冻干制剂经验谈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冻干制剂经验谈
对于冻干制剂,我在学习过程中累积了一些心得。然而篇幅有限,在此仅择其要义,概而述之。
一、冻干制剂并不难
冻干机体积硕大,动辄充栋盈屋。庞然如斯,总不免让人产生难以驾驭的错觉。其实,从冻干机理来看,冻干机无非就是一种两台大冰箱加一个真空泵的结构。其中一个冰箱首先负责把药品冻成冰块,然后开动真空泵营造一种低真空的环境。在此减压环境下,物体的沸点、熔点等热常数都相应降低,因而,箱内的药品轻微受热后即能在低温条件下从固体升华为气体。这些气体随即流向另外一个大冰箱,被捕捉下来重新凝结成冰块。当药品的水分完全抽干以后,便完成了一个冻干过程。
冻干操作中最为关键的环节当数对制品共熔点(或共晶点)温度的把握。如果能够在制品温度上升到共熔点之前把大部分的水分抽去,那么成功也就为期不远了。所谓共熔点,就是溶液全部凝结的温度。
常用的共晶点测量仪器主要是基于相变过程中电阻率突变的原理来制作的。但不少品种对共熔点(或共晶点)温度的要求并不需要过于精确,一般来说,我们可以在预冻阶段通过视窗来观察制品性状的变化来获得。当制品开始结冰的时候,浸入制品中的电热偶所探测到的温度会突然回升,这是因为结冰过程的放热现象所造成的。这时候,我们录得的温度就大致接近于共熔点(或共晶点)温度。
在共熔点(或共晶点)之前抽去90%以上的水分的过程在专业术语上称为一次干燥期。判断一次干燥结束的时间也是比较重要的。过早或过晚判断,都会造成冻感、干品质的降低或能量和时间的消耗。
最直观的方法,是根据制品的形状来判断。一次干燥后期,大部分水分被抽去。就好象随着洪水退去,墙面的水线不断下降一样,我们可以观测到制品上面也有一条水线不断下降,直至消失。水线消失,也就意味着一次干燥即将结束了。第二种方法,可以根据箱内压力的变化趋势来加以判断,当大部分被抽去以后,箱内的压力将不断下降,直至呈现线形。第三种方法,可以根据制品温度的变化来判断。当大部分被抽去以后,我们会发现,制品的温度与搁板的温度会越来越接近。
为了缩短干燥时间,除了可在预冻阶段的晶形做文章以外,还可以在升华阶段适当地掺入气体,使真空值在一定范围内波动(一般不宜超过30Pa)。这种办法使热传递方式不再是靠热传导来主打,还增强了热对流的方式,加快了水分解析的速度,每每奏效。
二、预冻速率
我服膺于这样一种说法,即,预冻过程在很大程度上决定了干燥过程的快慢和冻干产品的质量。
通常介绍冻干理论的书籍都会提到,降温速率越大,溶液的过冷度和过饱和度愈大,临界结晶的粒度则愈小,成核速度越快,容易形成颗粒较多尺寸较小的细晶。因而冰晶升华后,物料内形成的孔隙尺寸较小,干燥速率低,但干后复水性好;
相反,慢速冻结容易形成大颗粒的冰晶,冰晶升华后形成的水气逸出通道尺寸较大,有利于提高干燥速率,但干后复水性差。
这样说当然没有错,可是不要忘记,这种理论是在受热均匀的前提下得出来的,然而我们厂里的医药冻干机所提供的冻干条件却没有这么理想,所谓快冻慢冻,可不是导热油降温快慢一句话可以了得的。相对而言,我还是比较赞成医药网络论坛丁香园战友tinybayonet的提法。他把快冻慢冻分为以下几类:1、板温降得较快,且板温比品温低很多,则制品底部先冻结产生结晶,但上部液体仍较热,所以不至于瞬间全部结晶,结晶会缓慢生长,就得到了慢冻的效果。2、板温降得较慢,板温与品温相差不大,则制品整体均匀降温,并形成过冷,当能量积累足够时,瞬间全部结晶,得到了快冻的效果。3、板温降得很慢,并在低于共熔点的适宜温度保持(或缓慢降温),则制品形成较小的过冷度,液体中先出现少量结晶,继续降温结晶生长,得到大结晶,这即是真正的慢冻。4、制品浸入超低温环境(如液氮),整体瞬间结晶,形成极细小的晶体(或处于无定形态),这即是真正的快冻。对于tinybayonet提到的这几种现象,我都在试验过程中发现过,因此,我还是比较赞成这种划分方法的。
更何况,企业大多数情况下还是采用瓶冻的冻干方法的,瓶冻的受热不均匀现象就更明显了。根据对瓶装制品搁板预冻过程的研究,样品初温越高,样料液上下部分的温度梯度越大,冰晶生长速度越慢。溶液若慢速降温,则形成冰晶比较粗大,冰界面由下向上推进的速度慢,溶液中溶质迁移时间充足,溶液表面冻结层溶质积聚也就多。因而导致上表层的溶质往往较多,密度较高,而下底层密度较小,结构疏松。同时,在不同的预冻温度下冻结的样品,干燥后支架孔径人小有明显差异。预冻温度愈低,支架孔隙直径愈小。这种分层现象,在骨架差的制品上体现得最为明显,或者底部萎缩,或者中间断层,或者顶部突起,或者顶部脱落一层硬壳,不一而足。
为了瓶冻分层的现象,在实践中,有人提倡使用三步法,即将样品从室温先冷却至样品的初始冻结温度;停止降温过程,使样品内温度自动平衡,消除其内的温度梯度;然后再迅速降温,由于此时样品整体温度离结晶温度较近,且样品在冻结过程中,样品温度下降较慢,故样品在冻结过程中温度梯度会相对较小,冰晶生长速度必相对较快。如此,便提高了预冻速率,解决了溶质聚集在上层的问题。不过,并不是所有的品种使用了三步法后都能取得明显效果的。
三、溶媒结晶品和冻干品的优劣
商务部有位同事曾经问我,溶媒结晶品和冻干品,孰优孰劣?我当时都不知道如何回答。在我看来,很难一言以蔽之。
理论上,冻干品中的活性成分以结晶态或无定形态(非晶态)的形式存在。一般对于抗生素来讲,以晶态存在时,具有更高的稳定性。在储存过程中,无定形态总有向晶态转变的趋势。因此,我只能说在许多情况下溶媒结晶的抗生素类稳定性可能要好一些。不过,这种差别有时候不是特别大,而且溶媒结晶品的价格可能数倍冻干品,两相权衡,有些人还是会选择冻干品的。
只是,我有一点困惑。理论上,晶态结构的溶解性要比无定形态差,可是有人研究发现,对于某些抗生素药物,溶媒结晶品的溶解性优于冻干品。关于这种现象,我一时间找不到理论支持,甚为困惑。
至于生物类制品就不一定欢迎结晶态了,因为冻结过程中冰晶的生长会对组织和结构造成损坏。顺便提一下,非晶态材料主要有金属、无机物和有机物三类。玻