弹性力学概念整理—BY傅国强

弹性力学概念整理—BY傅国强
弹性力学概念整理—BY傅国强

弹性力学

总结BY 傅国强

弹性力学:是研究弹性体由于受外力作用、边界约束或温度变化等原因而发生的应力、形变和位移。

弹性力学的研究方法是:在弹性体区域内必须严格地考虑静力学(微分体平衡条件)、几何学(形变和位移之间的几何关系)和物理学(应力和形变之间的关系)三方面的条件,在边界上必须严格地考虑受力条件和约束条件,由此建立微分方程和边界条件进行求解。(不同于材料力学采用了平截面假定简化了几何条件,只适用于杆状构件)

外力:是指其他物体对研究对象的作用力,分为体积力和表面力,也分别成为体力(分布在物体体积内的力,N/M3)和面力(分布在物体表面的力,N/M2)。

内力:是物体收到外力作用以后物体内部不同部分之间相互作用的力,内力的平均集度即平均应力,

正面和负面:凡外法线沿坐标轴正方向的,称为正面,凡外法线沿坐标轴负方向的,称为负面。

切应力互等性:作用在两个相互垂直的面上并且垂直于该两面交线的切应力是互等的(大小相等,正负号一致)。

形变:即形状的改变,可以用其各部分的长度和角度表示。

线应变:单位伸缩或相对伸缩,伸长为正。

切应变:各线段之间的直角改变量,直角变小为正。

位移:即位置的移动,沿坐标轴正方向为正。

弹性力学的基本假定:1)连续性,假定物体介质所填满,不留下任何空隙,是连续的,这表示应力、形变、位移等是连续的,可用坐标的连续函数表示其变化规律;2)完全弹性,假定物体在引起形变的外力去除之后能够完全恢复原形而没有任何残余变形,这表示形变和应力是呈线性关系的;3)均匀性,假定整个物体由同一材料组成的,这表示物体的弹性不随坐标改变而变化;4)各向同性,假定物体的弹性在所有各个方向都相同,这表示物体的弹性常数不随方向而改变;满足以上四个条件的就是理想弹性体5)位移和形变是微小的,假定物体受力后各点的位移都远远小于物体原来的尺寸,且应变和转角远小于1,主要是为了:1.可以用物体变形前的尺寸来代替变形后的尺寸、2.转角和应变的二阶量可以忽略不计,仅保留一次项、3.几何方程和平衡微分方程可以简化为线性方程,应用叠加原理。

平面应力问题:即只有平面应力分量()存在,且仅为x、y的函数的弹性力学问题平面应变问题:即只有平面应变分量()存在,且仅为x、y的函数的弹性力学问题平衡微分方程:推导时候采用了连续性和小变形的基本假定。

几何方程:推导采用了连续性和小变形的基本假定,其位移分量完全确定时候形变分量也就完全确定了,当时形变分量完全确定时候位移分量却不能完全确定,即存在与形变无关的刚体位移。

物理方程:推导时候采用了连续性、均匀性、各向同性、完全弹性和小变形的基本假定,由平面应力通过转换:可以得到平面应变

边界条件表示在边界上位移与约束,或应力与面力之间的关系式,分为位移边界条件、应力边界条件和混合边界条件。

圣维南原理:1)目的:因弹性力学问题的应力分量、形变分量和位移分量必须满足区域内的平衡微分方程、几何方程、物理方程以及边界上的边界条件,往往会遇到很大的困难,圣维南原理可以简化局部边界上的应力边界条件;2)原理:如果把物体的一小部分边界上的面力变换为分布不同但静力等效的面力,那么近处的应力分布会显著变化但是远处所受的影响忽略不计;3)注意,圣维南原理只能运用在一小部分边界上(局部边界、次要边界),在主边界上不能用圣维南原理。

位移求解平面问题:以位移分量为基本位置函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和边界条件从而求解;需满足平衡微分方程、位移边界条件、应力边界条件。

应力求解平面问题:以应力分量为基本位置函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和边界条件从而求解(通常只求解全部为应力边界条件的问题);需满足平衡微分方程、相容方程、应力边界条件、(位移单值条件)。

