上海延安中学数学有理数单元培优测试卷

上海延安中学数学有理数单元培优测试卷
上海延安中学数学有理数单元培优测试卷

一、初一数学有理数解答题压轴题精选(难)

1.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)

(1)求B地在数轴上表示的数;

(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;

(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?

【答案】(1)解:, .

答:地在数轴上表示的数是12或

(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:

第五次行进后相对A的位置为:,

第六次行进后相对A的位置为:,

因为点、与点的距离都是3米,

所以点、点到地的距离相等

(3)解:若地在原点的右侧,前进为“+”,后退为“-”,

则当为100时,它在数轴上表示的数为:

∵B点表示的为12.

∴AB的距离为(米 .

答:小乌龟到达的点与点之间的距离是70米

【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

(2)根据题意分别列式求出第5次和第6次行进后相对A的位置,由此可得到第P和点Q到A的距离,即可作出判断。

(3)根据点B在原点的右侧,列式可求出n=100时,可得到点A在数轴上表示的数,再根据点B表示的数,就可求出AB的距离。

2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.

(1)直接写出A、B两点之间的距离;

(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.

(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.

【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16

(2)解:设点P表示的数为x.分两种情况:

①当点P在线段AB上时,

∵AP= PB,

∴x+12=(4﹣x),

解得x=﹣8;

②当点P在线段BA的延长线上时,

∵AP= PB,

∴﹣12﹣x=(4﹣x),

解得x=﹣20.

综上所述,点P表示的数为﹣8或﹣20

(3)解:分两种情况:

①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,

此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,

∵OP=4OQ,

∴12﹣5t=4(4﹣2t),

解得t=,符合题意;

②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,

此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,

∵OP=4OQ,

∴|12﹣5t|=4×3(t﹣2),

∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,

解得t=,符合题意;或t=,不符合题意舍去.

综上所述,当OP=4OQ时的运动时间t的值为或秒

【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据

AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.

3.如图,数轴的单位长度为1.

(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;

(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;

(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?

【答案】(1)-4;2

(2)解:存在,如图:

当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)

解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10

(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.

②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.

答:点P表示的数为﹣18或﹣4.

【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点

A为﹣4,

故答案为:﹣4,2;

【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;

(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;

(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

(1)用“>”“<”或”=”填空:b________0,a+b________0,a-c________0 ,b-c________0 (2)|b-1|+|a-1|=________;

(3)化简:|a+b|+|a-c|-|b|+|b-c|。

【答案】(1)<;=;>;<

(2)a-b

(3)解:∵a+b=0,a>c,b<c,

∴原式=0+a-c-(-b)+c-b

=a.

【解析】【解答】解:(1)b<0

∵表示数a的点,数b的点与原点的距离相等,

∴a+b=0;

∵a>c,

∴a-c>0;

∵b<c,

∴b-c<0.

故答案为:<、=、>、<.

(2)∵b<1,a>1

∴b-1<0,a-1>0,

∴|b-1|+|a-1|=1-b+a-1=a-b;

故答案为:a-b;

【分析】(1)观察数轴可知b<0,a与b互为相反数,a>c,b<c,由此可得答案。(2)观察数轴可知b<1,a>1,从而可判断出b-1,a-1的符号,然后化简绝对值,合并即可。

(3)由a+b=0,a>c,b<c,再化简绝对值,然后合并同类项。

5.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),

(1)操作一:折叠纸面,使1表示的点与?1的点重合,则?3的点与________表示的点重合;

(2)操作二:折叠纸面,使?2表示的点与6表示的点重合,请你回答以下问题:

① ?5表示的点与数()表示的点重合;

② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少

③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

【答案】(1)3

(2)9;

②若数轴上A、B两点之间的距离为20(A在B的左侧),

则点A表示的数是2-10=-8,点B表示的数是2+10=12.

③当点M在点A左侧时,则12-m+(-8-m)=30,

解得:m=-13;

当点M在点B右侧时,则m-(-8)+m-12=30,

解得:m=17;

综上,m=-13或17;

【解析】【解答】(1)解:折叠纸面,使1表示的点与-1表示的点重合,则对称中心是0,

∴-3表示的点与3表示的点重合,

故答案为:3;(2)①∵-2表示的点与6表示的点重合,

∴对称中心是数2表示的点,

①-5表示的点与数9表示的点重合;

故答案为:9.

【分析】(1)直接利用已知得出中点进而得出答案;(2)①利用-2表示的点与6表示的点重合得出中点,进而得出答案;②利用数轴再结合A、B两点之间距离为20,即可得出两点表示出的数据;③利用②中A,B的位置,利用分类讨论进而得出m的值.

6.把具有某种规律的一列数:1,-2,3,-4,5,-6,...,排列成下面的阵形:

........

探索下列事件:

(1)第10行的第1个数是什么数?

(2)数字2019前面是负号还是正号?在第几行?第几列?

【答案】(1)解:∵第1行第1个数1=(-1)2×(02+1);

第2行第1个数-2=(-1)3×(12+1);

第3行第1个数5=(-1)4×(22+1);

第4行第1个数-10=(-1)5×(32+1);

∴第10行第1个数为(-1)11×(92+1)=-82,

(2)解:由以上数列可知,绝对值为奇数的为正,绝对值为偶数的符号为负,

∴2019前面是正号;

∵第45行第1个数为(-1)46×(442+1)=1937,

第46行第1个数为(-1)47×(452+1)=-2026,

且2019-1937+1=83,

∴2019在第45行,第83列

【解析】【分析】(1)由每行的第一个数可知,第n行第一个数为(-1)n+1×[(n-1)2+1],据此可得;(2)根据题意知绝对值为奇数的为正,绝对值为偶数的符号为负;求出第45行第1个数为1937,第46行第1个数为-2026知2021在第45行,再由每行中每个数的绝对值依次加1可得列数.

