运筹学整数规划案例
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1
-x5 ≥0
x1,
x2,
x 3,
x 4, x 5=0 或 1
2. 背包问题
背包问题由来以久,它是从旅行者如何选择放在 背包中的用品引出的。
旅行者可背负的重量有限,但旅行者需要携带的 物品很多,如:食品、水、衣物、帐篷、急救用品等 等,旅行者不可能将所有想携带的物品都统统背上, 他只能选择那些最重要的物品随身携带,又不超过他 可能负担的最大重量,为解决这个问题,旅行者可给 每种物品指定一个重要性系数,他的目标是在小于一 定重量的前提下,使所携带的物品的重要性系数之和 最大。
解:
令0-1变量为决策变量,即xi=1表示选中项目i, 否则xi=0表示项目i未被选中。则模型可以表示为:
max z= 150x1 +210x2 +60x3 +80x4 +180x5
s.t.
210x1 +300x2 +100x3 +130x4 +260x5 ≤600
x1
+x2
+x3
=1
x3
+x4
=1
设每个月从仓库i运往地区j的产品的货物数量为xij,引入0- 1变量yi= 1表示在Ai设立仓库,否则不设。
设每个月的总花费为z,则上述问题的数学模型为
Min z=200x11+400x12+500x13+300x21+250x22+450x23
+600x31+400x32+250x33+300x41+150x42+350x43+45000y1+5000
整数规划建模
应用最广泛的整数规划问题是各种类型的决策问 题,决策者希望模型能回答诸如:是否要执行某些项 目(或某些活动),在什么时候或什么地点执行等决 策问题,回答这类“是—否”或“有—无”问题可借助整 数规划中的0-1整数变量。
0-1整数变量只有两个选择,0由于它在数学上的 特性可以很好的代表“无”或“否”,而1则可以很好地 表“有”或“是”。0-1变量由于它的特殊性也被称为二 制变量、决策变量或逻辑变量。
y2-y4≤0
y1+y2+y3+y4≤3
y3+y4 ≤ 1
工厂选址运输问题
设有n个需求点,有m个可供选择的厂址, 每个厂址只能建一个工厂,在i处建厂,生产 能力为Di,单位时间的固定成本为ai,需求点 j的需求量为bj,从厂址i到需求点j的单位运费 为Cij,问应如何选择厂址才能获得经济上的总 花费最小的方案。
与0-1变量相关的几个实际问题
1. 投资问题 现有总额为b的资金可用于投资,共有n个项目可
供投资者选择,已知项目j所需投资额为aj,投资后可 得利润cj(j = 1,2,…,n),不妨设b,aj,cj 均是 整数,试问为使所得利润最大,应选取那些项目进行
投资?
1…对项目j百度文库资
先引入0-1变量xj,令 xj= 0…否则 n max c j x j
0-1变量的作用
1…方案j被选中 1. xj=
0…方案j未被选中
n
2. 从n个方案中必须选中一个: x j 1 j 1 n
3. 从n个方案中最多选中m个: x j m j 1
4. 方案i只有在方案j选中时,才可能被选中:
xi x j
5. 方案i与方案j是否选中是同时的: xi x j
j 1
则可得到如下整数规划问题:
n
aj
xj
b
j 1
x j 0或1,j 1,2,,n
例1:华美公司有5个项目被列入投资计划,各项目的投 资额和期望的投资收益见下表:
项目
投资额(万元)
投资收益(万元)
1
210
150
2
300
210
3
100
60
4
130
80
5
260
180
该公司只有600万元资金可用于投资,由于技术上 的原因,投资受到以下约束:①在项目1、2和3中必须 有一项被选中;②项目3和4只能选一项;③项目5被选 中的前提是项目1必须被选中。问如何在上述条件下选 择一个最好的投资方案,使投资收益最大。
例2 :一登山队员做登山准备,他需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设备 每种物品的重要系数和重量如下表所示,假定登山队 员可携带的最大重量为25千克。问他如何抉择?
序号 1 2 3
4
5
6
7
物品 食品 氧气 冰镐 绳索 帐篷 照相 通讯 器材 设备
重量 5 5 2
6 12 2
北京 上海 广州 武汉
华北 200 300 600 300
华中 400 250 400 150
华南 500 450 250 350
公司希望在满足地区需要的前提下使平均月成本最小,且还 要满足以下条件:①如果在上海设立库房,则必须也在武汉设库 房;②最多设立三个库房;③武汉和广州不能同时设立库房。
请建立一个满足上述要求的整数规划模型。
3. 工厂选址运输问题
例3.一公司考虑在四个城市:北京、上海、广州和武汉设立库房。 这些库房负责向三个地区:华北、华中和华南地区发运货物,每
个库房每月可处理货物1000件。在北京设库房每月的成本为4.5万 元。上海为5万元,广州为7万元,武汉为4万元。每个地区的月平 均需求量为:华北每月600件,华中每月700件,华南每月800件。 发运货物的费用(元/件)见下表:
4
(千克)
重要系数 20 15 18 14 8
4 10
解:
令xi=1表示登山队员携带物品i,xi=0表示 不带物品i。则问题可写为:
Max z =20x1+15x2+18x3 +14x4+8x5+4x6+10x7
s.t. 5x1+ 5x2 + 2x3 +6x4+12x5+2x6+4x7≤25 xi=1或0,i=1,2,…,7
背包问题应用(作业) 要把7种规格的包装箱装到两辆铁路平板车上去,包装 箱的宽和高相同,但厚度和重量不同,见下表:
每辆车有10.2m长的地方可以用来装箱(类似面包片), 载重为40吨。C5, C6 , C7 ,三类包箱所占总空间 (厚度)不超过302.7cm,试建立数学模型,尽量将这 些包装箱装到平板车上去,使浪费的空间最小。
0y2+70000y3+40000y4
s.t.
x11+x12+x13≤1000y1
x21+x22+x23≤1000y2
x31+x32+x33≤1000y3
x41+x42+x43≤1000y4
x11+x21+x31+x41≥600
x12+x22+x32+x42≥700
x13+x23+x33+x43≥800