相容方程的物理意义:即连续体变形是满足几何方程的(各形变分量是互相相关的),并由此可以推出相容方程。

在常体力作用下,用应力求解平面问题所得的应力分量与弹性模量无关,即有如下结论:1.对于不同的材料,应力分量的解答相同,实验时可以采用不同材料模型代替、2.对于两类平面问题,应力分量解答相同,理论解可以通用,可用平面应力代替平面应变实验从而简化条件。

在常体力作用下,弹性力学平面问题存在一个应力函数(利用微分方程求导顺序理论通过平衡微分方程推导出来),按应力求解平面问题时候可以归纳为求解一个应力函数,其必

须满足:1.相容方程、2.应力边界条件、3.位移单值条件。(无须满足平衡微分方程)逆解法:先设定各种形式、满足相容方程的应力函数,求得应力分量,在由应力边界条件和弹性体边界形状求得边界上的面力,从而得知该函数可以解决的问题。

半逆解法:针对要解决的问题先假定部分应力函数,再由应力推得应力函数形式,代入相容方程,得出应力函数具体表达式,再求解相应的应力分量,考察这些分量是否满足全部边界条件。

一次线性应力函数对应无体力、无面力、无应力的状态,且在平面问题应力函数中加减一个线性函数不影响应力。(次数达到4次及以上时候应力函数的系数才要求必须满足一定条件才可以满足相容方程)

极坐标中按应力求解平面问题也可以归纳为求解一个应力函数的问题,它必须满足:1.区域内的相容方程、2.边界上的应力边界条件、3.位移单值条件。

轴对称:1)产生轴对称条件:弹性体的形状和应力边界条件必须轴对称,若位移边界条件也是轴对称则位移也是轴对称;2)含义:即物体的形状或某一物理量是绕一轴对称的,凡通过对称轴的任何面都是对称面,其应力分量仅为ρ的函数,不随φ变化,切应力为0。

圆环或圆筒受均布压力时,当R(外半径)趋于无穷大时候,即在ρ远大于r(内半径)之外的应力是很小的,这验证了圣维南原理。

压力隧洞:即圆筒埋置在无限大弹性体中,受到有均布压力q,因圆筒和无限大弹性体的E、u不同,不符合均匀性的假定,应分别用不同的应力函数进行表示,还应考虑交界面的接触条件,这种问题称为接触问题。

接触问题:1)一般的接触问题,假定弹性体在接触面完全接触,即既不脱离也不滑动,相应的条件是,两弹性体在接触面正应力相等,切应力相等,法向位移相等,切向位移也相等;2)光滑接触,在接触面上,两个弹性体切应力为零,正应力相等,法向位移也相等(由于滑动切向位移不相等);

孔口应力集中:(指小孔口问题,即孔口尺寸远小于弹性体尺寸,孔边距弹性体的边界较远)即由于开孔,在孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力;原因是由于开孔后发生的应力扰动所引起的;孔口应力集中具有局部性,一般孔口应力集中区域约在距孔边1.5倍孔口尺寸的范围内;问题可以转换为内半径r而外半径R的圆环或圆筒,在外边界上受均布拉力或压力q,内边界上不受力的问题,通过叠加来满足相应的边界条件;应力在孔边达到均匀拉力的3倍,但随着远离孔边而急剧趋近于q;小孔口应力现象具有的特点:1.集中性,孔口附近的应力远大于较远处的应力、2.局部性,由于开孔造

成的应力扰动主要发生在距孔边1.5倍孔口尺寸的范围内、3.孔口应力集中与孔口的形状有关,一般圆孔的应力集中程度较低,避免出现尖角孔口。

差分法:是微分方程一中近似数值解法,并非求解函数的解答而是去求出函数在一些网格节点上的数值,将微分用有限差分代替,把导数用有限差商代替,从而把基本方程和边界条件近似地改用差分方程来表示,将求解微分方程改换为求解代数方程的问题。

变分法:主要研究泛函(即以函数为自变量的一类函数)及其极值的求解方法,弹性力学中研究的泛函则是研究弹性体的能量(如形变势能、外力势能);形变势能的多少与弹性体受力的次序无关,完全取决于应力及形变的最终大小;弹性体每单位体积中的形变势能对于任一形变分量的改变率,等于相应的应力分量;弹性体的总势能等于弹性体的形变势能和外力势能之和。