7.阅读材料:

如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.

回答问题:

(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.

①若A是线段DB的中点,则点D表示的数是________;

②若E是线段AC的中点,求点E表示的数________.

(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);

(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2

②直接用含m、n的代数式表示点P表示的数________.

【答案】(1)﹣4;;

(2)(i)(ii)(iii); .

【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB 的中点,

∴点D表示的数是﹣4,

故答案为﹣4;

②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,

∴点E表示的数为.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,

∴1=,即m+n=2,

∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为(i)(ii)(iii);

②点P表示的数为.

【分析】(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC 的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.

8.

阅读下面材料:

点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.

当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,

①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;

③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.

回答下列问题:

①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;

②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;

③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.

④解方程|x+1|+|x﹣2|=5.

【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;

数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;

数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4

②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.

③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;

④解方程|x+1|+|x﹣2|=5.

当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3

当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2

当x+1与x-2异号,则等式不成立.

所以答案为:3或-2.

【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.

③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.

④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.

9.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。则

img 小部件

(1)动点P从点A运动至点C需要时间多少秒?

(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少?

(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等。

【答案】(1)解:解:∵点A表示-12,点B表示10,点C表示20,

∴OA=12,OB=10,BC=10

∵动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;

∴动点P从点A运动至点C需要时间为:12÷2+10÷1+10÷2=6+10+5=21.

(2)解:由题意可得t>10s,∴(t-6)+2(t-10)=10,∴t=12

∴M所对的数字为6

(3)解:当点P在AO上,点Q在CB上时,OP=12-2t,BQ=10-t,

∵OP=BQ,∴12-2=10-t,∴t=2;

当点P在OB上,点Q在CB上时,OP=t-6,BQ=10-t,∵OP=BQ,

∴t-6=10-t,∴t=8

当点P在OB上,点Q在OB上时,OP=t-6,BQ=2(t-10),

∵OP=BQ,∴t-6=2(t-10),∴t=14,

当点P在OB上,点Q在OA上时,t-6=t-15+10,无解

当点P在BC上,点Q在OA上时,OP=10+2(t-16),BQ=10+(t-15),∵OP=BQ

∵10+2(t-16)=10+(t-15),∴t=17

∴当t=2,8,14,17时,OP=BQ

【解析】【分析】(1)由点A,B,C表示的数,可以求出AO,OB,BC的长,再根据点P 在各段的运动速度,列式计算求出动点P从点A运动至点C需要时间。

(2)根据题意可求出t的取值范围为t>10,可知点P在OA上的运动时间为6s,点Q在BC上的运动时间为10s,因此点M在线段PQ上,由此可知点P在线段PQ上的运动时间为(t-6)s,点Q在线段PQ上的运动时间为(t-10)s,再根据速度×时间-路程,列出关于t的方程,求出t的值,就可得到点M表示的数。

(3)分情况讨论:当点P在AO上,点Q在CB上;当点P在OB上,点Q在CB上时;当点P在OB上,点Q在OB上时;当点P在OB上,点Q在OA上时;当点P在BC上,点Q在OA上时,分别用含t的代数式表示出OP,BQ的长,再根据OP=PQ建立关于t的方程,分别解方程求出t的值。

10.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,

(1)动点Q运动3秒时,求此时Q在数轴上表示的数?

(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;

(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.

【答案】(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为?1,

∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2

(2)解:设每改变一次方向为一次运动,

分析动点Q的移动规律可知,第一次到达数轴上表示数1的位置,第3次到达数轴上表示

数2的位置,第5次到达数轴上表示数3的位置,…,

所以第2n-1次到达数n的位置,

所以第19次到达数轴上表示数10的位置,

此时运动的总路程为:

∴Q运动的时间t=190÷2=95秒

(3)解:∵3秒时,动点Q所在的位置为2,

∴5秒时,动点Q所在位置为?2,

①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,

Q在数轴3位置向左运动时,PQ=5+ ×0.1=,

设点P激活后第一次与继续运动的点Q相遇时用的时间为t1,则(2?0.1)t1=,

解得:t1=,

∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:?(2+ ×0.1+ ×0.1)

=;

②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,

Q在数轴3位置向左运动时,PQ=5? ×0.1=,

设点P激活后第一次与继续运动的点Q相遇时用的时间为t2,则(2+0.1)t2=,

解得:t2=,

∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:?(2? ×0.1? ×0.1)=

综上所述,点P激活后第一次与继续运动的点Q相遇时所在的位置是或 .

【解析】【分析】(1)根据动点Q的移动规律,分析得出0.5秒和3秒时所在位置,即可求出答案;(2)分析动点Q的移动规律,求出到达数轴上表示数10的位置时所走的总路程,然后根据时间=路程÷速度进行计算即可;(3)首先求出5秒时,动点Q所在位置为

?2,然后分情况讨论:①P点向左运动,②P点向右运动,分别列出方程求出相遇时用的时间,然后再计算点Q相遇时所在的位置即可.

11.大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|= .根据

以上信息,回答下列问题:

(1)数轴上表示2和5的两点之间的距离是________;数轴上表示-2和-5的两点之间的距离是________.

(2)点A、B在数轴上分别表示实数x和-1.

①用代数式表示A、B两点之间的距;

②如果 ,求x的值.

(3)直接写出代数式的最小值.

【答案】(1)3;3

(2)解:①|AB|=|x-(-1)|=|x+1|,②如果|AB|=2,则|x+1|=2,x+1=2或x+1=-2,解得x=1或x=-3.

