参数多项式与样条曲线

第五章 参数样条曲线曲面

第五章 参数样条曲线曲面

第一节 C 1 分段三次Hermite插值2009- 08- 29 2

一、参数连续性 1、参数连续性与曲线光滑度 对于显式函数表示的曲线,函数的可微性与曲 线的光滑度是紧密联系的。例如: y ax b =+ 一次函数表示的直线 2 =++ 二次曲线 y ax bx c 32 =+++ 三次曲线 y ax bx cx d 对于显示曲线,函数的C 0 ,C 1 和C 2 连续分别表 示函数的图形、切线方向、以及曲率连续。 2009- 08- 29 3

2009- 08- 29 4 一、参数连续性 但是对于CAGD中大量涉及到的参数曲线,参数 方程的可微性与曲线的光滑性却没有必然的联系。 例如:如图的两条首尾相连的n次Bezier曲线: (1)(1)(2) 10 n n b b b - == r r r 根据Bezier曲线的知识可知,这两条首尾相连的曲 线在连接点是C 1 连续的,但显然该点是个尖点,切线 方向是不连续的。

2009- 08- 29 5 一、参数连续性 同理,如果让首尾相连的两条n次Bezier曲线的最 后三个控制顶点和最前面三个控制顶点重合,即: (1)(1)(1)(2)(2)(2) 21012 n n n b b b b b b -- ===== r r r r r r 根据Bezier曲线的知识可知,这两条首尾相连的曲 线在连接点是C 2 连续的,但显然在该点处曲率是不连 续的。

一、参数连续性 上两个例子说明,曲线的参数连续性并不 能保证曲线的光滑性。反过来,曲线的光滑性 也不一定需要相应的参数连续性。例如曲线的 二阶几何连续可以保证曲线的曲率是连续的, 但这时曲线甚是连C 1 连续也不一定满足。 另外,参数曲线的参数连续性也是与曲线 的参数化有关的,同一条曲线采用不同的参 数,参数的连续性情况可能不同。 2009- 08- 29 6

matlab多项式拟合

matlab_最小二乘法数据拟合 (2012-10-21 12:19:27) 转载▼ 标签: matlab 最小二乘 数据拟合 定义: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最 小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之 间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一 些优化问题也可通过最小化能量或最大化熵用最小二 乘法来表 达。 最小二乘法原理: 在我们研究两个变量(x,y)之间的相互关系时,通 常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);

将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Yj= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 1.多项式曲线拟合:polyfit 1.1常见拟合曲线: 直线:y=a0X+a1 多项式: 一般次数不易过高2 3 双曲线:y=a0/x+a1 指数曲线:y=a*e^b 1.2 matlab中函数 P=polyfit(x,y,n) [P S mu]=polyfit(x,y,n) polyval(P,t):返回n次多项式在t处的值 注:其中x y已知数据点向量分别表示横纵坐标,n 为拟合多项 式的次数,结果返回:P-返回n次拟合多项式系数从高到低 依次存放于向量P中,S-包含三个值其中normr是残差平方

和,mu-包含两个值mean(x)均值,std(x)标准差。 1.3举例 1. 已知观测数据为: X:0 1 2 3 4 5 6 7 8 9 1 Y:-0.447 1.987 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2 用三次多项式曲线拟合这些数据点: x=0:0.1:1 y=[- 0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,1 1. 2] plot(x,y,'k.','markersize',25) hold on axis([0 1.3 -2 16]) p3=polyfit(x,y,3) t=0:0.1:1.2: S3=polyval(P3,t); plot(t,S3,'r');

最小二乘法多项式拟合

最小二乘法多项式拟合 对于给定的数据点N i y x i i ≤≤1),,(,可用下面的n 阶多项式进行拟合,即 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。 确定上述多项式的过程也就是确定)(x f 中的系数n k a k ≤≤0,的过程,根据最小二乘原则,则偏差平方和应该是这些系数的函数,即 为使上式取值最小,则其关于n k a k ≤≤0,的一阶导数应该为零,即有 将上面各等式写成方程组的形式可有 写成矩阵形式有 上述方程组可以通过克莱姆法则来计算,从而解出各系数n k a k ≤≤0,得到拟合方程。 考虑到一般情况提高拟合多项式的阶数并不能提高拟合精度,所以常用的多项拟合阶数为一阶和二阶,即线性拟合和二次拟合。两者的计算公式如下: 关于线性拟合,除上面按克莱姆法则来计算外,还可以有另一思路,下面对

