概率论各章精选习题

概率论各章精选习题
概率论各章精选习题

概率论与数理统计 第七章习题附答案

习题7-1 1. 选择题 (1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) . (A) X 和S 2 . (B) X 和21 1()n i i X n μ=-∑ . (C) μ和σ2 . (D) X 和 21 1 ()n i i X X n =-∑. 解 选(D). (2) 设[0,]X U θ , 其中θ>0为未知参数, 又12,,,n X X X 为来自总体X 的样本, 则θ的矩估计量是( ) . (A) X . (B) 2X . (C) 1max{}i i n X ≤≤. (D) 1min{}i i n X ≤≤. 解 选(B). 3. 设总体X 的概率密度为 (1),01, (;)0, x x f x θθθ+<<=???其它. 其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量; (2) θ的极大似然估计量. 解 总体 X 的数学期望为 1 10 1 ()()d (1)d 2 E X xf x x x x θθθθ+∞ +-∞ +==+= +? ?. 令()E X X =, 即12 X θθ+=+, 得参数θ的矩估计量为 21?1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为 1(1),01,0, n n i i i x x L θθ=?? ?+<0且 ∑=++=n i i x n L 1 ln )1ln(ln θθ, 令 1 d ln ln d 1 n i i L n x θ θ== ++∑=0, 得

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计教程第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

概率论第一章习题参考解答

概论论与数理统计 习题参考解答 习题一 8. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面} 基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.0812 1)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门 基本事件总数210C n =, 有利于A 的基本事件数2 7C n A =, 467.0157910212167)(21027==?????==C C A P 因此, 533.0467.01)(1)(=-=-=A P A P . 10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少? 解: 设A ={能打开门}, 基本事件总数2412344=???==P n , 有利于A 的基本事件数为2=A n , 因此, 0833.012 1)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率. 解: 设A i 为取到i 个次品, i =0,1,2,3, 基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i 则

00006.09833512196979697989910054321)(006.098 3359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(510029733510039723225100 49711510059700=??==???????????====??= ??????????????====???= ????????????????=?===????=????????===C C n n A P C C C n n A P C C n n A P C C n n A P 12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n , 基本事件总数n N C m =, 有利于事件A k 的基本事件数k n N N k N k C C m --=11,k =0,1,2,…,n , 因此, n k C C C m m A P n N k n N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率. 解: 设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310 121315==???????===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率. 解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件, 则基本事件总数1644=?=n , 有利于A 的基本事件数422=?=A n , 有利于B 的基本事件数632=?=B n , 则25.04 1164)(====n n A P A 375.083166)(====n n B P B .

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论与数理统计(经管类)第七章课后习题答案word

习题7.1 1.设总体X服从指数分布 试求的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取18个电子元件,测得寿命数据如下(单位:小时): 16, 19, 50, 68, 100, 130, 140, 270, 280, 340, 410, 450, 520, 620, 190, 210, 800, 1100. 求的估计值. 解: 似然函数为 令 得 2.设总体X的概率密度为 其他 试求(1)的矩估计的极大似然估计 解: (1) 的矩估计 (2) 似然函数为

令 解得 3.设总体X服从参数为的泊松分布试求的矩估计和极大似然估计(可参考例7-8) 解:由服从参数为的泊松分布 由矩法,应有 似然函数为 解得的极大似然估计为 习题7.2 1.证明样本均值是总体均值的相合估计 证: 由定理知是的相合估计 2.证明样本的k阶矩是总体阶矩的相合估计量 证: 是的相合估计 3.设总体为其样品试证下述三个估计量 (1) (2)

(3) 都是的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证: 都是的无偏估计 故的方差最小. 4.设总体其中是未知参数又为取自该总体的样品为样品均值 (1)证明是参数的无偏估计和相合估计 (2)求的极大似然估计 (1)证: 是参数的无偏估计 又 是参数的相合估计 (2)故其分布密度为 其他 似然函数 其他 因对所有有