(3)解:∵代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,∴当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是:|4-(-1)|=5.

【解析】【解答】解:(1)数轴.上表示2和5的两点之间的距离是:|5-2|=3;数轴_上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=|-2+5|= |3|=3.

【分析】(1)根据题意,可得数轴上表示2和5的两点之间的距离是:|5-2|=3 ;数轴上表示-2和-5的两点之间的距离是:|(-2)-(-5)|=3;(2)①根据点A、B在数轴上分别表示实数x和-1,可得表示A、B两点之间的距离是:|x-(-1)|=|x+1|;②如果|AB|=2,则|x+1|=2 ,据此求出x的值是多少即可.(3)根据题意,可得代数式|x+1|+|x-4|表示数轴上有理数x所对应的点到4和-1所对应的两点距离之和,所以当-1≤x≤4时,代数式|x+1|+|x-4|的最小值是表示4的点与表示-1的点之间的距离,即代数式|x+1|+|x-4|的最小值是5.

12.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.

(1)求时,求点P和点Q表示的有理数;

(2)求点P与点Q第一次重合时的t值;

(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?【答案】(1)解:当时,

点P表示的数为:,

点Q表示的数为:

(2)解:

答:点P与点Q第一次重合时的t值为4

(3)解:点P和点Q第一相遇前,

解得,;

当点P和点Q相遇后,点P到达点B前,

解得,;

当点P从点B向点A运动时,

解得,;

由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.

【解析】【分析】(1)根据题意可以得到当时,点P和点Q表示的有理数;(2)根据题意可以列出相遇关于t的方程,从而可以求得t的值;(3)根据题意可以列出相应的方程,从而可以解答本题.

七上《有理数》单元培优测试卷(含答案)

第2章《有理数》单元培优测试卷(含答案)姓名:__________________ 班级:______________ 得分:_________________ 注意事项: 本试卷满分100分,考试时间60分钟,试题共28题,选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2020?盐城)2020的相反数是() A.﹣2020 B.2020 C.D.2.(2020?徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为() A.11.8×103B.1.18×104C.1.18×105D.0.118×106 3.(2019秋?江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是() A.4个B.3个C.2个D.1个 4.(2019秋?江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是() A.1 B.2 C.3 D.4 5.(2019秋?江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点 A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为() A.﹣2 B.0 C.3 D.5 6.(2019秋?江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.3 7.(2020春?江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图

有理数单元检测试题

有理数单元检测试题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、填空题(每题3分,共24分) 1、计算-3+1= ;=?? ? ??-÷215 ;=-42 。 2、“负3的6次幂”写作 。25-读作 ,平方得9的数是 。 3、-2的倒数是 , 3 11-的倒数的相反数是 。 有理数 的倒数等于它的绝对值的相反数。 4、根据语句列式计算: ⑴-6加上-3与2的积: ; ⑵-2与3的和除以-3: ; ⑶-3与2的平方的差: 。 5、用科学记数法表示:109000= ; ≈ (保留2个有效数字)。 6、按四舍五入法则取近似值:的有效数字为 个, ≈ (精确到百分位);≈ (精确到)。 7、在括号填上适当的数,使等式成立: ⑴?=÷-7 8787( ); ⑵8-21+23-10=(23-21)+( ); ⑶+-=?-692323 53( )。 8、在你使用的计算器上,开机时应该按键 。当计算按键为 时,虽然出现了错误,但不需要清除,补充按键 就可以了。 二、选择题(每题2分,共20分) 9、①我市有58万人;②他家有5口人;③现在9点半钟;④你身高158cm ;⑤我校有20个班;⑥他体重58千克。其中的数据为准确数的是 ( ) A 、①③⑤ B 、②④⑥ C 、①⑥ D 、②⑤ 10、对下列各式计算结果的符号判断正确的一个是 ( )

A 、()()0331222<-???? ? ?-?- B 、()015522<+-- C 、()02 1311>+??? ??-+- D 、()()0218899>-?- 11、下列计算结果错误的一个是 ( ) A 、613121-=+- B 、722 13-=÷- C 、632214181641??? ??-=??? ??=??? ??= D 、()122133=-??? ? ??- 12、如果a+b <0,并且ab >0,那么 ( ) A 、a <0,b <0 B 、a >0,b >0 C 、a <0,b >0 D 、a >0,b <0 13、把2 1-与6作和、差、积、商、幂的运算结果中,可以为正数的有 ( ) A 、4个 B 、3个 C 、2个 D 、1个 14、数轴上的两点M 、N 分别表示-5和-2,那么M 、N 两点间的距离是 ( ) A 、-5+(-2) B 、-5-(-2) C 、|-5+(-2)| D 、|-2-(-5)| 15、对于非零有理数a :0+a=a,1×a=a ,1+a=a ,0×a=a ,a ×0=a ,a÷1=a ,0÷a=a ,a ÷0=a ,a 1=a , a÷a=1中总是成立的有 ( ) A 、5个 B 、6个 C 、7个 D 、8个 16、在数-,-,-,-,-,-这6个数中精确到十分位得-的数共有 ( ) A 、2个 B 、3个 C 、4个 D 、5个 17、下列说法错识的是 ( ) A 、相反数等于它自身的数有1个 B 、倒数等于它自身的数有2个 C 、平方数等于它自身的数有3个 D 、立方数等于它自身的数有3个 18、判断下列语句,在后面的括号内,正确的画√,错误的画×。 ⑴若a 是有理数,则a÷a=1 ; ( )

有理数单元检测卷(培优)