此进行说明。由于是线性拟合,最后得到的是一条直线,因此,直线可以由斜率和截距两个参数来确定,因此,求出这两个参数即可。首先对克莱姆法的求解结果进行展开可以得到 下面考虑先计算斜率再计算截距的方法,从下图可见,斜率计算与坐标系的 位置无关,所以可以将坐标原点平移到样本的i x 和i y 坐标的均值所在点上 图中 则在新的坐标系),(y x ''下斜率的计算公式与前面1a 的计算公式相同,将其中的坐标 ),(y x 换成),(y x ''即可得到下面的计算公式 由样本在新坐标系下的坐标i x '和i y '的均值为零,或者由下面推导可知 则斜率的计算公式可以简化为 还原为原坐标有 下面推导截距的计算公式 x '

曲线拟合(数值 (C语言))

(1)曲线拟合: #include #include #define MAX 100 void main() { int i,j,k,m,n,N,mi; float tmp,mx; float X[MAX][MAX],Y[MAX],x[MAX],y[MAX],a[MAX]; printf("\n 输入拟合多项式的次数:\n"); scanf("%d",&m); printf("\n 输入给定点的个数n及坐标(x,y):\n"); scanf("%d",&N); printf("\n"); for(i=0;imx) { mi=i; mx=fabs(X[i][j]); } if(j

Y[j]=Y[mi]; Y[mi]=tmp; for(k=j;k<=m;k++) { tmp=X[j][k]; X[j][k]=X[mi][k]; X[mi][k]=tmp; } } for(i=j+1;i<=m;i++) { tmp=-X[i][j]/X[j][j]; Y[i]+=Y[j]*tmp; for(k=j;k<=m;k++) X[i][k]+=X[j][k]*tmp; } } a[m]=Y[m]/X[m][m]; for(i=m-1;i>=0;i--) { a[i]=Y[i]; for(j=i+1;j<=m;j++) a[i]-=X[i][j]*a[j]; a[i]/=X[i][i]; } printf("\n 所求的二次多项式为:\n"); printf("P(x)=%f",a[0]); for(i=1;i<=m;i++) printf("+(%f)*x^%d",a[i],i); } 输入拟合多项式的次数: 2 输入给定点的个数n及坐标(x,y): 5 1,2 5,3 2,4 8,3 -1,5 所求的二次多项式为: P(x)=3.952280+(-0.506315)*x^1+(0.050877)*x^2Press any key to continue

Matlab多项式拟合曲线

?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a 为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,ydata) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 1 0.58 10.6] ; plot(t,y,’o’) %画散点图 p=polyfit(t,y,2) (二次多项式拟合) 计算结果: p=-0.0445 1.0711 4.3252 %二次多项式的系数 由此得到某化合物的浓度y与时间t的拟合函数。 ?zjxdede | 2008-10-17 12:10:06 ?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,y data) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是 若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 1 0.55 10.58 10.6] ;

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

数值分析函数逼与曲线拟合

第三章 函数逼近与曲线拟合 1 函数的逼近与基本概念 1.1问题的提出 多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设 ()f x 是[1,1]-上的光滑函数,它的Taylor 级数0 ()k k k f x a x ∞ ==∑, ()(0) ! k k f a k = 在[1,1]-上收敛。当此级数收敛比较快时,1 1()()()n n n n e x f x s x a x ++=-≈。这个误差分布是不均匀的。当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经 济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

1.2范数与逼近 一、线性空间及赋范线性空间 要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。最常用的给集合赋予一种“加法”和“数乘”运算,使其构 成线性空间.例如将所有实 n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线 性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线 性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间. 在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间. 定义1 设 X 是数域K 上一个线性空间,在其上定义一个实值函数g ,即对于任意 ,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件 (1) 正定性:0x ≥,而且0x =当且仅当0x =; (2) 齐次性:x x αα=; (3) 三角不等式:x y x y +≤+; 实验数据 真函数 插值多项式逼近 精确的线性逼近 图1

数据拟合方法

第二讲 数据拟合方法 在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示 显然,连续函数关系 y (t )是客观存在的。但 是通过表中的数据不可能确切地得到这种关系。何况,由于仪器和环境的影响,测量数据难免有误差。因此只能寻求一个近拟表达式 y = (t )