位移变分方程:理论基础是虚位移原理;形变势能的增加应当等于外力势能的减少,也就等于外力所做的功,由此可得到位移变分方程形式;极小势能原理:在给定的外力作用下,在满足位移边界条件的所有各组位移状态中,实际存在一组位移使得总势能成为极值,但由于二阶微分总是大于0,所以该值是极小值;虚功方程:表示如果在虚位移发生之前,弹性体出于平衡状态,那么,在虚位移的过程中,外力在虚位移上所做的虚功就等于应力在虚应变上所做的虚功;位移变分方程、极小势能原理、虚功方程本质都是一样的,均是弹性体从实际平衡状态发生虚位移时,能量守恒原理的具体应用,只是表达方式不同;位移变分方程等价于平衡微分方程和应力边界条件。

有限单元法:将连续体变换成为离散化的结构,然后再用结构力学解法进行求解的一种方法;三角形单元中为使得面积不出现负数,i、j、m的次序必须是逆时针。

有限单元法中的位移模式必须能够恰当地反应弹性体的真实位移状态,即:1)位移模式必须能反应单元的刚体位移、2)位移模式必须能够反映单元的常量应变、3)位移模式应当尽可能地反映位移的连续性;1)+2)是必要条件,1)+2)+3)是充分条件。

单元刚度矩阵:反映单元上的节点力和节点位移之间的关系。

计算成果的整理:1)绕点平均法,环绕某一节点的各单元中的常量应力加以平均、2)二单元平均法,两个相邻单元中的常量应力加以平均。

弹性力学基本概念和考点

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处

所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程: (1) 平面问题的平衡微分方程; 00yx x x xy y y f x y f x y τστσ??++=????++=??(记) (2) 平面问题的平衡微分方程(极坐标); 10210f f ρρ?ρ? ρ?ρ?ρ? ??σ?τσσ?ρρ??ρ ?σ?ττρ???ρρ -+++=+++= 1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。 2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。 二、 几何方程; (1) 平面问题的几何方程; x y xy u x v y v u x y εεγ?= ??=???=+ ??(记) (2) 平面问题的几何方程(极坐标);

北京交通大学《城市轨道交通规划与设计》20秋在线作业2-001答案

1.城市轨道交通联络线是连接两独立运营线的辅助线路,利用率较低。() A.错误 B.正确 答案:B 2.车辆段承担本线一部分车辆的技术检查、清扫、洗刷、停放和运用管理。() A.错误 B.正确 答案:A 3.城市轨道交通系统线网中的线路按照功能可分为客流追随型和规划引导型。规划引导型解决目前交通紧迫问题,符合现状最大客流。() A.错误 B.正确 答案:A 4.车体分为有司机室车体和无司机室车体两种。() A.错误 B.正确 答案:B 5.北京第一条地铁于1965年开工,采取的是盾构法施工。() A.错误 B.正确 答案:A 6.城市轨道交通安全问题是以“以预防为主,防消结合”为工作方针。()

B.正确 答案:B 7.城市轨道交通车站的设备配置首先要强调设备配置的能力匹配与经济性,其次要满足面向乘客分服务要求。() A.错误 B.正确 答案:A 8.线网构架的类型包括无环放射型线网和有环放射型线网两种。() A.错误 B.正确 答案:A 9.轨道交通各车场任务和分工必须从全网统筹规划、合理布局、有序发展。() A.错误 B.正确 答案:B 10.辅助线是指连接车站并贯穿或直股伸入车站的线路,是列车正常运营的线路,一般为双线。() A.错误 B.正确 答案:A 11.线路位置必选包括直线位置和曲线半径比选。()

B.正确 答案:B 12.车辆段设计总体上主要分为咽喉部分和线路两部分。() A.错误 B.正确 答案:A 13.城市轨道交通线路难以改建,而且一般都是单线。() A.错误 B.正确 答案:A 14.系统分析的内容包括对过去系统的分析、对现有系统的分析和对新开发系统的分析。() A.错误 B.正确 答案:A 15.城市轨道交通系统引导城市结构发展就是通过大幅度提高交通供给,引导周边土地高强度利用。一般整个过程分四个阶段:团状开发,波浪状开发、带状开发,面状开发。() A.错误 B.正确 答案:B