习题7.3 1.土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度.现从中 抽取容量为6的样本测得样本观测值并算的求的置信度的置信区间 解: 置信度为的置信区间是 2.设轮胎的寿命X服从正态分布,为估计某种轮胎的平均寿命,随机地抽取12只轮胎试用,测得它们的 寿命(单位:万千米)如下: 4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.7 试求平均寿命的的置信区间(例7-21,未知时的置信区间) 解:查分布表知 平均寿命的的置信区间为 3.两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径X,Y分别服从 其中未知现由甲,乙两车床的产品中分别抽出25个和15个,测得 求两总体方差比的置信度0.90的置信区间. 解:此处 的置信度0.90的置信区间为: 4.某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下: 14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8 设滚珠直径服从正态分布,若 (1)已知滚珠直径的标准差毫米; (2)未知标准差

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θ θd θL d x θc θn θn θL

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计习题第七章

概率论与数理统计习题 部分习题简答 习题七 2. 解 =1α(),E X λ=由X A ==11?α 参数λ的矩估计量为.X λΛ = 3. 解 由()()12 2 1 ()3E X xf x dx x x dx α αααα +∞ -∞ ===-=?? ,得 13αα=, 由X A ==11?α , 所以α的矩估计量 3.X αΛ = 4. 解()()1 111 1 ,n n n n i i i i i i L f x x x θθθθθθ --======∏∏C ,()1ln ln (1)ln n i i L n x θθθ==+-∑, 令 ()1ln ln 0n i i d n x d θθθ==+=∑,所以,θ的极大似然估计值为 1ln n i i n x θΛ =?? ? ?=- ? ??? ∑. 5. 解 ()111122n i i i x x n n n i L e e σ σσσ σ=--=∑??== ? ??? ∏ ,()1ln ln 2ln n i n i x L n σσσ==---∑, 令 ()1 2 ln 0n i i x d n d σσ σ σ==- + =∑ ,得1 1n i i x n σ==∑ , 所以,σ的极大似然估计量为 1 1n i i X n σΛ ==∑. 6. 解 (1) 由=1α()22()12213(1)32,E X θθθθθ=?+?-+-=- 可得2 31 αθ-= 由X A ==11?α , 所以θ的矩估计量为3-,2 X θΛ = 根据给定的样本观测值计算得到 14 (121).33 x =++= 所以6 5234 3?=- =θ ,即θ的矩估计值为5.6θΛ=

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

最新概率论第一章习题答案资料

概率论 11、甲、乙两艘轮船驶向一个不能同时停泊两艘船的码头停泊.它们在一昼夜内到达码头的时刻是等可能的.如果甲船停泊的时间是一小时,乙船停泊的时间是两小时,求这两艘船都不等候码头的概率. 解: 分别用x、y表示甲、乙船到达时刻,在直角坐标系下作直线x=24、y=24,它们与x轴及y轴围成一个正方形,点(x,y)总是落入这个正方形的; 作直线y=x+1与y=x-2,如果点(x,y)落入两直线所夹以外区域就不需要等待,所以不需要等待的概率为: p=(22*22/2+23*23/2)/(24*24)=1013/1152≈0.879340277777778 25、已知男人中5%是色盲患者,女人中有0.25%;今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男人的概率是多少? 解: 可以算出色盲的人占总人数的比率是5%x50%+0.25%x50%=2.625%,而在2.625%的人中,男的占5%x50%,所以是男的几率为5%x50%除以2.625%=20/21

第一章随机事件与概率 1.设A,B,C为三个事件,试用A、B、C表示下列事件,并指出其中哪俩个事件是互逆事件:1)仅有一个事件发生;2)至少有一个事件发生;3)三个事件都发生;4)至多有两个事件发生;5)三个事件都不发生;6)恰好两个事件发生。 用a,b,c分别表示A,B,C的补事件,那么有 1) abC∪aBc∪Abc 2) 1-abc 3) ABC 4) 1-ABC 5) abc 6) ABc∪AbC∪aBC 其中(2)和(5) (3)和(4) 是互逆事件

