第二章正投影法及基本体的视图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 倾斜于投影面的直线,在该投影面上的投影仍是直线,但长度较空间直线的实长要短一些,不 反映实长,这种特性称为缩短性。
2021/2/4
1
31
二、各种位置直线的投影特性
1. 投影面平行线的投影图
2.
物体上平行线的投影分析
2. 投影面垂直线的投影特性
3.
物体上垂直线的投影分析
3. 一般位置直线的投影特性
三视图不仅反映了物体的长、宽、高,同时也反映了物体的上、下、左、 右、前、后六个方位的位置关系。
可以看出:
主视图反映了物体的上、下、左、右方位。
俯视图反映了物体的前、后、左、右方位。
左视图反映了物体的上、下、前、后方位。
2021/2/4
1
18
第三节 点的投影
一、 点的投影特性 点的投影特性:点的投影永远是点。 二、 点的投影标记
2021/2/4
1
21
五、 点的坐标
如图3-11所示,点的坐标值的意义如下: A点到W面的距离Aa″=aaY=a′aZ=OaX,以坐标x标记。 A点到V面的距离Aa′=aaX=a″aZ=OaY,以坐标y标记。 A点到H面的距离Aa=a′aX=a″aY=OaZ,以坐标z标记。 由于x坐标确定空间点在投影面体系中的左右位置,y坐标确定空间点在投影面体系 中的前后位置。z坐标确定点在投影面体系中的高低位置,因此,点在空间的位置 可以用坐标x、y、z确定。
图3-1中心投影法
2021/2/4
1
2
S 投射中心 投射线
形体
a
2021/2/4Байду номын сангаас
b
1
物体的中 心投影
c
3
第一节 投影法的概念 二、平行投影法
图3-2 平行投影法
在平行投影法中,根据投射线与投影面所成的角度不同,又可分 为斜投影法和正投影法两种。
2021/2/4
1
4
1. 斜投影法——投射线倾斜于投影面
(a) 图3-9 点的三面投影
按统一规定,空间
点用大写字母A、B、 C…标记。空间点在H 面上的投影用相应的 小写字母a、b、c… 标记;在V面上的投 影用小写字母加一撇 a′、b′、c′…标记;在 W面上的投影用小写 字母加两撇a″、b″、 c″…标记。
2021/2/4
1
19
三、 点的三面投影 。
2021/2/4
1
29
第四节 直线的投影
一、直线的投影 二、各种位置直线的投影特性 三. 属于直线的点的投影 四、例题
2021/2/4
1
30
一、直线的投影
c
a
b
a(c)(b)
ac
b
(a)
(b)
(c)
(1) 平行于投影面的直线,在该投影面上的投影仍为直线且反映实长,这种特性称为真实性。
(2) 垂直于投影面的直线,在该投影面上的投影积聚为一点,这种特性称为积聚性。
投 射 线 方 向
a b
c
90°
2021/2/4
1
5
2.正投影法 ——投射线垂直于投影面
投 射 线 方 向
90°
2021/2/4
1
6
三 正投影的投影性质
c
a
b
a(c)(b)
ac
b
(a)
(b)
(c)
(1) 平行于投影面的直线,在该投影面上的投影仍为直线且反映实长,这种特性称为真实性。
(2) 垂直于投影面的直线,在该投影面上的投影积聚为一点,这种特性称为积聚性。
20 ax
Z a'
Z
a'
a"
X
ax
O
YW X
ax
O ayw YW
10 18
a YH
a
ayH
YH
(a) 在OX轴上取Oax=20mm (b) 过ax作OX轴的垂直线,使aax (c)根据a和a'求出a" =10mm、a'ax=18mm,得a和a'
2021/2/4
1
26
第三节 点的投影
七、 两点的相对位置
个视图画在一个平面 上,就必须把三个投 影面展开摊平。展开 的方法是:正面(V)保 持不动,水平面(H)绕 OX轴向下旋转90°, 侧面(W)绕OZ轴向右 旋转90°,使它们和 正面(V)展成一个平面, 如图3-6b、c所示。这 样展开在一个平面上 的三个视图,称为物 体的三面视图,简称 三视图。
2021/2/4
(3) 倾斜于投影面的直线,在该投影面上的投影仍是直线,但长度较空间直线的实长要短一些,不 反映实长,这种特性称为缩短性。
2021/2/4
1
7
第二节 三视图的形成及投影规律 一、三视图的形成
几个不同的物体,只取它们在一个投影面上的投影,如果不附加其他说 明,是不能确定各物体的整个形状的。如图3-4所示。
物体上一般直线的投影分析
2021/2/4
1
32
1. 投影面平行线的投影特性
a' b'
A B
a b
a" b"
a' b'
a" b"
a βγ
b
b'
a' A
B b" a"
O
ab
b' a' α γ
b" a"
O
ab
2021/2/4
1
a' A
b'
B a
b
a" b"
a'
a"
β
b'
α b"
O
a
b
33
物体上平行线的投影分析
