2015届高考数学总复习 基础知识名师讲义 第八章 第九节空间向量的应用(二) 理

2015届高考数学总复习 基础知识名师讲义 第八章 第九节空间向量的应用(二) 理
2015届高考数学总复习 基础知识名师讲义 第八章 第九节空间向量的应用(二) 理

第九节 空间向量的应用(二

)

知识梳理

一、利用向量证明平行

1.证线线平行(面面平行)方法:a =λb (b ≠0) ?a ∥b .

2.证线面平行方法:(法一)利用共面向量定理,如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在实数对x ,y ,使c =x a +y b .(法二)证平面的法向量与该直线垂直.

二、利用向量证明垂直

1.证线线垂直方法:a ·b =0?a ⊥b . 2.证线面垂直方法:转化为证线线垂直. 三、利用向量求距离

1.求点到平面的距离:已知AB 为平面α的一条斜线段,C 为点A 在平面α的射影,

n 为平面α的法向量,则A 到平面α的距离d =||

AC →=||

AB →·n n .

2.求直线到平面的距离:转化为点到平面的距离去求.

3.求两平面间的距离:转化为点到平面的距离去求.

4.

两条异面直线距离:分别在直线a ,b 上取定向量a ,b ,求与向量a ,b 都垂直的向量n ,

分别在a ,b 上各取一个定点A ,B ,则异面直线a ,b 间的距离d 等于AB →

在n 上的射影长,

即d =|AB →

·n ||n |

.

基础自测

1.已知直线a 的方向向量为a ,平面α的法向量为n ,下列结论成立的是( ) A .若a ∥n ,则a ∥α B .若a ·n =0,则a ⊥α C .若a ∥n ,则a ⊥α

1.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直与平行关系.

2.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

3.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的作用.

D .若a ·n =0,则a ∥α

解析:由方向向量和平面法向量的定义可知应选C.对于选项D ,直线a ?平面α也满足a ·n =0.

答案:C

2.向量a = (-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) A .a ∥b ,b ⊥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对

解析:因为c =2a ,a ·b =0,所以a ∥c ,a ⊥b ,故选C. 答案:C

3.在棱长为a 的正方体ABCDA 1B 1C 1D 1中,M 是AA 1的中点,则点A 1到平面MBD 的距离是________.

答案:6

6

a

4.已知矩形ABCD 中,AB =1,BC =a(a>0),PA⊥平面AC ,且PA =1,若在BC 边上存在一点Q ,使得PQ⊥QD,则a 的取值范围是______.

答案:4.[2,+∞)

1.(2012·大纲全国卷)已知正四棱柱ABCDA 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为 ( )

A .2 B. 3 C. 2 D .1

解析:由已知可得AC 1=4,取AC 与BD 的中点O ,连接OE ,显然有AC 1∥OE 且平面ACC 1A 1⊥平面BED ,∴AC 1与平面BED 的距离即为AC 1与OE 的距离,又∵AB =2,CC 1=22,∴AC =22,

CC 1=AC ,∴平面AA 1C 1C 为正方形,∴AC 1与平面BED 的距离为1

4

CA 1=1.故选D.

答案:D

2.(2013·北京卷)如图,在三棱柱ABCA 1B 1C 1中,四边形AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.

(1)求证:AA 1⊥平面ABC ;

(2)求二面角A 1BC 1B 1的余弦值;

(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求

BD

BC 1

的值.

(1)证明:因为AA 1C 1C 为正方形,所以AA 1⊥AC ,

因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC , 所以AA 1⊥平面ABC .

(2)解析:由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4.所以AB ⊥AC .如图,

以A 为原点建立空间直角坐标系Axyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),A 1B

=(0,3,-4),A 1C 1→

=(4,0,0).

设平面A 1BC 1的法向量为n =(x ,y ,z ),则???

??

n ·A 1B →=0,

n ·A 1C 1→=0,即?????

3y -4z =0,4x =0,

得x =0,令z =3,则y =4,所以n =(0,4,3).

同理可得,平面BB 1C 1的法向量为m =(3,4,0),

所以cos 〈n ,m 〉=n ·m |n |·|m |=16

25

.

由题知二面角A 1BC 1B 1为锐角,所以二面角A 1BC 1B 1的余弦值为16

25

.

(3)证明:设D (x 1,y 1,z 1)是直线BC 1上一点,且BD →=λBC 1→

.则由(1)可得(x 1,y 1-3,z 1)=λ(4,-3,4).解得x 1=4λ,y 1=3-3λ,z 1=4λ.

所以AD →

=(4λ,3-3λ,4λ).

由AD →·A 1B →

=0,即9-25λ=0.解得λ=925

.

