数学文化论文.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈数学史与数学文化
理学院数学081张林静081002138
内容提要:
数学的思想、精神、文化对于人类历史文化变革有着重要的影响。我们正是在这一意义下来学习、讨论、研究数学文化的。
关键字:数学方法数学发展三次数学危机数学美数学与哲学
一智慧展现——数学方法和数学思想
数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,。数学的方法是贯穿了整个数学,也是学习数学的基础。数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;分析与综合;这些方法之间有联系又有区别。(一)、具体与抽象:具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。这种抽象方法,人们一般冠以公理化方法。它大大拓宽了人们的视野,从只抽象个别对象扩展到抽象整个数学理论的逻辑结构。现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。(二)、演绎与归纳:演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。恩格斯在《自然辩证法》中说:“我们用世界上的一切归纳法都永远不能把归纳过程弄清楚,只有对这个过程的分析才能做到这一点——归纳与演绎,正如分析与综合一样是必然相互联系着的,不应当牺牲一个而把另一个捧上天,应当把每一个用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。”(三)、发现与证明:
发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。德国数学家曾宣称:当n大于2时,不存在一个整数n次幂是另外两个整数n次幂之和。数学家韦尔斯花了34年心血来解这道难题,并获得沃尔夫奖。许许多多数学猜想是由简单到复杂无休无止地产生出来。一个猜想解决了,又猜想出来了,数学家们总有解决不完的猜想。许多重要猜想,总能吸引众多数学家为此皓首穷经。在证明各个猜想的过程中,数学们会取得一系列重要理论成果。(四)、分析与综合:分析是由未知去推导已知,在假定的前提下导出结论,而这一结论恰恰是已给出的条件或已知的命题。综合是由已知命题开始,通过演绎、归纳能一连串来导出未有的命题,或解决所要给出的问题的解。
善于结合运用这些数学方法可以更好的来解决数学问题和体会数学的内涵。
二、成长与磨砺——数学的发展
写关于数学文化不得不写数学的发展。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也经历的很多的坎坷,在磨砺中也得以不断的成长。
首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。古埃及文化可追溯到公元前4000年,在那里,公元前3200年就已有了统一的国家。公元前2900年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前2000年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念。从大约公元前1800年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高无上的。它广泛的吸取了其他文明中的有价值的东西,创立了自己的文明与文化,对西方文明乃至世界文明的发展起了重要作用;同时,在中亚和东方也创造了灿烂的数学文化。自公元前8世纪起,印度已有一些丰富的数学知识。中国数学是世界数学史中的
瑰宝,在仰韶文化中,已经出土的陶器上已刻有用|,||,|||,||||等表示1,2,3,4的记号。西安半坡出土的陶器中就有用圆点堆成的三角形或正多边形。
然后是常数学阶段,这时期,数位希腊数学家取得辉煌成就,在2000年时间内,希腊人创造的文明一直延续到牛顿时代。M.克莱因在评价希腊人的《几何原本》和《圆锥曲线》时说:“从这些精心撰述的著作中,我们看得出此前三百年间数学上的创造性工作,或此后数学史上关系重大的一些问题。”说道希腊时代的辉煌,不得不提到希腊璀璨的数学家们。毕达哥拉斯,曾被人们认为是一个神秘主义者,他把证明引入了数学,这也是他最伟大的功绩之一。毕达哥拉斯还提出了抽象,抽象引发了几何的思辨,从实物的数与形,抽象到数学上的数与形,本身就把数学推向科学的开始。在希腊数学时期还有芝诺的四个简单悖论,这四个简单悖论震惊了哲学界。在希腊数学里最主要的工作精华和最大的光荣落在了欧几里德和阿波罗尼奥斯的头上。欧几里德撰写的《几何原本》是古希腊数学的集大成,它充分发挥了希腊哲学的优势,借助演绎推理,展现给人们一个完整的典范的学科系统。。阿波罗尼奥斯的突出工作是《圆锥曲线论》,《圆锥曲线论》的杰出工作,几乎将圆锥曲线的所有性质开采殆尽,以至使后代许多几何学工作者至少是在笛卡尔之前的近2000年间,不敢对此再有发言权。后人提到评价圆锥曲线,评价阿波罗尼奥斯,就联想到我国李白登黄鹤楼时,看到崔颢诗后的“眼前有景道不得,崔颢题诗在上头”的那样一种心情。还有阿基米德的得意之作《论球与圆柱》,也是数学上的杰作。中国著作《九章算术》给出了三元一次方程组的解法,同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则,也给出了求平方根和立方根的方法。
然后就进入了变量数学建立时期,有笛卡尔著作《几何学》,以及牛顿和莱布尼兹创立的微积分,,在数学发展史上是很重要的一个里程碑。在大一的时候就学了微积分,微分及其中的变量、函数和极限等概念,运动、变化等思想,是辩证法渗入了全部数学:并使数学成为精确表述自然科学和技术的规律及有效地解决问题的有力工具。
最后是现代数学时期,其中比较突出的问题是高于四次的代数方程的根式求解问题、欧几里德几何中平行线公设的证明问题和微积分方法的逻辑基础问题。代数、几何、分析领域中这些问题得以研究和解决,数学学科的分支得以迅速发