅内压升高时,颅内各部位间压力差明显,常出现脑组织移位,即发生脑疝。当压力解除后,脑功能恢复较慢。脑疝直接危及生命,有小脑幕裂孔疝、枕骨大孔疝、大脑镰下疝、小脑幕裂孔上疝及复合性脑疝。 【诊断】 1.格拉斯哥昏迷评分中枢神经功能障碍的诊断通常依据1974年格拉斯哥昏迷评分(Glasgow coma scale,GCS)(表2)。凡积分< 8者预后不良;积分5~7者预后恶劣;积分< 4者罕有存活;正常人应为15分。该表优点为简单、易行,但欠完整。 表2 格拉斯哥昏迷评分标准 睁眼反应言语反应运动反应自发性睁眼4分正确回答5分遵嘱执行动作6分闻声后睁眼3分对话混乱4分痛刺激可引起保护性反应5分刺痛后睁眼2分答非所问3分能躲避疼痛4分无反应1分音意难辨2分刺痛后肢体屈曲3分 无反应1分刺痛后肢体过伸2分 无反应1分注:以上三种得分相加即为GCS评分,最高为15分,最低为3分,8分以下为昏迷。昏迷的标准是①不能睁眼;②不能说出可以理解的语言;③不能按吩咐运作。 2.Glasgow-Pittsburgh昏迷评分格拉斯哥昏迷评分经多国专家共同讨论修订,增为7项指标,35级,即Glasgow-Pittsburgh昏迷评分表(表3)。正常积分为35;34~28分考虑有神经功能损伤;27~16为早期衰竭;15~8分为脑衰竭;<7分为脑死亡。 3.脑功能失常诊断及严重度评分应当强调指出的是上述两种计分法均存在忽视早期诊断的不足。1995年全国危重病急救医学学术会(庐山)通过的“多脏器功能障碍综合征(MODS)病情分期诊断及严重程度评分标准”中,对脑损害程度及条件做了新规定(5)。该标准为GCS昏迷程度计分表的修订。功能受损期定为1分,衰竭早期定为2分,衰竭期定为3分(表4)。 表3 Glasgow-Pittsburgh昏迷评分表