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ?作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。 数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方 假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数 y= a + b x 中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即 a + b x k = y k 如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为 k k y bx a -+的差异(残差) 。于是全部点处的总误差是 ∑=-+10 1 k k k y bx a 这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函 数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 ∑=-+=10 12)(),(k k k y bx a b a F 达到极小。为了求该函数的极小值点,令 0=??a F ,0=??b F , 得

贝塞尔曲线和B样条曲线(优质参考)

§4.3 贝塞尔曲线和B 样条曲线 在前面讨论的抛物样条和三次参数样条曲线,他们的共同特点是:生成的曲线通过所有给定的型值点。我们称之为“点点通过”。但在实际工作中,往往给出的型值点并不是十分精确,有的点仅仅是出于外观上的考虑。在这样的前提下,用精确的插值方法去一点点地插值运算就很不合算;另外,局部修改某些型值点,希望涉及到曲线的范围越小越好,这也是评价一种拟合方法好坏的指标之一。 针对以上要求,法国人Bezier 提出了一种参数曲线表示方法,称之为贝塞尔曲线。后来又经Gorgon, Riesenfeld 和Forrest 等人加以发展成为B 样条曲线。 一、 贝塞尔曲线 贝塞尔曲线是通过一组多边折线的各顶点来定义。在各顶点中,曲线经过第一点和最后一点,其余各点则定义曲线的导数、阶次和形状。第一条和最后一条则表示曲线起点和终点的切线方向。 1.数学表达式 n+1个顶点定义一个n 次贝塞尔曲线,其表达式为: )()(0,t B p t p n i n i i ∑== 10≤≤t ),...,2,1,0(n i p i =为各顶点的位置向量,)(,t B n i 为伯恩斯坦基函数 i n i n i t t n i n t B ---= )1()! 1(!! )(, 2.二次贝塞尔曲线 需要3个顶点,即210,,p p p ,将其代入曲线表达式: 2,222,112,00)(B p B p B p t p ++=

220202,021)1() 1()! 02(!0! 2t t t t t B +-=-=--= - 21212,122)1(2)1()! 12(!1! 2t t t t t t B -=-=--= - 22222,2)1()! 22(!2! 2t t t B =--= - 221202)22()21()(p t p t t p t t t p +-++-= [ ] ?? ?? ? ???????????????--=2102 0010221211p p p t t 10≤≤t 2102)21(2)1(2)(tp p t p t t p +-+-=' )(222)0(0110p p p p p -=+-=' 0)0(p p = )(222)1(1221p p p p p -=+-=' 2)1(p p = 当2 1 = t 时: 21021041214141)412212()412121(21p p p p p p p ++=+?-?++?-=?? ? ?? )](2 1 [21201p p p ++= 02210212)2121(2)121(221p p p p p p -=?+?-+-=?? ? ??'

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

数据的n次拟合多项式

数据的n次拟合多项式 第一章绪论 1.1课题国内外研究动态,课题研究背景及意义 1.2国内外的研究现状 1.3发展趋势 第二章数据拟合的基本理论2.1 最小二乘曲线拟合 2.2 线性拟合函数 2.3 二次拟合函数 2.4多项式拟合函数 2.5 小结 第三章数据拟合的应用实例3.1 数据拟合在物理实验中的应用 3.2 数据拟合在经济监控中的应用 3.3 模型评价 参考文献 附录