第 1 页 共 2 页 2018—2019学年度 一.选择题(每题3分,共10小题) 1.下列说法正确的是( ) A .所有的整数都是正数 B .不是正数的数一定是负数 C .0不是最小的有理数 D .正有理数包括整数和分数 2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( ) A .15×106 B .1.5×107 C .1.5×108 D .0.15 ×108 3.下列各组数中,互为相反数的是( ) A .﹣1与(﹣1)2 B .1与(﹣1)2 C .2与 D .2与|﹣2| 4.如图,的倒数在数轴上表示的点位于下列两个点之间( ) A .点E 和点F B .点F 和点G C .点G 和点H D .点H 和点I 5.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.11毫米,则质量最差的零件是( ) A .第一个 B .第二个 C .第三个 D .第四个 6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是( ) A .1 B .2 C .4 D .8 7.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|﹣|a ﹣2b|﹣|c+2b|的结果是( ) A .4b+2c B .0 C .2c D .2a+2c 8.绝对值大于﹣2且小于5的所有的整数的和是( ) A .7 B .﹣7 C .0 D .5 9.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A .2018或2019 B .2019或2020 C .2020或2021 D .2021或2022 10.若ab <0,且a >b ,则a ,|a ﹣b|,b 的大小关系为( ) A .a >|a ﹣b|>b B .a >b >|a ﹣b| C .|a ﹣b|>a >b D .|a ﹣b|>b >a 二、填空题(每题3分,共30分) 11.一艘潜艇正在﹣50米处执行任务,其正上方10米处有一条鲨鱼在游弋,则 鲨鱼所处的高度为 米. 12.若()2 2120x y -++=,则2x y += . 13. 已知|a|=5,|-b|=-7,且ab <0,则a-b= . 14. 设n 是正整数,则1﹣(﹣1)n 的值是 . 15. 绝对值小于2018的整数有 个,和为 ,积为 .

七年级有理数培优题(有答案)

有理数培优题基础训练题 一、填空: 1、在数轴上表示-2的点到原点的距离等于( )。 2、若∣a ∣=-a,则a ( )0. 3、任何有理数的绝对值都是( )。 4、如果a+b=0,那么a 、b 一定是( )。 5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。 6、已知||3,||2,||a b a b a b ==-=-,则a b +=( ) 7、|2||3|x x -++的最小值是( )。 8、在数轴上,点A 、B 分别表示2 1 41,-,则线段AB 的中点所表示的数是( )。 9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则 ()2010 2a b mn p ++-=( ) 。 10、若abc ≠0,则 |||||| a b c a b c ++ 的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、5 3 、…,其中从左到右第100个数是( )。 二、解答问题: 1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。 3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。 4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 5、计算:- 21 +65-127+209-3011+4213-56 15+7217 6、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。现要求每次翻转其中任意 四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下? 能力培训题 知识点一:数轴 例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练: 1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖 冲之杯”邀请赛试题) A .1 B .2 C .3 D .4

上海数学有理数单元测试卷(解析版)

一、初一数学有理数解答题压轴题精选(难) 1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0; (1)点A表示的数为________;点B表示的数为________; (2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒), ①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________; 当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________; ②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________ 【答案】(1)-2 ;4 (2)3 ;2 ;5 ;2 ;能. 理由: 当0<t≤2时,t+2=4-2t 解之: 当t>2时,t+2=2t-4 解之:t=6 ∴当或6时,甲乙两小球到原点的距离相等. 【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0, ∴a+2=0且b-4=0 解之:a=-2且b=4, ∵在数轴上A点表示数a,B点表示数b, ∴点A表示的数是-2,点B表示的数是4. 故答案为:-2,4. (2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度; 当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长

度; ①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2; 当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2; 故答案为:3,2;5,2 【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。 (2)①根据两个小球的运动方向及速度,可以分别用含t的代数式表示出当0<t≤2时,甲小球距离原点的距离和乙小球离原点的距离,当t>2时,甲小球距离原点的距离和乙小球离原点的距离,然后将t=1和t=3分别代入相关的代数式,即可求解;②利用(2)中的结论,分情况分别根据甲,乙两小球到原点的距离相等时经历的时间,建立关于t的方程,解方程求出t的值。 2.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒. (1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于? (3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于? (4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长. 【答案】(1); (2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况: ①点P、Q相遇之前, 由题意得3t+2+5t=20,解得t=2.25; ②点P、Q相遇之后, 由题意得3t-2+5t=20,解得t=2.75. 答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2 (3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况: ①点P、Q相遇之前, 则5x-3x=20-2, 解得:x=9; ②点P、Q相遇之后, 则5x-3x=20+2 解得:x=11. 答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2

有理数单元测试题及答案

初一数学 有理数 单元测试题 一、选择题:(本题共12小题,每小题2分,共24分) 1. (2017?扬州)若数轴上表示-1和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是……( ) A .-4; B .-2; C .2; D .4; 2.下列各数:2-- , ()2--, ()22-, ()32-, -2 2中,负数的个数为………( ) A. 1个; B.2个; C.3个; D.4个; 3. 在实数:3.14159,142-,1.010010001…, 4.21 ,3π,227 中,无理数有…………( ) A .1个; B .2个; C .3个; D .4个; 4. 下列说法正确的有……………………………………………………………………( ) ①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小. A .1个; B .2个; C .3个; D .4个; 5.下列各数中,数值相等的是……………………………………………………………( ) A.23和32; B.-32和()32-; C. -32和()23-; D. ()2 23-?和 -3×22 ; 6.(2017?泰安)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为……………………………………………( ) A .14310?美元; B .13310?美元; C .12310?美元; D .11 310?美元; 7.已知,0x <,0y >,y x < ,则x y +的值是…………………………………( ) A. 正数; B. 负数; C. 非正数; D.0; 8.如果两个有理数的积是正数,和也是正数,那么这两个有理数……………( ) A . 同号,且均为负数; B. 异号,且正数的绝对值比负数的绝对值大; C. 同号,且均为正数; D. 异号,且负数的绝对值比正数的绝对值大; 9. m 为任意有理数,下列说法中正确的是………………………………………( ) A. ()21m +总是正数; B. 2 1m +总是正数; C. ()21m -+总是负数 ; D. 21m -的值总比1小;

