苏教版数学高一必修4素材 1.3理解三角函数的周期性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 理解三角函数的周期性
问题的提出
等式sin(2π)sin ()x k x k +=∈Z ,及cos(2π)cos ()x k x k +=∈Z 成立,sin y x x =∈R ,和cos y x x =∈R ,的图象每隔2π重复.
函数周期性定义:对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 叫做周期函数,非零常数T 叫做这个函数的周期.
1.理解定义时,要抓住定义域内任一个x 都满足()()f x T f x +=成立才行 如:πππsin sin 424⎛⎫+= ⎪⎝⎭,5ππ5πsin sin 424⎛⎫+= ⎪⎝⎭,但πππsin sin 626⎛⎫+≠ ⎪⎝⎭
, π2
∴不是sin y x =的周期. 周期并不惟一,若T 是()y f x =的周期,那么2T 也是()y f x =的周期. 这是因为(2)[()]()()f T x f T T x f T x f x +=++=+=;
若T 是()y f x =的周期,k ∈Z 且0k ≠,则kT 也是()f x 的周期. 2π是函数sin y x =和cos y x =的周期,那么2π(0)k k k ∈≠Z 且也是sin y x =和cos y x =的周期.
2.最小正周期的概念
如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.
例如:函数sin y x =的周期2π2π4π4π--,,,,…中,存在最小正数2π,那么2π就是sin y x =的最小正周期.函数cos y x =的最小正周期也是2π.
例1 求下列函数的最小正周期T .
(1)()3sin f x x =;
(2)()sin 2f x x =;
(3)1π()2sin 2
4f x x ⎛⎫=+ ⎪⎝⎭. 解:(1)()3sin 3sin(2π)(2π)f x x x f x ==+=+,最小正周期2πT =.
(2)()sin 2sin(22π)sin 2(π)(π)f x x x x f x ==+=+=+,最小正周期πT =;
(3)1π1π()2sin 2sin 2π2424f x x x ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭1π2sin (4π)(4π)2
4x f x ⎡⎤=++=+⎢⎥⎣⎦, 最小正周期4πT =.
总结一般规律:sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期是2πω;
tan()y A x ωϕ=+的最小正周期是πω.
例2 求证:1π2sin 2
3y x ⎛⎫=+ ⎪⎝⎭的周期为2π. 证明:1π2sin 2
3y x ⎛⎫=+ ⎪⎝⎭的周期为2π4π12
=, 根据函数的图象特征,可知函数的周期减半,故其周期为2π. 注:遇到求形式较复杂的函数的周期时要结合函数图象处理.