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

机械工程及自动化专业本科专业人才培养目标体系-上海交通大学

上海交通大学电气工程与自动化本科工程型—— 卓越工程师教育计划培养方案 一、学科专业及项目简介 电气工程与自动化专业是上海交通大学历史最悠久的专业,已逾百年,为国家培养了大批社会精英。 本专业目前为教育部“第一类特色专业”,也是教育部“卓越工程师”培养专业,体现强弱电、软硬件相结合的特色,将学生培养成为具有国际视野,具有综合运用所学的科学理论与技术方法从事与电气工程相关的系统运行和控制、电工技术应用、信息处理、试验分析、研制开发、工程管理以及计算机技术应用等领域的人才。本专业本科生在“全国大学生节能设计大赛”和“全国大学生电子设计大赛”等比赛中屡创佳绩。毕业生大量进入电力公司等国企、世界五百强企业,约1/3的学生进入国内外大学继续深造。 在《教育部关于实施卓越工程师教育培养计划的若干意见》文件引导下,我校电气工程与自动化专业被列入教育部第一批“卓越工程师教育培养计划”,为此,从2009级开始,电气工程与自动化专业每年有35名本科生按卓越工程师教育培养计划进行培养,其三个特点为:1)行业企业深度参与培养过程(共同制定培养计划,企业设立“工程实践教育中心”);2)学校按通用标准和行业标准培养工程人才;3)强化培养学生的工程能力和创新能力。我校“电气工程与自动化”专业卓越工程师培养依托于上海交大电气工程一级学科及上海电气、上海电力、施耐德电气等企业和其他研究所。其特色为:1)学科基础好,电气工程一级学科拥有博士学位授予权,涵盖了电力系统及其自动化、高电压与绝缘技术、电机与电器、电力电子与电力传动、电工理论与新技术五个二级学科,其中电力系统及其自动化为国家重点培育学科。2)师资力量雄厚,电气工程系现有教职工98人,其中院士2人,以及一批在国内外有一定影响、承担国家及地方重大工程项目的中青年专家,并有一大批企业导师参与指导。该专业学位硕士点还依托教育部重点“电力传输与功率转换”实验室、高电压试验设备研究开发中心、风力发电研究中心、国家能源智能电网(上海)研发中心、上海市高压电器产品质量监督检验站,给学生们提供大量的实习、实践及参与各类科研项目的机会。

弹性力学概念说课讲解

弹性力学概念

力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。 弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。) 弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数 研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。求解的未知函数:应力、应变和位移。解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移 弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。(用处:可以使用

线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量。即简化几何方程,简化平衡微分方程) 上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态外力是其他物体作用于研究对象的力(分为体力和面力) 体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力) 内力假想将物体截开,则截面两边有互相作用的力,称为内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同) 形变就是物体形状的改变。在弹性力学中,通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 所谓位移就是位置的移动应力单位截面积上的内力 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面(xOy面),且沿厚度(z向)不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 归纳起来讲,所谓平面应力的问题,就是只有平面应力分量存在,且仅为x,y 的函数的弹性力学问题

西南交通大学大物A1-01作业解析

《大学物理AI 》作业 No.01运动的描述 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、判断题 【 F 】1、运动物体的加速度越大,其运动的速度也越大。 反例:如果加速度的方向和速度方向相反。 【 F 】2、匀加速运动一定是直线运动。 反例:抛体运动。 【 F 】3、在圆周运动中,加速度的方向一定指向圆心。 反例:变速率的圆周运动。 【T 】4、以恒定速率运动的物体,其速度仍有可能变化。 比如:匀速率圆周运动。 【 T 】5、速度方向变化的运动物体,其加速度可以保持不变。 比如:抛体运动。 二、选择题 1. B 2、B 3、C 4、D 5、C 6、C 4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为 [ D ] (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x 解:由速度定义t r v d d = 及其直角坐标系表示j t y i t x j v i v v y x d d d d +=+=可得速度大小为 2 2d d d d ?? ? ??+??? ??=t y t x v 选D 6.一飞机相对空气的速度大小为1h km 200-?,风速为1 h km 56-?,方向从西向东。地面雷达测得飞机速度大小为1 h km 192-?,方向是 [ C ] (A) 南偏西16.3° (B) 北偏东16.3° (C) 向正南或向正北 (D) 西偏北16.3° (E) 东偏南16.3° 解:风速的大小和方向已知,飞机相对于空气的速度和飞机对地的 速度只知大 小,不知方向。由相对速度公式 地空气空气机地机→→→+=v v v 空气 机→v 地 机→v 地 空气→v 200 19256