最新“生物学仪器设备技术”课程期末考试试题答案

2012年“生物学仪器设备技术”课程期末考试试题答案 生命科学学院 11级硕士3班李新 12212544 1、简述实验室安全注意事项。 一、实验室防火安全 1.实验室内存放的一切易燃、易爆物品(如氢气、氮气、氧气等)必须与火源、电源保持一定距离,不得随意堆放。使用和储存易燃、易爆物品的实验室,严禁烟火。 2.不得乱接乱拉电线,不得超负荷用电,实验室内不得有裸露的电线头,严禁用金属丝代替保险丝;电源开关箱内不得堆放物品。 3.严禁在楼内走廊上堆放物品,保证消防通畅通。 二、实验室化学药品安全 1.化学药品要分类存放,相互作用的药品不能混放,必须隔离存放。所有药品都必须有明确的标签,贮存室和柜必须保持整齐清洁。 2.危险化学药品容器应有清晰的标识或标签。危险化学药品的存放区域应设置醒目的安全标志。 3.从事危险化学药品实验的人员应当接受相应的安全技术培训,做到熟悉所使用药品的性质,熟练掌握相应药品的操作方法。 4.各实验室产生的验废液废物不得随意丢弃,随意排入地面、地下管道以及任何水源,防止污染环境。 三、实验室生物安全 1.实验室生物安全涉及人类生存环境的安全,国家对生物安全的管理高度重视,各有关实验室也必须高度重视实验室生物安全,必须有效监控和预防实验室生物污染,要定期检查和自查,发现安全隐患要及时报告并处理解决。 2.未经农业部或市农业局批准,不得擅自采集、运输、接收保存重大动物疫病病料,不得转让、赠送已初步认定为重大动物疫病或者已确诊为重大动物疫病的病料,不得私自将病料样本寄往国外或者携带出境。 四、实验室防辐射安全 1.各涉源单位开展相关工作前必须向上级主管部门申领许可证和环评,通过环评和取得许可证后方可开展相关工作。 2.辐射工作场所必须安装防盗、防火、防泄漏设施,保证放射性同位素和射线装置的使用安全。同位素的包装容器、含放射性同位素的设备、射线装置、辐射工作场所的入口处必须放置辐射警示标志和工作信号。 3.对同位素实验等产生的放射性废物(包括同位素包装容器),不得作为普通垃圾擅自处理。必须向学校申报,经学校同意后,由学校请有资质的公司或单位进行统一处置。 2.简述离心机的分类及超速离心机操作注意事项 (1)依据转速不同,能够分为低速离心机、高速离心机和超速离心机;依据温度控制不同,能够分为冷冻离心机和普通离心机;依据用处不同,还能够将离心机分为剖析离心机和制备离心机;依据工艺用途不同,可以分为过滤式离心机、沉降式离心机和离心分离机;按安装的方式,还可将其分为立式、卧式、倾斜式、上悬式和三足式离心机。 (2)1、对称平衡,样品装入离心管后,必须用天平配平并对称放入转头中。2、超速离心时,液体一定要加满离心管,应超离时需抽真空,只有加满才能避免离心管变形。3、使用角度头时别忘盖转头盖,如未盖,离心腔内会产生很大的涡流阻力和摩擦升温。4、转头必须固定在轴上。5、离心完后必须从离心机内取出转头,如果转头内有样品渗漏,必须用水将转头清洗干净,然后倒扣在软的台面上。6、离心腔内的冷凝水必须擦干净。7、定期给转

人体内的三大供能系统复习过程

人体内的三大供能系 统

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 (一)人体内的三大供能系统 在人体内有三大供能系统,它们是:磷酸原供能系统、糖酵解供能系统和有氧氧化供能系统。ATP 在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。之后的能量供应就要依靠ATP 的再生。这时,细胞内的高能化合物磷酸肌酸的高能磷酸键 水解将能量转移至ADP ,生成ATP (C ATP CP ADP +?? ?→?+磷酸激酶)。磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。人在剧烈运动时,首先是ATP-CP 供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP 。无氧酵解约能维持2~3分钟时间。由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP 。 综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-CP 供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。 (二)三大供能系统的供能特点 运动时,代谢供能的输出功率取决于能源物质合成ATP 的最大速率。(1)运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。(2)最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。(3)当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟以上主要依赖有氧代谢途径。运动时间愈长强度愈小,脂肪氧化供能的比例愈大。脂肪酸是长时间运动的基本燃料。(4)由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。