第一章绪论 1.1课题国内外研究动态,课题研究背景及意义 数学分有很多学科,而它主要的学科大致产生于商业计算的需要、了解数字间的关系、测量土地及预测天文事件。而在科技飞速发展的今天数学也早已成为众多研究的基础学科。尤其是在这个信息量巨大的时代,实际问题中得到的离散数据的处理也成为数学研究和应用领域中的重要的课题。 在解决实际工程问题和科学实验的过程中,经常需要通过研究某些变量之间的函数关系,帮我们去认识事物内在的规律和本质属性,这些变量间的未知的关系一般隐含在从观测、试验而得到的一组离散的数据之中。所以,是否能够根据一组试验观测数据来找到变量之间的相对准确的函数关系成为了解决工程实际问题的关键。 在实际问题中,通过观测数据能否正确揭示某些变量之间的关系,进而正确认识事物的内在规律与本质属性,往往取决于两方面因素。其一是观测数据的准确性或准确程度,这是因为在获取观测数据的过程中一般存在随机测量误差,导致所讨论的变量成为随机变量。其二是对观测数据处理方法的选择,即到底是采用插值方法还是用拟合方法[1-3],插值方法之中、拟合方法之中又选用哪一种插值或拟合技巧来处理观测数据。插值问题忽略了观测误差的影响,而拟合问题则考虑了观测误差的影响。但由于观测数据客观上总是存在观测误差,而拟合函数大多数情况下是通过经验公式获得的,因此要正确揭示事物的内在规律,往往需要对大量的观测数据进行分析,尤为重要的是进行统计分析。统计分析的方法有许多,如方差分析、回归分析等。数据拟合虽然较有效地克服了随机观测误差的影响,但从数理统计的角度看,根据一个样本计算出来的拟合函数(系数),只是拟合问题的一个点估计,还不能完全说明其整体性质。因此,还应该对拟合函数作区间估计或假设检验,如果置信区间太大或包含零点,则由计算得到的拟合函数系数的估计值就毫无意义。 所以,据科学和工程问题可以通过比如采样、实验等方法而得到若干的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。也就是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的逼近函数“最优的” 靠近那些数据点,按照误差最小的原则为最优标准来构造出函数。我们称这个函数为拟合函数。 现在,对数据点进行函数拟合以获得信息模型是许多工程应用领域的一个核

SM2椭圆曲线参数选取

关于SM2椭圆曲线参数选取 一.安全的椭圆曲线的选取 1.椭圆曲线上的公钥密码体制的安全性是建立在椭圆曲线离散对数的基础上, 但并不是所有椭圆曲线都可以应用到公钥密码体制中, 为了保证其安全性, 必须选取安全椭圆曲线,即只有选到合适的有限域GF(p)和椭圆曲线(ECC),能够抵抗攻击ECDLP算法的攻击,才能保证所选ECC的安全性。 若某椭圆曲线存在优于n1/2级(n是基点阶次)计算复杂度的攻击方法,则称此曲线为弱椭圆曲线。Fp上的超奇异椭圆曲线(有限域Fp的特征整除q+1-#E(Fp))和Fp上的异常曲线(#E(Fp)=p)都是弱椭圆曲线。(国密局文档p4,p25A.4抗攻击椭圆曲线满足的条件)。下面是选取曲线时应遵循的原则:(一种椭圆曲线参数生成的快速算法) (1)为了抗击Pollard-ρ攻击,所选取椭圆曲线的阶#E(GF(p))的分解式中应该包含一个大的素数因子,目前应不小于160bit; (2)为了抗击Weil对和Tate对的攻击,对于1≤k≤30,n不能除p k-1(不宜选取超奇异椭圆曲线); (3)为了抗击Semaev-Smart-Satoh-Araki的攻击所选曲线的阶不能等于该曲线所定义的有限域的阶,即#E(F P)≠p(不宜选取异常椭圆曲线); (4)对于二进制域GF(2m)的度m不宜为合数。Gaudry,Hess和Smart提出,若m有小约数l(l=4),存在比Pollard's rho算法更

快求解ECDLP的方法。 (5)选择GF(p)的子域H,满足它的阶|H| 是#E 的最大素因子n,并在H 上实现ECC。 2.一般来说有4 种寻找安全椭圆曲线的方法:(椭圆曲线密码体制及其参数生成的研究.2006.DR) (1) 有限域GF( p) 上随机生成一椭圆曲线, 直接计算其阶, 判断阶是否为大素数或含大素数因子, 若是即确定,否则继续选取曲线, 直至符合条件。 (2) 取具有一定特殊性椭圆曲线的系数, 计算该椭圆曲线的阶, 对该阶进行判断, 直至找到所需要的安全曲线。 (3) 如果p = 2m , 其中m 能被一个比较小的整数d 整除, 首先在有限域GF( p1 ) ( p1 = 2 d ) 上选择一椭圆曲线E,并计算其阶, 根据此值, 利用Weil 定理[ 2] 计算该曲线在其扩域GF( p) 上的阶, 若此阶符合安全标准, 再找曲线E在域GF( p) 上的嵌入E, 则E 即为所需的安全椭圆曲线。 (4) 首先给出具有安全条件的曲线阶, 然后构造一具有此阶的椭圆曲线。目前国内外比较流行的计算椭圆曲线阶的算法有complex multiplication 算法、SEA 算法、Satoh 算法。应用广泛的椭圆曲线公钥密码体制( ECC) 中大多是基于特征2 的有限域上。 3.尽管ECC的参数选取方法有许多种,应用最多的是随机选择方法,它是根据任意给定曲线的系数,计算曲线的阶直到找到素数(或近素数)阶的椭圆曲线。