北京交通大学《城市轨道交通客流分析》20秋在线作业1-001答案

1.下列不属于城市轨道交通与常规公交换乘站点的客流特征的是()。 A.发量大而集中 B.多向集散和换乘 C.各小时段客流不均衡性 D.各小时段客流变化不大 答案:D 2.车站位于综合功能用地区位时,客流分布与其它交通方式的客流分布一致,有两个配对的早晚上下车高峰属于哪类客流时间分布类型?() A.单向峰型 B.双向峰型 C.突峰型 D.无峰型 答案:B 3.城市轨道交通发挥效益的关键在于()。 A.准时 B.形成网络 C.快捷性 D.延续性 答案:B 4.车站高峰小时客流是确定车站设备()的基本依据。 A.运行状况 B.使用时间 C.服务质量 D.容量或能力 答案:D

5.路网由若干直径线组成,所有的线路都经过市中心向外呈放射状,换乘站一般都位于市中心的客流集散中心的结构为()。 A.放射状结构 B.放射环形结构 C.栅格网状结构 D.网格环线结构 答案:A 6.车站中对车站客流的通过量起着决定性的影响的是()。 A.服务人员 B.主要设施设备 C.列车 D.车站的容量 答案:B 7.通信枢纽与信息交换处理中心称为()。 A.信号系统 B.通信系统 C.运营控制中心 D.环控系统 答案:C 8.下列不属于时间序列客流预测方法的是()。 A.移动平均法 B.指数平滑法 C.月度比例系数法 D.德尔菲法 答案:D

9.坐常规公共电、汽车到站换乘的乘客称为()。 A.一次乘客 B.二次乘客 C.三次乘客 D.四次乘客 答案:C 10.信息诱导设施不包括()。 A.方向性标识 B.说明性标识 C.宣传性标识 D.警告性标志 答案:C 11.城市轨道交通换乘枢纽站内的设施包括站台、人行道、楼梯、自动扶梯等,其中,站台的基本形式有()。 A.岛式 B.侧式 答案:AB 12.车站客运作业包括()。 A.售票作业 B.检票作业 C.站台服务 答案:ABC 13.从轨道交通站点的影响范围上来说,轨道交通客流主要分为()。 A.直接吸引客流 B.间接吸引客流

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途? 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立? 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题? 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么? 答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。在两种平面问题中,平衡微分方程和几何方程都适用。2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为换为,就得到平面应变问题的物理方程。 5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。 在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在

北京交通大学《城市轨道交通运营统计分析》20秋在线作业1-001答案

1.年度计划是企业在计划年度内的行动纲领。由计划部门为主,组织营调、服务、安全、技术、财务、人事、物资等部门共同讨论,由计划部门综合平衡后上报下达。年度计划主要包括()和作业计划。 A.营运服务计划 B.营运计划 C.中长期计划 D.阶段性计划 答案:A 2.以下选项当中哪一个不是公共交通企业统计的特点?() A.数据量大 B.要求计算的统计指标体系庞大 C.重复劳动多 D.无时间要求 答案:D 3.以下几个选项中哪一个不是统计学研究对象的特点?() A.总体性 B.无限性 C.具体性 D.数量性 答案:B 4.通过了解乘客的满意度,我们可以对乘客满意度影响因素进行分析,其中哪一项可以作为前提变量?() A.感知质量 B.乘客满意度 C.乘客抱怨 D.乘客忠诚

5.企业计划指标按其表现形式可分为实物指标和()。 A.指令性指标 B.数量指标 C.价值指标 D.考核指标 答案:C 6.以下哪个选项不能作为制约因素来考虑轨道交通之间的换乘效率?() A.换乘通畅性 B.运动协调性 C.换乘舒适性 D.换乘安全性 答案:D 7.数据处理的历史可以追溯到远古时代,随着文明的发展,数据处理没有经过()阶段。 A.手工数据处理阶段 B.机械数据处理阶段 C.电子数据处理阶段 D.计算机数据处理阶段 答案:D 8.下列哪一项指标可以作为衡量整个运营网络能耗的指标?() A.客流量能耗指标 B.客运周转量指标 C.车站动力能耗指标 D.动力照明能耗

9.以下哪一个不是统计分析的原则?() A.实事求是 B.以点代面 C.科学全面 D.一分为二 答案:B 10.正常运营状态下评价指标包含基础指标、客流指标与乘客出行特征三方面内容,以下选项中哪一项属于基础指标?() A.进站量/进线量 B.线路平均运距 C.客运量 D.运营车站数 答案:D 11.计划编制的原则主要有()。 A.总目标原则 B.经验与科学相结合 C.定性与定量相结合 D.统筹安排,综合平衡 答案:ABCD 12.统计研究的基本方法有()。 A.大量观察法 B.统计分组法 C.统计指标法 D.统计模型法 E.统计推断法

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,

弹性力学概念.