现代生物学仪器分析

现代生物学仪器分析在生命科学研究中的应用 生命科学的发展与生物学仪器分析技术的进步密切相关,比如X射线晶体衍射对DNA双螺旋结构的发现起着至关重要的作用,而DNA双螺旋结构的发现奠定了现代分子生物学的基石,使微观世界的大门为我们敞开,让我们得以一窥微观领域的奇妙景象。一代测序技术的问世使人类得以提前完成人类基因组计划,第二代,第三代测序技术的出现,不仅大大降低了测序成本,还大幅提高了测序速度,并且保证了高准确性,为现代生物学的研究提供了强有力的帮助。诞生于上个世纪八十年代的生物质谱技术,为功能基因组,蛋白质组的研究奠定了基础。随着科学技术的发展,更精确,更快速,选择性更高,灵敏度更高的分析仪器以及新的技术和新的方法会不断的涌现出来,从而加速生命科学研究的不断发展。 现代生物学仪器分析中有“四大谱”和“三大法”。生物分子的结构分析最有效的方法就是“四大谱”:紫外-可见光谱、红外光谱、核磁共振波谱和质谱。而生物大分子结构测定的最重要和应用最广泛的“三大法”分为X射线晶体衍射分析、核磁共振波谱分析和冷冻电镜。 紫外可见吸收光谱是通过研究溶液中生物分子对紫外和可见光谱区辐射能的吸收情况对生物分子进行定性、定量和结构分析的方法。通常我们所说的紫外光谱其波长范围主要是为200~800nm。由于不同物质的分子其组成和结构不同,它们所具有的特征能级也不同,其能级差不同,而各物质只能吸收与它们分子内部能级差相当的光辐射,所以不同物质对不同波长光的吸收具有选择性。紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析。近年来,随着生命科学领域的发展,紫外可见吸收光谱在生命科学领域应用的越来越广泛。比如利用紫外-可见吸收光谱对生物样品的定性分析,鉴定生物样品的种类、纯度等;还可以利用紫外-可见吸收光谱测定生物样品的浓度(蛋白质,核酸等) 红外—拉曼光谱在生命科学领域应用十分广泛,因为拉曼样品用量很少,不需要对生物样品进行固定、脱水、包埋、切片、染色、标记等繁琐的前处理程序,不仅操作简单,而且不会损伤样品从而能够获得样品最真实的信息。另外,生物大分子多是处在水溶液中,研究它们在水溶液中的结构对于了解生物大分子的结构和性能的关系非常重要。由于水的红外吸收很强,因此用红外光谱研究生物体系有很大局限性,而水的拉曼散射很弱,干扰小,而且单细

人体内的三大供能系统

人体内的三大供能系统 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

人体内的三大供能系统在人体内有三大供能系统,它们是:ATP-磷酸肌酸供能系统、无氧呼吸供能系统和有氧呼吸供能系统。 (1)ATP在肌肉中的含量低,当肌肉进行剧烈运动时,供能时间仅能维持约1~3秒。 (2)之后的能量供应就要依靠ATP的再生。这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。人在剧烈运动时,首先是ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。 (3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。无氧酵解约能维持2~3分钟时间。 (4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。 综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。 运动项目总需氧量 (升) 实际摄入氧量(升)血液乳酸增加量 马拉松跑600589略有增加400米跑162显着增加

人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。 一、运动时供能系统的动用特点 (一)人体骨骼肌细胞的能量储备 (二)供能系统的输出功率 运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。 (三)供能系统的相互关系 1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。 2.最大功率输出的顺序,由大到小依次为:磷酸原系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化,且分别以近50%的速率依次递减。 3.当以最大输出功率运动时,各系统能维持的运动时间是:磷酸原系统供极量强度运动6—8秒;糖酵解系统供最大强度运动30—90秒,可维持2分钟以内;3分钟主要依赖有氧代谢途径。运动时间愈长强度愈小,脂肪氧化供能的比例愈大。脂肪酸是长时间运动的基本燃料。 4.由于运动后三磷酸腺苷(ATP)、磷酸肌酸(CP)的恢复及乳酸的清除,须依靠有氧代谢系统才能完成,因此有氧代谢供能是运动后机能恢复的基本代谢方式。 二、不同活动状态下供能系统的相互关系