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

选修2-1 空间向量知识点归纳总结材料

第三章 空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数 λ,使a =λb 。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

空间向量在立体几何中的应用和习题(含答案)

空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量. 由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ?a ∥b ?a =k b ,k ∈R ; ②l ⊥m ?a ⊥b ?a ·b =0; ③l ∥α ?a ⊥u ?a ·u =0; ④l ⊥α ?a ∥u ?a =k u ,k ∈R ; ⑤α ∥?u ∥v ?u =k v ,k ∈R ; ⑥α ⊥β ?u ⊥v ?u ·v =0. (3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角. 设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2 π,0(∈θ则 ?= >

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

空间向量知识点归纳(期末复习)

空间向量期末复习 知识要点: 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 : OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a 平行于b ,记作b a //。 当我们说向量a 、b 共线(或a b a b a b b 0 a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 ! 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数 ,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的数量积。 (1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作 ,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤, 显然有,,a b b a <>=<>;若,2 a b π <>= ,则称a 与b 互相垂直,记作:a b ⊥。 (2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。 [ (3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ??<>叫做,a b 的数量积,记

空间向量知识点归纳(期末复习).doc

空间向量期末复习 知识要点: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示?同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 运算律:⑴加法交换律:a + h =b +ci ⑵加法结合律:(N + T) + E = N + 0 + e) ⑶数乘分配律:= + 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o 当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数 x^y\^p = xa-\-yb。 5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。 若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。 推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。 6.空间向量的数量积。 (1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。 (2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

平面向量全部讲义

第一节平面向量的概念及其线性运算 1.向量的有关概念 (1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量. (4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 例1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线 C .不可能都是零向量 D .不可能都是单位向量 例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 等价于四边形 ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .④⑤ CA 2.向量的线性运算 平行四边形法则 例3:化简AC →-BD →+CD →-AB →得( ) A.AB → B.DA → C.BC → D .0 例4:(1)如图,在正六边形ABCDEF 中,BA +CD +EF =( ) A .0 B .BE C .A D D .CF (2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23 BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________. 巩固练习: 1.将4(3a +2b )-2(b -2a )化简成最简式为______________. 2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB → 的关系是( ) A .平行 B .重合 C .垂直 D .不确 定 3.若菱形ABCD 的边长为2,则|AB -CB +CD |=________ 4.D 是△ABC 的边AB 上的中点,则向量CD 等于( ) A .-BC +12BA B .-B C -12BA C .BC -12 BA D .BC +12 BA 5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC +AD ;③AC -BD =DC +AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE → . DD 1 2 巩固练习 1。16a +6b 2。C 3。2 4。A 5。C 6.解:AB →=AC →+CB → =-3a +2b ,∵D ,E 为AB →的两个三等分点,∴AD →=13AB →=-a +23b =DE →. ∴CD →=CA →+AD →=3a -a +23b =2a +23 b .∴CE →=CD →+DE → =2a +23b -a +23b =a +43b. 3.共线向量定理:向量a (a ≠0)与b 共线等价于存在唯一一个实数λ,使得b =λa . 例5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________ 例6. 设两个非零向量a 与b 不共线,(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.

空间向量与立体几何知识总结(高考必备!)

zk ,有序实数组(,x 在空间直角坐标系O xyz -中的坐标,记作(A x 叫纵坐123,b a b a λλ?===2)若11(,A x y 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。)//a b b ?=)R 设b a ,是空间两个非零向21a a x =?=+2 (AB x ==

12)(x y y -+-cos |||| b a b ?.空间向量数量积的性质: cos ,a e <>.②0a b a b ⊥?=.③2 ||a a a =?. 、运算律 a b b ?=?; ②)(a ?λ四、直线的方向向量及平面的法向量 b = ④解方程组,取其中的一组解即可。 存在有序实数对μλ,使AB =n ⊥

六、计算角与距离 1、求两异面直线所成的角 已知两异面直线b a ,,,,,A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ?= 例题 【空间向量基本定理】 例1.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分成定比2, N 分PD 成定比1,求满足 的实数x 、y 、z 的值。 ] 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用 、 、 表示出来, 即可求出x 、y 、z 的值。 如图所示,取PC 的中点E ,连接NE ,则 。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量, 而且a,b,c 的系数是惟一的。 ) 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。 (1)证明:PA 方形ABCD —中,E 、F 分别是,的中点,求:

空间向量练习题

空间向量的概念解析 例1、下列说法中正确的是( ) A.若|a |=|b |,则a,b 的长度相同,方向相同或相反 B.若向量a 是向量b 的相反向量,则|a |=|b | C.空间向量的减法满足结合律 D.在四边形ABCD 中,一定有AB AD AC += 练习 1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( ) A.4 B.3 C.2 D.1 2、下列四个命题: (1)方向相反的两个向量是相反向量 (2)若a,b 满足|a |>|b |,且a,b 同向,则a >b (3)不相等的两个空间向量的模必不相等 (4)对于任何向量a,b ,必有|a+ b |≤|a |+|b | 其中正确命题的序号为( ) A.(1)(2)(3) B.(4) C.(3)(4) D.(1)(4) 空间向量的线性运算 例1、 已知长方体ABCD-A ’B ’C ’D ’ ,化简下列向量表达式,并标出化简结果的向量 (1)AA CB '- (2)AB B C C D '''''++ (3)111222 AD AB A A '+- 练习 1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++ ②11111()AA A D DC ++ ③111()AB BB BC ++ ④11111()AA A B BC ++ A.1个 B.2个 C.3个 D.4 个

空间向量基础知识和应用

空间向量基础知识和应用

知识网络 知识要点梳理 知识点一:空间向量 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量。 注: ⑴空间的一个平移就是一个向量。 ⑵向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。相等向量只考虑其定义要 素:方向,大小。 ⑶空间的两个向量可用同一平面内的两条有向线段来表示。 2.共线向量 (1)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平 行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线. (2)共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使 =λ。 3.向量的数量积 (1)定义:已知向量,则叫做的数量积,记作,即 。 (2)空间向量数量积的性质: ①; ②; ③. (3)空间向量数量积运算律: ①;

②(交换律); ③(分配律)。 4.空间向量基本定理 如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使 。若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 5.空间直角坐标系: (1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示; (2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系, 点叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 平面,平面,平面; 6.空间直角坐标系中的坐标 在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标. 7.空间向量的直角坐标运算律: (1)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (2)若,,则 , , , ,

空间向量练习题

空间向量在立体几何中的应用 【知识梳理】1、已知直线12,l l 的方向向量分别为12,v v u r u u r ,平面,αβ的法向量分别为12,n n u r u u r ,则 (1)12//l l ? ;(2)12l l ⊥? ;(3)若直线12,l l 的夹角为θ,则cos θ= ; (4)1//l α? ;(5)1l α⊥? ;(6)若直线1l 与面α的成角为θ,则sin θ= ; (7)//αβ?面面 ;(8)αβ⊥?面面 ;(9)若αβ面与面成二面角的平面角为θ,则 。 2、(1)三余弦定理: ; (2)三垂线定理(及逆定理): ; (3)二面角的平面角定义(范围): ; 【小试牛刀】1、A (1,1,-2)、B (1,1,1),则线段AB 的长度是( ) A.1 B.2 C.3 D.4 2、向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( ) A.相交 B.垂直 C.平行 D.以上都不对 3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是( ) A .- 21a +21b +c B .21a +21b +c C .2 1 a - 21b +c D .-21a -2 1 b + c 4.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 5 1 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 5.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

最新空间向量知识点归纳总结(经典)

精品文档 空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与 a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中

专题 平面向量-2019年高考数学一轮复习讲义

专题 平面向量-2019年高考数学一轮复习讲义 考情速递 1真题感悟 真题回放 1.(2018年新课标Ⅱ文)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3 C.2 D.0 【答案】B 【解析】由题意,a ·(2a -b )=2a 2-a ·b =2+1=3. 2. 2018年浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ?b +3=0,则|a -b |的最小值是( ) A .3-1 B .3+1 C .2 D .2- 3 【答案】A 【解析】由b 2 -4e ?b +3=0,得(b -e )·(b -3e )=0,∴(b -e )⊥(b -3e ),如图,不妨设e =(1,0),则b 的终 点在以(2,0)为圆心,以1为半径的圆周上,又非零向量a 与e 的夹角为π3 ,则a 的终点在不含端点O 的两条射线y =±3x (x >0)上.不妨以y =3x 为例,则|a -b |的最小值是(2,0)到直线3x -y =0的距离 减1.即|23|3+1-1=3-1.故选A .

3.(2018年北京)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m = . 【答案】-1 【解析】向量a =(1,0),b =(-1,m ).m a -b =(m +1,-m ).∵a ⊥(m a -b ),∴m +1=0,解得m =-1.故答案为-1. 4.(2018年新课标Ⅲ文)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________. 【答案】12 【解析】(2a +b )=2(1,2)+(2,-2)=(4,2),由c ∥(2a +b ),得14=λ2,解得λ=12 . 2热点题型 题型一:平面向量的概念以及线性运算 例1.(2018?新课标Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则 =( ) A .﹣ B .﹣ C .+ D .+ 【分析】运用向量的加减运算和向量中点的表示,计算可得所求向量. 【答案】A 【解析】:在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点, =﹣=﹣ =﹣×(+) =﹣, 故选:A . 题型二:平面向量基本定理及坐标表示

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

空间向量与立体几何知识点.docx

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公 式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直

证明两条直线垂直,只需证明两条直线的方向向量垂直,即0 a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? ,

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

相关文档
最新文档