有理数单元测试题

有理数单元测试题 一、认真选一选(每题3分,共30分) 1.下列说法正确的是( ) A .有最小的正数 B .有最小的自然数 C .有最大的有理数 D .无最大的负整数 2.下列说法正确的是( ) A .倒数等于它本身的数只有1 B .平方等于它本身的数只有1 C .立方等于它本身的数只有1 D .正数的绝对值是它本身 3.如图 , 那么下列结论正确的是( ) A .a 比b 大 B .b 比a 大 C .a 、b 一样大 D .a 、b 的大小无法确定 4.两个有理数相除,其商是负数,则这两个有理数( ) A .都是负数 B .都是正数 C .一正数一负数 D .有一个是零 5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820 千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( ) A .2.5×106千克 B .2.5×105千克 C .2.46×106千克 D .2.46×105千克 6.若︱2a ︱=-2a ,则a 一定是( ) A .正数 B .负数 C .正数或零 D .负数或零 7. 如果a 是负数,那么-a ,2a ,a+│a │,||a a 这四个数中是负数的个数 为( )。 A.1个 B.2个 C.3个 D.4个 8.在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( ) A.-1 B.-6 C.-2或-6 D.无法确定 9若X 与3互为相反数,则∣X ∣与3 的和是 ( ) A.-3 B.0 C.3 D.6 10.一个数的立方是它本身,这个数是( ) A.1 B.-1,1 C.0 D.-1,1,0 二、认真填一填(每空2分,共30分) 11. -23 的相反数是 ;倒数是 ;绝对值是 . 12.计算:19972×0= ; 48÷(-6) = ; -12 ×(-13 ) = ; -1.25÷(-14 ) = .

第一章 有理数单元测试卷 (含答案)

第一章 有理数单元测试卷 (时间:90分钟满分:120分) 一、精心填一填,你准成(每题3分,共30分) 1.水库水位上升3米记作+3米,那么下降了2米记作_____米. 2.在5,-,0,-2,中正数有______个,整数有_____个. 3.-│-7│的相反数为____,相反数等于本身的数为_______. 4.已知│x│=,│y│=,且xy>0,则x-y=______. 5.某商品袋上标明净重1000±10克,这说明这种食品每袋合格重量为______. 6.x与2的差为,则-x=_____. 7.近似数1.50精确到_______,78950用科学记数法表示为_____.8.若ab=1,则a与b互为_______,若a=-,则a与b关系为_______. 9.2002年,我国城市居民每人每日油脂消费量,由1992年的37克增加到44克,脂肪供能比达到35%,比世界卫生组织推荐的上限还要多5个百分点,则世界卫生组织推荐的脂肪供能比的上限为________.10.按规律写数,-,,-,…第6个数是______. 二、细心选一选,你准行(每题3分,共30分) 11.绝对值等于它的相反数的数是() A.负数 B.正数 D.非正数 D.非负数 12.把-,-1,0用“>”号连接起来是() A.-1>->0 B.0>->-1 C.0>-1>- D.->-1>0 13.如果│x+y│=│x│+│y│,那么x,y的符号关系是() A.符号相同 B.符号相同或它们有一个为0 C.符号相同或它们中至少有一个为0 D.符号相反 14.如果-1

《有理数》单元测试卷

《有理数及其运算》单元测试 一.精心选一选(每小题3分,共30分) 1.(3分)若a表示有理数,则﹣a是() A.正数B.负数C.a的相反数D.a的倒数2.(3分)下面运算正确的是() A.﹣62=﹣36 B. (±)2=C.(﹣1)100+(﹣1) 99=1 D.(﹣4)3=64 3.(3分)如果一个数的相反数比它本身大,那么这个数为() A.正数B.负数 C.整数D.不等于零的有理数 4.(3分))在有理数中,绝对值等于它本身的数有() A.1个B.2个C.3个D.无穷多个 5.(3分)已知点A和点B在同一数轴上,点A表示数﹣2,又已知点B和点A相距5个单位长度,则点B表示的数是() A.3B.﹣7 C.3或﹣7 D.3或7 6.(3分)下列语句正确的是() A.1是最小的自然数B.平方等于它本身的数只有1 C.绝对值最小的数是0 D.倒数等于它本身的数只有1 7.(3分)如果两个有理数的积是正数,和也是正数,那么这两个有理数() A.同号,且均为正数 B.异号,且正数的绝对值比负数的绝对值大 C.同号,且均为负数 D.异号,且负数的绝对值比正数的绝对值大 8.(3分)甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高() A.10米B.25米C.35米D.5米 9.(3分)把数12.348精确到十分位为() A.12.4 B.12.3 C.12.35 D.12.34 10.(3分)如果a>0,b<0,且|a|<|b|,则下列正确的是() A.a+b<0 B.a+b>0 C.a+b=0 D.a b=0 二、耐心填一填(每小题3分,共30分) 11.(3分)某小店赢利20元记作为+20元,则亏本10元记作为元.12.(3分)在数+8.3,﹣4,﹣0.8,﹣,0,90,﹣1,﹣|﹣24|中,是正数的有.13.(3分)的相反数是,绝对值是,倒数是. 14.(3分)比较大小: ﹣(+3.5)|﹣4.5|, ﹣(﹣), ﹣32(﹣2)3. 15.(3分)已知a和b互为相反数,c和d互为倒数,x的绝对值为1,则a+b+cd+x的值等于.