力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。) 弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数 研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。求解的未知函数:应力、应变和位移。解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移 弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。(用处:可以使用线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量。即简化几何方程,简化平衡微分方程) 上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态 外力是其他物体作用于研究对象的力(分为体力和面力) 体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力) 内力假想将物体截开,则截面两边有互相作用的力,称为内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同) 形变就是物体形状的改变。在弹性力学中,通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 所谓位移就是位置的移动应力单位截面积上的内力 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面(xOy面),且沿厚度(z向)不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 归纳起来讲,所谓平面应力的问题,就是只有平面应力分量存在,且仅为x,y的函数的弹性力学问题 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于

交大版应用数理统计答案

应用数理统计答案 学号: 姓名: 班级:

目录 第一章数理统计的基本概念 (2) 第二章参数估计 (14) 第三章假设检验 (24) 第四章方差分析与正交试验设计 (29) 第五章回归分析 (32) 第六章统计决策与贝叶斯推断 (35) 对应书目:《应用数理统计》施雨著西安交通大学出版社

第一章 数理统计的基本概念 1.1 解:∵ 2 (,)X N μσ ∴ 2 (,)n X N σμ ∴ () (0,1)n X N μσ - 分布 ∴()(1)( )0.95n X n P X P μσ σμ--<=<= 又∵ 查表可得0.025 1.96u = ∴ 2 2 1.96n σ= 1.2 解:(1) ∵ (0.0015)X Exp ∴ 每个元件至800个小时没有失效的概率为: 800 0.00150 1.2 (800)1(800) 10.0015x P X P X e dx e -->==-<=-=? ∴ 6个元件都没失效的概率为: 1.267.2 ()P e e --== (2) ∵ (0.0015)X Exp ∴ 每个元件至3000个小时失效的概率为: 3000 0.00150 4.5 (3000)0.00151x P X e dx e --<===-? ∴ 6个元件没失效的概率为: 4.56 (1)P e -=- 1.4 解:

i n i n x n x e x x x P n i i 1 2 2 )(ln 2121)2(),.....,(1 22 =-- ∏∑ = =πσμσ 1.5证: 2 1 1 2 2)(na a x n x a x n i n i i i +-=-∑∑== ∑∑∑===-+-=+-+-=n i i n i i n i i a x n x x na a x n x x x x 1 2 2 2 2 11) ()(222 a) 证: ) (1111 1+=+++=∑n n i i n x x n x ) (1 1 )(1 1 11n n n n n x x n x x x n n -++=++=++

中学知识点交大优立方

2010年中考数学基础知识大串讲 导读: 中考大串讲按照代数综合、几何综合、概率统计三大块共分成10个串讲专题.“考点串讲”部分是对所讲专题的重要考点的概括,“新题演练”部分是针对所讲专题重要考点的精例及解析,使您做题后,跳出题海,轻松应对中考,决胜中考! 串讲一数与式 考点串讲 1.实数. 考查重点:(1)有理数、无理数、实数、非负数概念; (2)相反数、倒数、数的绝对值概念; (3)在已知中,以非负数a2、|a|、a(a≥0)之和为零作为条件,解决有关问题. (4)考查实数的运算(有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用.) 2.整式与分式. 整式知识点:代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、因式分解. 整式考查重点:(1)考查列代数式的能力;(2)考查整数指数幂的运算、零指数. (3)掌握并灵活运用提公因式法和公式法(直接运用公式不超过两次)进行因式分解. 分式: 分式考查重点:(1)考查整数指数幂的运算,零运算;(2)考查分式的化简求值. 3.二次根式.a≥0)叫做二次根式. 考查重点:(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简; (2)掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化. 新题演练:

新题1:在实数-23,,-3.14,2 π,-0.1010010001…(每两个1之间依次多1个0),sin 30°这8个实数中,无理数有( ) A.1个 B.2个 C .3个 D.4个 解析:对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如 =2是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如si n30°、tan 45°等.而-0.1010010001…尽管有规律,?但它是无限不循环小数,是无理数. 2π是无理数,而不是 分数.在上面所给的实数中,2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数,故选C. 答案:C 新题2:已知x 、y 是实数,y 2-6y +9)=0,若a xy -3x=y,则实数a 的值是( ) A.14 B.-14 C.74 D.-74 解析:若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个重要性 质.(y -3)2均为非负数,它们的和为零,只有3x+4=0,且y-3=0,由此 可求得x,y 的值,将其代入axy -3x=y 中,即求得a 的值. 答案y -3)2=0 ∴3x +4=0,y-3=0 ∴x =-43 ,y =3. ∵axy-3x =y ,∴-43×3a-3×(-43)=3 ∴a=14 ∴选A 新题3:若a,b,c是三角形三边的长,则代数式a 2+b 2-c2-2ab 的值( ) A.大于零 B .小于零 C.大于或等于零 D.小于或等于零 解析:本题是确定代数式的取值范围与因式分解的综合题,?把所给多项式的部分因式进行因式分解,再结合“a ,b ,c 是三角形的三边”,应满足三角形三边关系是解决这类问题的常用方法. 答案:(1)∵a2+b2-c 2-2ab=(a 2-2ab+b 2)-c 2=(a -b)2-c 2 =(a-b+c )(a -b -c ), 又∵a ,b ,?c 是三角形三边的长. ∴a+c>b,a

弹性力学基本概念

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力 体力是作用于物体体积内的外力 应力单位截面积上的内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的 形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变 平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件 平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力 几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式 形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定 边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件 位移边界条件实质上是变形连续条件在约束边界上的表达式 应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号 应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致) 圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界) 圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计 应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件 形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件

上海交通大学自控考研试卷

上海交通大学 2005年硕士研究生入学考试试题 一、(20分) (1) 图1为一摆杆系统,两摆杆长度均为L ,摆杆质量忽略不计,摆杆末端的质量块M 视为质点,两摆杆中点处连接了一根弹簧,当12θθ=时,弹簧没有伸长与压缩。外力()f t 作用在左杆中点处。假设摆杆与支点间没有摩擦与阻尼,且位移足够小,满足sin ,cos 1θθθ== a) 写出系统的运动方程 b) 写出系统的状态空间表达式 (2) 系统的信号流图如图2所示,求传递函数11()()Y s R s 和21()()Y s R s M M k (f t 1 θ2 θ 1 R 2 R 1 1 1 H -1G 2 G 1 Y 3 G 4 G 5G 6 G 2 H 2 Y 图1 图2 二、(20分) (1) 某单位负反馈系统的开环传递函数为 3 2 (1)()21 K s G s s as s += +++ 若系统以2rad s ω=的频率作等幅振荡,试利用劳斯判据求K 和a 的值。 (2) 某非线性控制系统如图3所示。试确定系统是否产生自持振荡?若产生自持振荡, 确定其频率和幅值。 r 图3 三、(20分)设系统如图4所示,试求:

(1) 当0,8a K ==时,确定系统的阻尼比ξ,无阻尼自然振荡频率n ω和()r t t =作用下 系统的稳态误差; (2) 当8,0.7K ξ==时,确定参数a 值及()r t t =作用下系统的稳态误差; (3) 在保证0.7,0.25ssr e ξ==的条件下,确定参数a 和K 。 图4 四、(15分) (1) 系统的状态方程为 []1001020100301 2X X u y X -???? ????=-+????????-???? = a) 计算系统的传递函数()()()G s Y s U s = b) 判断系统的能控性和能观性。 (2) 系统的传递函数为 10()(1)(2) G s s s s = ++ a) 试写出系统的能控标准Ⅰ型状态空间描述。 b) 设计一状态反馈矩阵,使反馈系统的极点为2,1j --± 五、(15分)某单位负反馈系统的开环传递函数为 2 ()(25) K G s s s s = ++ a) 给出根轨迹的渐近线; b) 计算根轨迹的出射角;计算根轨迹与虚轴相交时的根轨迹增益; c) 绘制0K >时的根轨迹。 六、(20分)某单位负反馈控制系统的开环传递函数为 ()(2) K G s s s = +

弹性力学概念汇总说课材料

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途? 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立? 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主

(完整版)弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分