2.设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AC)=1/8,P(AB)=P(BC)=0,求A、B、C至少出现一个的概率。 因为P(AB)=0,所以P(ABC)=0,所以P(A+B+C)=PA+PB+PC-PAB-PAC-PBC+PABC=5/8 3.设A,B为随机事件,P(A)=0.7,P(A-B)=0.3,求P(AB(—))。 因为P(A-B)=P(A)-P(AB), 所以P(AB)=P(A)-P(A-B)=0.7-0.3=0.4 4.若事件A、B满足P(AB)=P(A(—)∩B(—)),且P(A)=1/3,求P(B)。 P(AB)=P(非A∩非B) =P[非(A∪B)] =1-P(A∪B) =1-[P(A)+P(B)-P(AB)] 整理得P(A)+P(B)=1 P(B)=1-P(A) =2/3 5.一个袋中有5个红球2个摆球,从中任取一球,看过颜色后就放回袋中,然后再从袋中任取一球。求:1)第一次和第二次都取到红球的概率;2)第一次取到红球,第二次取到白球的概率。 (1)、5/7*5/7=25/49, (2)、5/7*2/7=10/49 6.一批产品有8个正品,2个次品,从中任取两次,每次取一个(不放回)。求:1)两次都取到正品的概率;2)第一次取到正品,第二次取到次品的概率;3)第二次取到次品的概率;4)恰有一次取到次品的概率。 1)取到两个正品有56种取法 10个中取2次有90种取法 56/90=28/45 2)同理,8*2/90=8/45 3)(8*2+2*1)/90=1/5 4)(8*2+2*8)/90=16/45 7.长期统计资料得知,某一地区在4月份下雨(记作事件A)的概率为4/15,刮风(记作事件B)的概率为7/15,刮风又下雨(记作事件C)的概率为1/10,求:P(A|B),P(B|A),P(A∪B)。

概率论与数理统计浙大四版习题答案第七章

第七章参数估计 1.[ 一] 随机地取8只活塞环,测得它们的直径为(以 求总体均值卩及方差b 2的矩估计,并求样本方差 S 2。 n 2 6 (X i x) 6 10 i 1 S 2 6.86 10 6。 ln L(e ) nln(e ) n e inc (1 e ) In d 寫⑹ (1) f (x) e c e x (e 1},x c 0,其它 其中c >0为已知, e >1, e 为未知参数。 (2) f(x) 、e x e 1,0 x 1 0,其它. 其中e >0, e 为未知参数。 (5) P(X x) m p x (1 p)m x ,x 0,1,2, ,m,0 p 1, p 为未知参数。 解: ( 1) E(X) xf(x)dx c e c e x e dx e c e c e 1 e 1 e c 令 e c X e 1, 令 e 1 X X c (2) E(X) xf (x)dx e x e dx - 丄匚,令- '-e X ,We ( X )2 2.[二]设X , X ,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律 中的未知参数的矩估计量。 得e 1 e (5) -e 1 解:(1)似然函数 n L (e ) f (人)e n c n e (x 1 x 2 i 1 X n ) mm 计) 解:U,b 2的矩估计是 X 74.002 E (X ) = mp 令 mp = X ,解得?莖 m 3.[三]求上题中各未知参数的极大似然估计值和估计 量。 ln x i 0

(解唯一故为极大似然估计 量) In X i nln c i 1 ⑵ L(B ) n n _ f (X i ) e 2(X 1X 2 X n ) 0 1 ,ln L(B ) n 2~ n ln( 0) (0 1) In X i i 1 dI nL(0) n d 0 2 1 0 1 n In X i 0, i 1 ? (n In x i )2 0 (解唯一)故为极大似然 估 2.一 0 计量。 n m m n X i n mn 召 (5) L(p) P{X X i } p i1 (1 p) i1 , i - 1 X 1 X n n n n In L(p) In m X i x i In p (mn X i )l n(1 p), i 1 i 1 i 1 i 1 n mn x i i 1 0 1 p n X i d In L(p) i 1_ dp p n Xi - 解得 p q — —,(解唯一)故为极大似然估计量。 mn m 4.[四(2)]设X , X,…,X.是来自参数为入的泊松分布总体的一个样本,试求入 的极大似然估计量及矩估计量。 解:(1)矩估计 X ~ n 入),E ( X )=入,故*= X 为矩估计量。 (2)极大似然估计L (入) n P(X i ;入) 1 n X i *1 X 1 !X 2! X e n *, In L(入) i X i In In X i ! d In L(入) d 入 n X i i 1 入 0 ,解得* X 为极大似然估计 量。

相关文档
最新文档