最新有理数培优题(有答案解析)教学文稿

有理数培优题 基础训练题 一、填空: 1、在数轴上表示-2的点到原点的距离等于( )。 2、若∣a ∣=-a,则a ( )0. 3、任何有理数的绝对值都是( )。 4、如果a+b=0,那么a 、b 一定是( )。 5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。 6、已知||3,||2,||a b a b a b ==-=-,则a b +=( ) 7、|2||3|x x -++的最小值是( )。 8、在数轴上,点A 、B 分别表示2 1 41,-,则线段AB 的中点所表示的数是( )。 9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则 ()2010 2a b mn p p ++-=( ) 。 10、若abc ≠0,则 |||||| a b c a b c ++ 的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53 、…,其中从左到右第100个数是( )。 二、解答问题: 1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。 3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 5、计算:- 21 +65-127+209-3011+4213-5615+72 17 6、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下? 能力培训题 知识点一:数轴 例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练: 1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题) A .1 B .2 C .3 D .4 3、把满足52≤

有理数培优训练

有理数培优训练 一.选择题: 1. 已知数轴上的三点A 、B 、C 分别表示有理数,1,1a -,那么|1|a +表示( ) A . A 、B 两点的距离 B .A 、 C 两点的距离 C .A 、B 两点到原点的距离之和 D .A 、C 两点到原点的距离之和 2. 定义运算符号“*”的意义为:ab b a b a +=*(其中a 、b 均不为0)。下面有两个结论(1) 运算“*”满足交换律;(2)运算“*”满足结合律。其中( ) A .只有(1)正确 B .只有(2)正确 C .(1)和(2)都正确 D .(1)和(2)都不正确 3. 如果,,a b c 为非零有理数,则||||||a b c a b c ++的值有( ) A .1个 B .2个 C .3个 D .4个 4. 设0a b c ++=,0abc >,则|||||| b c a c a b a b c +++++的值是( ) A .-3 B .1 C . 3或-1 D .-3或1 5. 若||1m m =+,则()201041m +=( ) A .-1 B .1 C .12- D .1 2 6.若19a+98b=0,则ab 是( ) A . 正数 B . 非正数 C . 负数 D . 非负数 7.有理数a 、b 、c 在数轴上的表示如图,则在 中( ) A . 最小 B . |ac|最大 C . 最大 D . 最大 8.一杯盐水重21千克,浓度是7%,当再加入千克的纯盐后,这杯盐水的浓度是( ) A . % B . 10% C . % D . 11% 9.a 、b 都是有理数,现有4个判断:①如果a+b <a ,则b <0;②如果ab <a ,则b <0;③如果a ﹣b <a ,则b >0;④如果a >b ,则,其中正确的判断是( ) A . ①② B . ②③ C . ①④ D . ①③ 10.若,则的最大值为( ) A . 21 B . 2 C . 12 D . 126

有理数单元测试试题

七年级数学有理数单元检测 一、精心选一选(3×10=30分): 1、下列各数中:-75,0,0.56,+(-2531),512,+(+2),12,(-2)4,211-, -(-5),-|-3|其中正数有( ); A 、5个 B 、6个 C 、7个 D 、8个 2、下面是四个同学对-2>-5的理解,其中错误的是( ); A 、海平面以下2m 比海平面以下5m 位置更高 B 、零下2℃比零下5℃温度更高 C 、成绩低于平均分2分比低于平均分5分更好 D 、数轴上离原点更近的数更大 3、下列各组数中互为相反数是( ); A 、2与-2 1 B 、32与(-3) 2 C 、32与-32 D 、-23与(-2) 3 4、-|-2|的倒数是( ); A 、2 B 、21 C 、-2 1 D 、- 2 5、如图,a 、b 在数轴上的位置如图,则下列各式正确的是( ); A 、ab >0 B 、a -b >0 C 、a+b >0 D 、-b <a 6、2008年某省为汶川地震共捐款15510000元,用科学技术法记为( ); A.1.551×108元 B. 1.551×107元 C. 15.51×106元 D. 0.1551×108 元 7、11(2)()222 ?-+-?的结果为( ); A. 2- B. 0 C. 1 D. 2 8、小敏同学利用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是8时,输出的数据是 ( ); 输入 1 2 3 4 5 …… 输出 21 52 103 174 265 …… A .618 B .638 C .658 D .67 8 9.下列各数中,四舍五入后不可能得到1.50的是( ); A . 1.5046 B .1.4991 C .1.5012 D .1.4949

人教版七上数学有理数单元专题培优

第1讲 有理数(1) 1.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度.已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是( ) A .乙地比丙地高70米 B .乙地比甲地低90米 C .丙地最低 D .甲地高出海平面100米 2.下列各组数中,大小关系正确的是( ) A .752-<-<- B .752->-> C .725-<-<- D .275->->- 3.一个数在数轴上所对应的点向左移动6个单位后,得到它的相反数的点.则这个数是( ) A .3 B .-3 C .6 D .-6 4.在数轴上点A所表示的数是-3,点B与点A的距离是5,那么B点所表示的有理数是( ) A.5 B.-5 C.2 D.2或-8 5.一个数是7,另一个数比它的相反数大3,则这两个数的和是( ) A.-3 B.3 C.-10 D.11 6.如果2(3)x +与3(1)x -互为相反数,那么x 的值是( ) A.-8 B.8 C.-9 D.9 7.若,0a b c a b c <<++=,则a b +的范围是( ) A .0a b +> B .0a b +< C .0a b +≥ D .0a b +≤ 8.如果a 、b 均为有理数,且0b <,则有( ) A .a a b a b <+<- B .a a b a b <-<+ C .a b a a b +<<- D . a b a b a -<+< 9.下列各数中:-6;5;+2.5;0;-1;1 3 - ;100;10% 正数是:_________________________________; 负 数 是 _________________________________. 10.数-3;+8;12- ;+0.1;0;-10;5;1 3中,正数有______________________个. 11.将下列各数5;2 3 -;2010;0.02-;6.5;0;2-填入相应的括号里. 正数集合{ } 负数集合{ } 12.最大的负整数是___________;小于3的非负整数是______________________. 13.若12.332 x -<≤,则x 的整数值有___________个. 14.从数轴上表示1-的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到 达的终点所表示的数是___________.