新生儿惊厥是由多种因素所致的中枢神经系统功能失常的一种症状

新生儿惊厥是由多种因素所致的中枢神经系统功能失常的一种症状,是新生儿期常见急症之一,常提示存在严重的原发病,同时惊厥另一方面可造成脑损伤,是围生期最重要死亡原因之一,因而应及时诊断和处理。随着诊疗技术的改进,病死率有所下降,但后遗症仍减少不明显,故仍为新生新生儿惊厥的表现形式不同于儿童和成人,其特点是局限和隐晦,有时给诊断带来困难。因此,熟悉其表现形式尤其是隐晦(微小)型的表现形式很重要,以免漏诊。另一方面,也不要把不属于惊厥的某些异常运动如惊悸、颤抖和快速眼运动相睡眠状态下的动作误认为是惊厥。惊悸和颤抖可由寒冷、声音、皮肤刺激或被动运动而诱发,无意识障碍和眼球的异常运动,抚慰可使其平息,而惊厥则相反。近年来长程脑电图监测发现两个值得注意的临床现象:一是临床是有惊厥表现,脑电图监测却无异常放电;二是有些病例脑电图有异常放电,但临床上却未见惊厥。 1.发病时间生后不久出现的惊厥可见于HIE、颅内出血、先天性TORCH感染、维生素B6依赖症等。 (1)生后24h内:多见于缺氧缺血性脑损伤、严重脑出血、低血糖、维生素B6依赖。 (2)生后24~72h:多见于颅内出血、缺氧缺血性脑病、低血糖、低血钙、药物撤退综合征、低镁血症等。 (3)生后72h~1周:多见于感染性疾病,如病毒性脑炎(柯萨奇B族病毒、巨细胞病毒、疱疹病毒及弓形体感染)、化脓性脑膜炎、氨基酸代谢异常、核黄疸、新生儿甲旁亢、脑出血(实质)。 2.新生儿惊厥的表现形式和分类 (1)局灶阵挛型:表现为一个肌肉群的阵发性的节律性的抽动,常见于单个肢体或一侧面部,有时可扩散到同侧的其他部位。通常神志清醒。大部分伴有大脑皮质的异常放电,主要脑电图表现为局灶性尖波,通常包括棘波,有时可扩散到整个半球。常提示脑局部损伤如出血或梗死、蛛网膜下腔出血以及代谢异常。 (2)多灶阵挛型:表现为多个肌肉群的阵发性节律性抽动,常见多个肢体或多个部位同时或先后交替地抽动。也可在一次发作中,抽搐由一个肢体游走到另一个肢体,由一个部位游走到另一部位,由身体一侧游走到另一侧,而无一定的次序。常伴意识障碍。脑电图表现为多灶性的尖波或慢节律电波由皮质的一个区游走到另一个区。约75%的患儿具有棘波伴1~4周/s的慢波和(或)α样波。本型常见于缺氧缺血性脑病、颅内出血和感染,偶见于代谢失常。 (3)强直型:表现为单个肢体或四肢强直性伸展,或双下肢强直而双上肢屈曲,全身强直型可有躯干的后仰或俯屈,常伴眼球偏移固定和呼吸暂停,除破伤风外一般神志不清。类似去大脑或去皮质强直。本型很少与皮质异常放电相关,偶见棘波,主要的形式为高幅慢波,有时出现在爆发抑制背景上。常见于早产儿脑室内出血、破伤风、核黄疸等。 (4)肌阵挛型:表现为肢体或某个孤立的部位一次或多次短促的屈曲性掣动,也可牵涉到双上肢或双下肢。全身性肌阵挛,四肢和躯干均可同样痉挛,类似婴儿痉挛症。仅部分患儿临床发作伴皮质异常放电,脑电图常见爆发抑制,常提示存在明显的脑损害。

人体三大功能系统教学资料

人体三大功能系统

人体内的三大供能系统 在人体内有三大供能系统,它们 是:ATP-磷酸肌酸供能系统、无氧 呼吸供能系统和有氧呼吸供能系 统。 (1)ATP在肌肉中的含量低,当 肌肉进行剧烈运动时,供能时 间仅能维持约1~3秒。 (2)之后的能量供应就要依靠ATP的再生。这时,细胞内的高能化合物磷酸肌酸的高能磷酸键水解将能量转移至ADP,生成ATP。磷酸肌酸在体内的含量也很少,只能维持几秒的能量供应。人在剧烈运动时,首先是 ATP-磷酸肌酸供能系统供能,通过这个系统供能大约维持6~8秒左右的时间。 (3)这两项之后的供能,主要依靠葡萄糖和糖元的无氧酵解所释放的能量合成ATP。无氧酵解约能维持2~3分钟时间。 (4)由于无氧呼吸产生的乳酸易导致肌肉疲劳,所以长时间的耐力运动需要靠有氧呼吸释放的能量来合成ATP。 仅供学习与交流,如有侵权请联系网站删除谢谢2

