优选复合材料第二章复合原理简介

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种典型复合材料的临界长度Lc和长径比Lc/d
Tm 基体 (MN/m2)
纤维
σfTS (MN/m2)
d (μm)
Ag Cu Al 环氧 聚脂 环氧
55 Al2O3晶须 20 800
2
76
钨丝
2 900 2 000
80
硼纤维
2 800
100
40
硼纤维
2 800
100
30 玻璃纤维 2 400
13
40
纤维对横向强度有减弱的作用。纤维在与其相 邻的基体中产生的应力和应变对基体产生约束, 使复合材料的断裂应变比复合前要低的多(断裂 应力课本P28式2.34)
前提是基体和增强体很好的结合。
4)短纤维增强(1)
作用于复合材料的载荷是作用于基体材料并通 过纤维端部与端部附近的纤维表面将载荷传递 给纤维。当纤维长度超过应力传递所发生的长 度时,端头效应可以忽略,纤维可以被认为是 连续的,但对于短纤维复合材料,端头效应不 可忽略,同时复合材料的性能是纤维长度的函 数。
16.7
0.05
887
8.0
17.3
0.10
940
8.5
18.0
0.20
1 055
Leabharlann Baidu
7.6
21.0
(2)颗粒增强
颗粒的尺寸较大(>1 μm),基体承担主要
的载荷,颗粒阻止位 y
错的运动,并约束基 体的变形
3GmGpbVp1 2 2d (1Vp )c
颗粒的尺寸越小,体积分数越大,强化效果越好。一般 在颗粒增强复合材料中,颗粒直径为 1 ~ 50μm,颗粒间 距为1 ~ 25μm,颗粒的体积分数为0.05 ~ 0.5。
用金属或高分子聚合物把有耐热性、硬度 高但不耐冲击的金属氧化物、氮化物、碳 化物复合的材料时,由于强化相颗粒较大, 故强化效果并不显著,但这种复材主要不 是提高强度,而是为了改善耐磨性或提高综 合力学性能。
(3)连续纤维增强
通常根据纤维形态可以分为连续纤维、非连续纤 维(短纤维)或晶须(长度约为100--1000μm、直径约 为1--10μm的单晶体)两类. 其增强机理是高强度、高模量的纤维承受载荷, 基体只是作为传递和分散载荷的媒介。
复合材料纵向断裂强度可以认为与纤维断 裂应变值对应的复合材料应力相等,根据混 合法则,得到复合材料纵向断裂强度,即
eu fuVf ( m ) r (1Vf )
SiC/硼硅玻璃复合材料的强度 随纤维体积含量线性增加
Chapter 9 Composites
13
连续纤维增强(横向模量)
1 Vm Vf EmVf E f (1Vf )
弥散增强原理
复合材料的屈服强度
y
(2 3
Gmb
d V
2 p
p
)
1 2
(1
Vp
)
弥散质点的尺寸越小,体积分数越大,强化效果 越好。一般Vp=0.01 ~ 0.15,dp=0.001μm ~ 0.1 μm
不同体积分数纳米粒子SiC(0.07 μm)增强 Si3N4(0.5 μm)的性能
0
853
7.4
M为基体 F为纤维
连续纤维增强(纤维轴向模量)
c m f
cVc mVm f Vf
Vc Vm Vf=1
(1)式 的两边同时除以
得到
E
EmVm
Ef Vf
(1)
E1 E f V f Em (1V f )
实际中还有不同的 泊松比导致的附加 应力。通过试验分 析,误差小于 1%~2%。测出两种 玻璃纤维增强聚酯 树脂体系的E1、Vf 之间的线型关系
优选复合材料第二章复合原理 简介
一、复合材料增强机制
弥散增强 颗粒增强 纤维增强(连续纤维,短纤维)
50μm
弥散增强型 50x
颗粒增强型 50x
50μm
(1)弥散增强
硬质颗粒如Al2O3, TiC,SiC阻碍基体中 的位错运动(金属基) 或分子链运动(高聚物 基) 。增强机理可用 位错绕过理论解释。 载荷主要由基体承担 ,弥散微粒阻碍基体 的位错运动。
碳纤维
2 600
7
Lc/d
Lc
(mm)
189 0.38
19
38
18 1.75
35 3.5
40 0.52
33 0.23
短纤维增强(3)
当短纤维按不同取向程度取向分布时,短纤维的增强效率 随取向程度的降低而降低。对于取向分布的短纤维复合材 料,可以在混合弹性模量式中增加一个取向效率因子η0
E1 0 E f V f Em (1 V f )
Ec Em E f
EmE f
Ef
并联模型
Em
串联模型
体积分数fr
在高性能纤维增强复合材料中,纤维模量比 基体树脂模量大的多,在纤维体积含量为50 %~60%的复合材料中,基体对E1的影响很 小,纤维对E2的影响也很小,所以可以得到 近似
E1 E f V f E2 Em / Vm
纤维增强复合材料横向强度
短纤维增强(2)
为了使纤维的承载达到纤维的最大应力值,纤维长 度必须大于临界纤维长度lc或临界长径比(lc/d)
l/lc越大,拉伸强度越大; 2l/lc>>1时,拉伸强度为连续纤维的强度公式; l=lc时,短纤维增强的效果仅有连续纤维的50%; l/lc=10时,短纤维增强的效果可达到连续纤维的95% 所以为了提高复合材料的强度,应尽量使用长纤维。
X •Y X YZ Z
由于两组分的协同作用得到了另一种热-电导功能复合材料, 借助类似关系可以通过各种功能材料复合成各种功能复合材料
Y/X(状态1)
磁/压力
磁场/压力
电场/压力 电场/压力 应变/磁场 应变/磁场 温度差/磁场 应变/磁场 应变/电场
磁场/光 电场/光 电场/光 同位素 同位素
1 、加权特性
N
Pc (Pi ) n Vi
i 1
Pc为复合材料的特性,Pi为构成复合材料的原 材料的特性,Vi为构成复合材料的原材料的体积分 数,n由实验确定,其范围为 -1n1。密度、热膨 胀系数热传导、电导、透磁率等都属于此类。
2、乘积特性
把两种性能可以相互转换的功能材料――热-形变材料(以 X/Y表示)与另一种形变-电导材料(Y/Z)复合,其效果是:
对于平行于纤维方向和垂直于纤维方向的单向板,η0分别为 1和0,对于面内随即分布的纤维复合材料η0=3/8,三维随 机分布纤维复合材料η0=1/5
二、 物理性能的复合法则
对于复合材料,最引人注目的是其高比强度、高 比模量等力学性能。但是其物理性能也应该通过 复合化得到提高。 复合法则有两种: 1、加权(平均)特性 2、乘积(传递)特性
相关文档
最新文档