第一章_有理数单元测试题(含答案)

第一章有理数单元测试题 班级姓名学号得分 考生注意:1、本卷共有29个小题,共100分+30分 2、考试时间为90分钟 一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请您把您认为适当得选项前得代号填入题后得括号中,每题2分,共20分) 1、下列说法正确得就是( ) A、整数就就是正整数与负整数 B、负整数得相反数就就是非负整数 C、有理数中不就是负数就就是正数 D、零就是自然数,但不就是正整数 2、下列各对数中,数值相等得就是( ) A、-27与(-2)7 B、-32与(-3)2 C、-3×23与-32×2 D、―(―3)2与―(―2)3 3、在-5,-,-3、5,-0、01,-2,-212各数中,最大得数就是( ) A、-12 B、- C 、-0、01 D、-5 4、如果一个数得平方与这个数得差等于0,那么这个数只能就是( ) A、0 B、-1 C 、1 D、0或1 5、绝对值大于或等于1,而小于4得所有得正整数得与就是( ) A、 8 B、7 C、 6 D、5 6、计算:(-2)100+(-2)101得就是( ) A、2100 B、-1 C、-2 D、-2100 7、比-7、1大,而比1小得整数得个数就是( ) A 、6 B、7 C、 8 D、9 8、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给 卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确得就是( ) A.1、205×107 B.1、20×108 C.1、21×107 D.1、205×104 9、下列代数式中,值一定就是正数得就是( ) A.x2 B、|-x+1| C、(-x)2+2 D、-x2+1 10、已知8、62=73、96,若x2=0、7396,则x得值等于( ) A 86、 2 B 862 C ±0、862 D ±862 二、填空题(本题共有9个小题,每小题2分,共18分)

初一上数学-有理数-培优讲义

有理数培优 能力提升1:有理数的运算 有理数范围内可以进行加、减、乘、除(除数不为0)四则运算,对于相同的有理数相乘,我们规定了简捷算法——有理数的乘方运算,除了要熟悉四则运算的法则之外,还应该注意到: 1、有理数对加、减、乘、除(除数不为0)四则运算的结果是封闭的(仍是有理数)。 2、在有理数范围内、加法交换律、结合律、乘法交换律、结合律都成立,乘法对加法分配律也成立。 3、由于有了正、负数,加法与减法的界限消失,加、减可以互相转换,统一为代数和。如(-3)-7= (-3)+(-7)。在有理数范围内,除法可以转化为乘法,比如(-5)÷7=(-5)7 1?。 能力提升2:有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性. (一)括号的使用 在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单. 1 计算: (2)4 11)54()1()21(12)1()2(219983?-÷-??????--÷---?- 2. 计算下式的值: 211×555+445×789+555×789+211×445. 3. 计算:S=1-2+3-4+…+(-1)n+1·n . 4. 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少? (二)用字母表示数 我们先来计算(100+2)×(100-2)的值: (100+2)×(100-2)=100×100-2×100+2×100-4=1002-22. 这是一个对具体数的运算,若用字母a 代换100,用字母b 代换2,上述运算过程变为 (a+b)(a-b)=a 2-ab+ab-b 2=a 2-b 2. 于是我们得到了一个重要的计算公式:(a+b)(a-b)=a 2-b 2 ① 这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算. 5 计算 3001×2999的值. 6 计算 103×97×10 009的值. 7 计算: 8 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).

有理数单元测试卷(含答案)

数学试卷 (第一章有理数 时间90分 满分100分) 班级 姓名 成绩 一、填空题(每小题2分,共20分) 1.│-2│ 。 2.-2. 5的倒数是 。 3.如果80m 表示向东走80m ,那么-60m 表示_____________________。 4.在数轴上,离开原点的距离是2的数是__________。 5.比较有理数的大小:(1) (2) 6.一个数和它的倒数相等,则这个数是 。 7.将数375 800精确到万位的近似数是__________;将近似数5.197精确到0.01时,有效数字分别是____________。 8.式子的计算结果是 。 9.绝对值大于1而小于4的整数有____________ ,它们的和是_________。 10.的值是__________________。 二、选择题(每小题3分,共24分) 11.在数轴上,原点及原点右边的点表示的数是( ) A.正数 B.负数 C. 非负数 D.非正数 12.用-a 表示的数一定是( ) A .负数 B .负整数 C .正数或负数 D .以上结论都不对 13.下列各数用科学记数法表示正确的是( ) A .0.58×105 B . 12.3×107 C . D . 3.06×10 6 14.数a 的相反数是-a,那么a 表示( ) A. 任意一个数 B.正有理数 C.正分数 D. 负有理数 15.下列说法错误的个数是( ) ①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数 ③正数和零的绝对值都等于它本身;④互为相反数的绝对值相等 A .3个 B .2个 C .1个 D .0个 16.如果,下列成立的是( ) A . B . C . D .