综上所述,短时间大强度的运动,如100米短跑,主要依靠ATP-磷酸肌酸供能;长时间低强度的运动,主要靠有氧呼吸提供能量;介于二者之间的较短时间的中强度运动,如400米跑,则主要由无氧呼吸提供能量。 人在剧烈运动呼吸底物主要是糖。但在长时间剧烈运动时,如马拉松式的长跑运动,人体内贮存的糖是不够用的,在消耗完贮存的糖类物质后,就动用体内贮存脂肪和脂肪酸。 一、运动时供能系统的动用特点 (一)人体骨骼肌细胞的能量储备 (二)供能系统的输出功率 运动时代谢供能的输出功率取决于能源物质合成ATP的最大速率。 (三)供能系统的相互关系 1.运动中基本不存在一种能量物质单独供能的情况,肌肉可以利用所有能量物质,只是时间、顺序和相对比率随运动状况而异,不是同步利用。 仅供学习与交流,如有侵权请联系网站删除谢谢3

【免费下载】中枢神经系统功能障碍的诊治

中枢神经系统功能障碍的诊治蚌医一附院ICU 邓晰明收住ICU 的重症患者中,相当一部分病人会发生不同程度的神经系统损害,多数病人症状轻微,短时期即可消失。严重者往往预后不良,应予以重视,最大限度地预防脑并发 症的发生。 中枢神经系统功能障碍,即脑功能障碍,是多种病因所致的,以意识障碍和颅内压增高为主要表现的综合征,常为许多全身疾病和颅内疾患的严重后果,是临床各科常见的、致残率和病死率最高的脏器功能障碍。 脑是调节身体各器官的中枢,全身各系统的疾病、代谢紊乱或中毒以及神经系统本身疾患均可影响到脑,严重时导致不同程度的脑功能受损,直至脑死亡。临床上脑功能障碍多见于循环骤停、严重感染、缺氧、代谢紊乱及中枢神经系统本身的感染、出血、栓塞及创伤等。因而在抢救这类危重病患者时,应尽早实施脑保护、及时纠正缺氧及代谢紊乱和清除内、外源性毒性物质。脑功能障碍的预后除与原发病种类有关外,主要与衰竭程度和治疗措施有关。轻型脑功能障碍患者多可恢复,重型每遗有智力、意识和运动障碍,严重者可致死亡。 【病因】导致中枢神经系统功能障碍的病因分为颅内疾病和全身性疾病两大类(表1)。表1 中枢神经系统功能障碍常见病因颅内疾病全身性疾病乙型脑炎、心脏骤停复苏后散发性病毒性脑炎多器官功能障碍颅内感染: 化脓性脑膜炎、流脑等尿毒症型脑病、肝性脑病脑出血、脑梗死、肺性脑病、粘液性水肿昏迷、低血糖昏迷脑血管病: 蛛网膜下腔出血等高渗性和低渗性昏迷、垂体危象颅内占位性病变: 脑肿瘤、脑寄生虫等内分泌与代谢性疾病: 甲状腺功能亢进危象、肾上腺危象颅脑外伤: 脑挫裂伤、颅内血肿中毒【发病机制】脑组织耗氧量很大,脑内能源贮备很少,对缺血缺氧的耐受性极差。缺氧使组织氧分压<30 mmHg 即发生脑内乳酸血症,严重缺氧伴有低血压时脑细胞可死亡。心搏停止2~4 min 脑内代谢停止,4~5 min 时ATP 耗尽,脑细胞肿胀。8 min 时即发生不可逆性脑损害。通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范

相关文档
最新文档