拓扑学的产生与发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓扑学的产生与发展
邓一凡
0401120
摘要:
拓扑学作为数学上一个重要的分支,主要是研究各种“空间”在连续性的变化下不变的性质,自从18世纪开始出现萌芽以来,对微分几何,分析学,抽象代数,经济学等其他学科产生了重大的影响。而随着时代的发展,拓扑学更会在科学中起到更加重要的作用和影响力。
As an important branch of mathematics , Topology is to study a variety of "space" in the continuity of the invariant under changes in the nature, since the 18th century began to sprout since the differential geometry, analytical science, abstract algebra, economics, etc. other disciplines have had a significant impact. With the development of the times, topology in science will play a more important role and have more influence.
关键字:
拓扑学欧拉四色问题七桥问题庞加莱
正文:
拓扑学的定义:
(1)Topology原意为地貌,起源于希腊语Τοπολογ。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。简单的说,拓扑学是研究连续性和连通性的一个数学分支。主要研究拓扑空间在拓扑变换下的不变性质和不变量
拓扑学早期的发展:
拓扑学最初被称为形势几何学,这是莱布尼茨于1679年提出的,他预见到现在所称的组合拓扑学.最早为人所知的拓扑学定理可能是所谓的欧拉公式,这是指任何闭的凸多面体的顶点数v,棱数e和面数f有关系v-e+f=2.用现代说法,它是一个拓扑不变量,称为欧拉示性数.但据史学家考证,笛卡儿在1639年就知道它,并且莱布尼茨通过笛卡儿未发表的手稿于1675年得知这一结果.另一著名的结果是哥尼斯堡七桥问题的解决,欧拉在1736年将问题表成能否一笔画一个给定的图,并给出了一般性的解答.德国数学家高斯(Gauss,C.F.)于1827年得到曲面上曲率的积分与欧拉示性数的关系,他于1823年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数.
利斯廷(Listing,J.B.)于1848年第一次采用了拓扑学一词,而黎曼(Riemann,B.)于1851年定义了黎曼面,引进了连通性和亏格,实际上解决了可定向闭曲面的分类问题,给拓扑学的建立以巨大的推动.1858年,默比乌斯(Mo¨bius,A.F.)和利斯廷独立地发现了单侧的曲面,现被更确切地称为不可定向曲面.默比乌斯于1863年恰当地指出形势几何学的定义.
拓扑学正式成为一门独立的学科是庞加莱(Poincaré,H.)实现的.他于1892年发表了题为“论形势分析”的短文,然后于1895年发表了题为“形势分析”的120页的长文,介绍它的概念,其中有同调、贝蒂数、相交、基本群,甚至隐含着上同调;建立了对偶定理和欧拉-庞加莱公式.随后直到1904年,他连续发表了五篇补充,为改进前述长文中的缺点创立了剖分方法,定义了挠系数,开始探讨三维流形的拓扑分类,构造出基本群不平凡而一维贝蒂数平凡的三维流形,并提出了著名的庞加莱猜想:基本群平凡的三维闭流形同胚于三维
球面.这几篇文章奠定了组合拓扑学的基础,其思想非常丰富,观念很深刻,影响很深远,尽管不够严密或缺乏证明,但后来的进展正是从此入手,将这门学科建立在严格的逻辑上而发展为后来的组合拓扑学、代数拓扑学,进而发展出微分拓扑学等学科和分支.从此以后,拓扑学得到了蓬勃的发展,也为不同学科提供了宝贵的数学支持。
拓扑学经典问题:
七桥问题
哥尼斯堡是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。
而大数学家欧拉了解了这个问题后,经过多次计算,也得不到正确答案,忽然他想到,七桥问题是不是原本就无解呢?
在经过一年的研究之后,欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。而这也是拓扑学产生的萌芽
(1)在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由B或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是5为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是3、3,都是奇数,即以之为起点都是无解的。
四色问题:
四色问题是拓扑学发展的关键,1872年,英国著名数学家凯利正式向英国数学学会提出了这个问题,即:如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;
提出这个问题后,英国著名的律师兼数学家肯普(Alfred Kempe)和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文,当人们认为四色问题已经完美地解决时,1890年,牛津大学学生赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
到了20世纪六十年代后期,数学家海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后