多项式拟合

《数值计算》实验报告 学院:软件学院专业:软件工程班级:12级1班 实验名称 多项式拟合 姓名杜倩学号1402120110 成绩 实验报告内容要求: 实验三:编写多项式拟合程序。并用该程序解决下列问题:假定某天的气温变化记录如下表,试用最小二乘方法找出这一天的气温变化规律。 h t/ 1 2 3 4 5 6 7 8 9 10 11 12 13 C T?/14 14 14 14 15 16 18 20 22 23 25 28 31 h t/14 15 16 17 18 19 20 21 22 23 24 C T?/32 31 29 27 25 24 22 20 18 17 16 考虑下列类型函数,计算误差平方和,并作图比较效果。 1.二次函数 2.三次函数 3.四次函数 4.函数 ) ) ( (2 c t b ae C- - =(提高:非线性拟合问题) 一.实验目的通过比较不同次数的多项式拟合效果,了解多项式拟合原理。 二.实验原理最小二乘法 三.实验环境 vc6.0 四.实验过程(编写的程序) #include "stdafx.h" #include "stdlib.h" #include "string.h" #include "math.h" static double * qr_fraction(double *a, int m, int n, double **q);//QR分解 static double * up_tria_inv_n_ord(double *t,int n);//n阶上三角矩阵求逆 static double * array_mut(double *A, double *x, int m, int n);//m * n型,矩阵乘以向量static double * array_trans_mut(double *A, double *x, int m, int n);//m * n型矩阵转置乘

C++最小二乘法求多项式拟合曲线

// shujunihe.cpp : 定义控制台应用程序的入口点。 // // quanzhuyuan.cpp : 定义控制台应用程序的入口点。 // #include"stdafx.h" #include #include #include using namespace std; class shujunihe { public: shujunihe():xlh(0),fyl(false),cnt(0),n(9){} void printb(double (&)[3]); void printa(double [3][3]); void printx(double x[3],double a[3][3],double b[3],int n); void quanzhuyuan(double a[3][3],double b[],int x2[3]); void restoreA(double a[3][3],double x[]); double Sum(int r,int c,double []); double Sumf(int r,double f[],double x[]); void restoreB(double b[],double f[],double x[]); void printx2(int x[]); private: int xlh; bool fyl; int cnt; int n; }; void shujunihe::printx2(int x2[]) { for(int i=0;i<3;i++) cout<

拟合多项式的最小二乘法

数值计算理论报告 题目: 有一只对温度敏感的电阻,已经测得了一组温度T 和电阻R 的数据如下,问当温度为60o C 时,电阻有多大? 多项式拟合: 已知变量x ,y 之间的函数关系为: n n-112n n+1y=a x +a x ++a x+a 通过实验获得一组{i x ,i y | i =1,2,3,···,m}测量数据,确定出系数12n+1a a a (,,,)。 当n=1时,函数为线性关系若函数为线性关系,其形式为: y=ax+b (1) 式中a, b 为要用实验数据确定的常数。由实验测得的数据是总是存在着误差,所以,把各组数据代入(1)式中,两边并不相等。相应的作图时,数据点也并不能准确地落在公式对应的直线上,误差的的平方和为: 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 |)(|||i i i y x f -=δ 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 min ])([)(212 1=-=∑∑==i i N i i N i y x f δ 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。按最小二乘法,当a, b 选择适当,能使为最小时y=ax+b 才是最佳曲线。用偏导数的方法求出此式的最小值。 以上是线性拟合的基本原理。 程序: x0=[20.5, 32.7, 51.0, 73.0, 95.7]; %t 的行向量 y0=[765, 826, 873, 942, 1032]; %r 的列向量 %plot(x0,y0,'r'); %画连续的图形,颜色设置为红 () 2 112∑∑=--==?n i bx a y n i v i i i