第一章 有理数单元测试卷(含答案)

第一章有理数单元测试卷 (时间:90分钟满分:120分) 一、精心填一填,你准成(每题3分,共30分) 1.水库水位上升3米记作+3米,那么下降了2米记作_____米. 2.在5,-2 3 ,0,-2, 1 5 中正数有______个,整数有_____个. 3.-│-7│的相反数为____,相反数等于本身的数为_______. 4.已知│x│=3 2 ,│y│= 1 2 ,且xy>0,则x-y=______. 5.某商品袋上标明净重1000±10克,这说明这种食品每袋合格重量为______. 6.x与21 2 的差为 1 2 ,则-x=_____. 7.近似数1.50精确到_______,78950用科学记数法表示为_____. 8.若ab=1,则a与b互为_______,若a=-1 b ,则a与b关系为_______. 9.2002年,我国城市居民每人每日油脂消费量,由1992年的37克增加到44克,?脂肪供能比达到35%,比世界卫生组织推荐的上限还要多5个百分点,则世界卫生组织推荐的脂肪供能比的上限为________. 10.按规律写数1 2 ,- 1 4 , 1 8 ,- 1 16 ,…第6个数是______. 二、细心选一选,你准行(每题3分,共30分) 11.绝对值等于它的相反数的数是() A.负数B.正数D.非正数D.非负数 12.把-1 3 ,-1,0用“>”号连接起来是() A.-1>-1 3 >0 B.0>- 1 3 >-1 C.0>-1>- 1 3 D.- 1 3 >-1>0 13.如果│x+y│=│x│+│y│,那么x,y的符号关系是() A.符号相同B.符号相同或它们有一个为0 C.符号相同或它们中至少有一个为0 D.符号相反 14.如果-1

有理数单元测试试卷讲评

有理数单元测试试卷讲评---教学设计 教学目标: 知识与技能:进一步理解数轴以及与数轴有关的概念,提高运用数轴思考问题,解决问题的能力,提高运算的 准确性 过程与方法:在小组合作的过程中提高学生运用数学知识、法则解决问题的能力,体验分类讨论、数形结合的数学思想 情感态度和价值观:激发学生学习数学的兴趣,培养良好的学习习惯、学习方法,学会合作交流 学情分析:本届初一学生相对活跃,但两极分化较大,没有养成良好的学习习惯,做题容易毛躁,本次测试体现的问题较多,但是有一部分问题学生可以自主修正,为了培养学生自主学习、合作探究的能力,最大限度的提高课堂效率,教师课前制作了微课,放在QQ学习群共享,学生借助微课以小组为单位自主修正,第二天进行再测试(试题有改动),本课针对两次测试中仍存在的问题以对比的形式求同存异进行讲评。 重点难点 1.数轴以及与数轴有关概念的综合运用 2. 数轴以及与数轴有关概念的综合运用 教学过程设计 一:激励导入 教师活动:对比两次测试成绩,表彰成绩较好的小组及个人,并请进步明显的小组分享成功的经验,展示满分学生数学周记 学生活动:分享成功经验 设计意图:通过成绩对比,让学生感受到自主学习的重要性,同时想了解学生自主学习的习惯。对学生的成绩给予表扬和鼓励,激发学生对数学的兴趣和荣誉感,展示满分同学数学周记,让学生感受习惯和态度是取得高分的必要保证,天才在于勤奋,聪明在于积累,成绩是平时努力的结果 二:归纳题型、考点 师生活动:展示有理数这一章的知识,将试题按照考察知识点归类,用黑、蓝、红色进行标记,黑色是学生完成较好的题目,蓝色次之,红色是问题较多的题目 设计意图:明确各个考题的考点,体验万变不理其“宗”,同时明确自己的优势和不足。 三:求同存异合作探究 师生活动:找到两次试卷中存在的共性问题:(1)数轴和数轴有关概念的综合应用(2)运算不够准确 问题一:数轴:(两张试卷13题) 13、在数轴上,与原点的距离等于3个单位长度的点所表示的数是______

有理数单元测试题(A卷)

有理数单元测试题(A 卷) 一、选择题(每题3分,共30分) 1、在-1,0,1,2这四个数中,既不是正数也不是负数的是( )B A .1- B .0 C .1 D .2 2、绝对值等于本身的数有:( )D A.0个; B.1个; C.2个; D.无数个 3、4-的倒数是( )D A .4 B .4- C . 14 D .14 - 4、不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号 和的形式是( )C A. -6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-2 5、计算()2 1-的值等于( )B A .-1 B . 1 C .-2 D .2 6、下面四个数中比-2小的数是( )D A .1 B .0 C .-1 D .-3 7、计算:0-1 2 =( )C A. 12 B. -2 C.-1 2 D. 2 8、下列式子中,准确的是( )A A .∣-5∣ =5 B .-∣-5∣ = 5 C .∣-0.5∣ =21 - D .-∣- 21∣ =2 1 9、算式4)43 3(?-能够化为( )A A.44343?-?- B.44343?+?- C.-3?3-3 D.44 3 3?-- 10、由四舍五入法得到的近似数8.8×103,下列说法中准确的是( )C A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字 若∣a ∣+∣b ∣=0,则a 与b 的大小关系是( )A A.a=b=0 B.a 与b 互为相反数 C.a 与b 异号 D.a 与b 不相等 二、填空题:(每题3分,共30分) 11、绝对值大于1而不大于3的整数有 —3,—2,2,3 ,它们的和是 0 12、数轴上与距离原点3个单位长度的点所表示的负数.. 是__________。-3

相关文档
最新文档