GJ型轨检车原理及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GJ-5轨检车原理及应用
GJ-5型轨检车原理及应用
一、轨道动态检查技术的发展变化
轨道动态检查相比静态检查,更准确,也更能反映线路真实情况,更能评价列车运行安全性指标,因此轨检车一直是检查轨道病害、指导线路养护维修、保障行车安全的重要手段。我国轨道动态检查技术随着计算机技术和检测技术的发展得到迅速的发展,从二十世纪50年代的GJ-1型轨检车发展到目前的GJ-5型轨检车,检测精度和可靠性大大提高。
1、GJ-1型轨检车采用弦测法,机械传动,可以将轨距、水平、三角坑、摇晃(用单摆测量)项目的幅值绘在图纸上,人工判读超限并计算扣分。
2、GJ-2型轨检车仍采用弦测法,但改为电传动,检测项目比GJ-1型增加了高低,也是需要人工判读超限和计算扣分。我局1988-1993年使用该型车。
3、GJ-3型轨检车于80年代初期研制成功,是我国轨检车技术的一次大飞越,采用先进的传感器技术、计算机技术和惯性基准原理,可以检测高低、水平、三角坑、车体垂直和水平振动加速度等项目,计算机采集各检测项目数据后,判断超限等级并计算扣分。我局GJ-3型轨检车
(SY997737)于1994年初开始运用,是全路GJ-3型运用时间最长的,也是用得比较好的。
a、1999年我局轨检车技术人员研发的Ⅲ型轨检车实用软件成果是工务部门汇总分析轨检车检查数据、指导养护维修线路的工具,它使轨检车的工作效率和工作质量得到了大大的提高,该成果达到了国内领先水平,于2000年通过了局级鉴定,并于2002年获得路局科技进步三等奖。
b、为了均衡地提高线路养护维修的质量,我局轨检车技术人员研发了轨道质量指数(TQI)应用软件,并于2003年局工务维修会议上向各工务段推广应用,便于向各工务段掌握线路的动态质量,科学指导线路养护维修,真正做到状态修,收到了很好的效果。
c、2004年我局轨检车技术人员研发GPS(全球定位系统)自动校正里程系统,该系统能自动校正轨检车里程,消除轨检车测量的里程累计误差,便于各段准确定位检查病害处所,查找和整治线路病害,保证行车安全和提高线路保养质量。
d、2004年我局轨检车技术人员在原GJ-3型轨道检测系统的基础上,完成轨道几何参数变化率设计和开发,轨道几何参数变化率大大方便线路病害的查找和整治。
4、GJ-4型轨检车。1985年我国引进美国ENSCO公司T-IO轨检车,研制成功XGJ-1型轨检车,并在此基础上研制成功GJ-4型轨检车。GJ-4型轨检车采用惯性基准检测原理,“捷联式”系统结构(GJ-3型各子系统采用组合式),
计算机对各种误差信号进行补偿修正,并使用小型计算机集中处理全部检测项目数据。检测项目齐全,包括轨距、轨向、高低、水平、三角坑、车体垂直和水平振动加速度、超高、曲率、地面标志等。
由于GJ-3型和GJ-4型轨检车所使用的轨距梁存在严重的安全隐患,目前GJ-3型轨检车已基本报废,大多GJ-4型轨检车也进行了改造,淘汰了原用轨距伺服跟踪测量系统,采用和GJ-5型轨检车一样的激光摄像测量系统。
GJ-4型轨检车轨检车原理
轨检车的检测原理:1、轨距的检测原理:GJ-4型轨检车所采用的轨距检测系统为激光光电伺服跟踪轨距测量装置。在测量梁上安装激光光电传感器、位移计、驱动马达及伺服机械。当钢轨产生位移,使轨距变化时,光电传感器感受其变化并输出相关电信号。经调制解调器处理后,成为与轨距变化成线形比例的电压信号,再经过信号处理器、功放、驱动马达使光电传感器在伺服的推动下,发出的光束投身到左右股钢轨顶面下16mm处(16mm处是有效位置),跟踪钢轨位移。经计算显示轨距。(光电头被堵住、就不能检测轨距、同时也不检测方向)。监测范围1415mm---1480mm;+45mm、–20mm,误差为±1mm。2、曲率的检测原理:曲率为一定弦长曲线轨道(如30米)对应的圆心角a,即、度/30m、度数大、曲率大、半径小。反
之,度数小、曲率小、半径大。轨检车通过曲线时、测量轨检车每通过30米后车体方向角的变化值,计算出轨检车通过30米后的相应圆心角的变化值。即曲率。曲率、曲率变化率是检测曲线圆度的波形通道、仅供参考、不作考核内容。能正确判断曲线正矢连续差和曲线的圆度。曲率变化率的波形通道有突变、正矢肯定不好,(50×曲率)=正矢、如:某曲线曲率为0.46、正矢=50×0.46=23mm。在直线上存在碎弯、小方向或轨距递减不好。3、水平的检测原理:水平为轨道同一横断面内钢轨顶面之高差。曲线水平称为超高。GJ-4型轨检车采用补偿加速度系统测量水平,利用补偿加速度系统测量车体对地垂线滚动角,利用位移计测量车体与轨道相对滚动角,二者结合计算出轨道倾角。利用两轨道中心线间距(1500mm)计算出水平值。监测范围±200mm,误差±1.5mm。4、高低的检测原理:高低是指钢轨顶面纵向起伏变化。GJ-4型轨检车采用惯性基准的原理测量轨道变化的实际波型,得到高低变化的空间曲线,数据采集处理系统实时采集数据的间隔距离为0.305m,同时可换算成5米、10米、20米或其它弦长之测量法测量。测量高低的传感器除了测量曲率、水平外,另外还有2个垂直加速度计。通过车体位移,计算出轨面相对惯性空间的位移变化,进行必要的处理,得到高低数值。监测范围±60mm,误差±1.5mm。高低摸拟弦长18.6米。5、方向的检测原理:方向指钢轨
内侧面轨距点沿轨道纵向水平位置的变化。利用左右股轨距测量装置所测的左右股轨距变化或位移,轨距点相对纵向轨迹—轨向。监测范围±100mm,误差±1.5mm 。摸拟弦长18.6米。6、扭曲(三角坑)的检测原理:扭曲反映了钢轨顶面的平面性。如图:设轨顶面abcd四个点不在一个平面上,c点到abd三个点组成的平面的垂直距离h为扭曲。扭曲会使车轮抬高面悬空,使车辆产生3点支撑1点悬空,极易造成脱轨掉道。扭曲值h为:h=(a-b)-(c-d)h=△h1-△h2。△h1为轨道横断面I---I的水平值,△h2为轨道断面Ⅱ--Ⅱ的水平值,△h1-△h2为基长L(断面I—I与断面Ⅱ--Ⅱ之间距)时两轨道断面的水平差。水平已经测出,所以只要按规定基长取两断面水平差即可计算出扭曲值。
二、GJ-5型轨检车检测原理简介
2002年我国从美国IMAGEMAP公司引进GJ-5型轨检车。GJ-5型轨检车仍然采用惯性基准测量原理,但引入了全新的激光摄像测量、网络和数据库技术,包含轨道几何测量系统、车体振动加速度测量系统、GPS里程自动修正系统,环境监视系统等。轨道几何测量系统包含轨距、轨向、高低、水平、三角坑、超高、曲率等项目,车体振动加速度测量系统包含车体垂直加速度和水平加速度两个项目。根据新的轨道动态管理标准,GJ-5型轨检车在原有项目上增加了高低、轨向长波长(70m)、轨距变化率、曲率变化率和