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

多项式拟合MATLAB

多项式拟合 1 数表的拟合计算 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量的实验数据,要对其进行公式化处理,也就是用一种计算方法,构造一个函数来近似表达数表的函数关系。由于函数构造方法的不同,有许多的逼近方法,机械设计中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。根据该理论可推导出计算公式,而MATLAB 在此数学基础上用一个函数命令polyfit 即可实现,命令格式为: ),,(n y x polyfit p = 式中:x 、y 为已知数据,n 为拟合多项式的阶次,p 为返回所得多项式的系数向量,通常多项式拟合中阶数越大,拟合的精度就越高。 例1:在工程技术中,通过实验获得一组)(i i x f y =实验数据如下表1: 表1 实验实测数据 下面程序分别设1=n ,2=n 进行一阶和二阶的拟合,结果如图1所示。 % 曲线拟合(Curve fitting ) x=[0,1,2,3,4,5,6,7,8,9] y=[0.0,1.2,3.8,8.5,17.1,20.2,34.8,45.0,67.6,85.0] %绘实验节点数据 plot(x,y,'*r') hold on grid %绘一阶拟合曲线 p1=polyfit(x,y,1) py1=polyval(p1,x) plot(x,py1,'g') hold on grid %绘二阶拟合曲线 p2=polyfit(x,y,2)

py2=polyval(p2,x) plot(x,py2,'b') grid hold on 图1 曲线拟合 根据所编制的程序,在MATLAB 的工作空间可得: 1=n 时,]4545.23188 .3[1-=p ,线性拟合得一条直线,即直线方程式为: 4545.23188.31-=x y 2=n 时,]4773.08358 .11648 .0[2-=p ,拟合得一条二次曲线,即曲线方程式为: 4773.08358.11648.022-+=x x y

最小二乘法多项式曲线拟合的阶数研究

项目基金:国家技术创新基金资助项目(11C26214302856),湖南省自然科学基金资助项目(11JJ4050),湖南省教育厅科研 基金资助项目(11B039, 11W002, 10C0620) 通信作者:黄春燕(1981-),男,江西赣州人,湖南工业大学硕士生,研究方向为嵌入式系统, E-mail :hcy_163@https://www.360docs.net/doc/f610653391.html, 最小二乘法多项式曲线拟合的阶数研究 黄春燕,满君丰 (湖南工业大学 计算机与通信学院学院,湖南 株洲 412007) 摘 要:最小二乘法曲线拟合的时间对准算法可以解决二维q 分类数据融合的时间不同步问题。要解决最小二乘法曲线拟合的时间对准算法首先要解决最小二乘法曲线拟合问题,所以如何设计一种比较好的曲线拟合算法成了关键问题。本文引用了一种最小二乘法多项式曲线拟合的算法,该多项式曲线拟合的阶数为3。仿真结果表明,该算法计算速度较快,融合效率较好。 关键词:曲线拟合;多项式;采样周期;数据融合 Study on Alignment Based on the Time of the Data Fusion Method in many sensors Huang Chunyan ,Man Junfeng (College of Computer and Communication ,Hunan University of Technology ,Zhuzhou Hunan 412007,China ) Abstract :Classification of two-dimensional q can not resolve the asynchronous problem of the time. This article advances the algorithm of alignment’s time based on curvilinear fitting,two fundamental principle of the algorithm is introduced:the principle based on curvilinear fitting and the principle based on alignment’s time ; simulation analyses the d ata’s fusion of the two sensors which have different sampling period.The result of simulation is: the talgorithm`speed in calculation is fast ant its efficiency in classification is also preferable. Keywords :curving fitting ;t ime’s alignment ;sampling period ;d ata’s fusion 0 引言 无线传感器网络的数据融合技术是一项相当重要的技术,但是一般的数据融合技术有其较大的缺点,它不能得到整个网络的数据分布以及包含数据的区域信息。二维q 分类数据融合算法解决了这两个难题,通过二维q 分类数据融合算法可以使数据融合技术得到整个网络的数据分布以及包含数据的区域信息。但是二维q 分类数据融合算法对各传感器在不同时间产生的数据信息并不能进行有效的融 合,且融合效果较差。因此,可以将q 分类结构从二维结构扩展为三维结构。通过第三维解决各传感器测量数据时间不同步的问题,即时间对准问题。 在数据融合系统中,多传感器的时间对准是非常关键的问题。时间对准就是将各个传感器的不同步的测量信息同步到同一时间。在进行数据融合之前由于各个传感器的采样起始时间、采样周期、传输延迟较难同步,从而导致测量数据不同步,因此在数据融合之前必须进行时间对准,否则未经处理的数据在进行数据融合时会出现较多问题,比如说

相关文档
最新文档