a"(b ")
B
b
a' b'
a"(b ")
a
b
ab
2021/2/4
1
35
物体上垂直线的投影分析
投影面垂直线的投影特性: 在直线所垂直的投影面上,其投影积聚成一点;另外两个投影分别垂
直于相应的投影轴,且反映实长 。
2021/2/4
1
36
3. 一般位置直线的投影特性
b'
b"
a'
O
b
a"
a
投影特性(1) a b、 a' b' 、a " b"均小于实长。
1
图3-6 三视图的形成
12
三视图的展开
2021/2/4
1
13
投影面展开摊平在同一平面上的三视图
2021/2/4
1
14
二、三视图的关系及投影规律
1 位置关系 物体的三个视图按规定展开,摊平在同一平面上以后,具有明确的位置 关系,主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右 方。 2 投影关系 三视图之间的投影对应关系可以归纳为: 主视、俯视长对正(等长)。 主视、左视高平齐(等高)。 俯视、左视宽相等(等宽)。 这就是“三等”关系,简单地说就是“长对正,高平齐,宽相等”。对 于任何一个物体,不论是整体,还是局部,这个投影对应关系都保持不变 (图3-7)。 “三等”关系反映了三个视图之间的投影规律,是我们看图、画图和检 查图样的依据。
2021/2/4
1
y z
23
[例题1] 已知点A的正面与侧面投影,求点A的水平投影。
a
2021/2/4
1
24
[例题2]已知点的两面投影,求作其第三面投影。
2021/2/4
1 图3-13 由两投影求第三投影
25
[例题3]已知点A的坐标为x=20,y=10,z=18,即 A (20 mm、 10 mm、18 mm),求作点A的三面投影图。
(2) a b、a' b' 、a" b"均倾斜于投影轴。
(3)不反映 、 、 实角。
2021/2/4
1
37
物体上一般直线的投影分析
2021/2/4
1
38
三. 属于直线的点的投影
f'
e'
F
E
f' e'
ef
f e
(a) 直观图
(b) 点E属于直线AB,点F不属于AB
直线上的点分割线段的比例投影后不变
2021/2/4
1
39
四、例题
[例题4] 过点作正垂线 [例题5] 物体上直线的投影分析 [例题6] 点分割线段成比例
2021/2/4
1
40
[例题4] 试过点E作一长度为10mm的正垂线EF,点F在点E的 正前方。
10
(e')
l"
(a) 已知
2021/2/4
1
10 l
(b) 作图
41
[例题5] 物体上直线的投影分析
1. 三投影面体系
为了表达物体的形状和大小,选取互相垂直的三个投影面,如图3-5所示。
正对观察者的投影面称 为正立投影面(简称正面), 代号用“V”表示。
右边侧立的投影面称为 侧立投影面(简称侧面), 代号用“W”表示。
X 轴表示 长度尺寸 Y 轴表示 宽度度尺寸 Z 轴表示 高度度尺寸
水平位置的投影面称为 水平投影面(简称水平面), 代号用“H”表示。
a
a
9
8
5
a
2021/2/4
1
28
八、 重影点的投影
当空间两点的某两个坐标值相同时,该两点处于某一投影面的同一投 射线上,则这两点对该投影面的投影重合于一点,称为对该投影面的重影 点。空间两点的同面投影(同一投影面上的投影)重合于一点的性质,称为 重影性。
重影点有可见性问题。
图3-15 重影点的投影
2021/2/4
图13-9 点的三面投影
20
四、 点的投影规律
(a)
(c)
(1) 点的V面投影 a'和H面投影a的连线垂直于OX轴(aa'⊥OX)
(2) 点的V面投影a '和W面投影a"的连线垂直于OZ轴(a'a " ⊥OZ)
(3) 点的H面投影a到OX轴的距离等于点的W面投影a"到OZ轴的距离(aax=a"az)
图3-4 不同形状的物体在同一投影面上可以得到相同的投影
要反映物体的完整形状,必须根据物体的繁简,多取几个投影 面上的投影相互补充,才能把物体的形状表达清楚。
2021/2/4
1
8
第二节 三视图的形成及投影规律 一、三投影面体系
• 第一分角 • 国外第三分角
2021/2/4
1
9
第二节 三视图的形成及投影规律 一、三视图的形成
2021/2/4
1
10
2. 三视图的形成
按正投影法并根据有关标准和规定画出的物体的图形,称为视图。正
面投影(由物体的前方向后方投射所得到的视图)称为主视图,水平面投
影(由物体的上方向下方投射所得到的视图)称为俯视图,侧面投影(由物
体的左方向右方投射所得到的视图)称为左视图。
2021/2/4
1
11
为了把空间的三
s'
s"
S
a'
c' a"
b"
b'
(c")
A
C 主视图 a
c
投影方向
B
s
b
(a)
SA——为一般位置直线
SB——为侧平直线
2021/2/4
SC——为一般位置直线
1
(b)
AB——为水平线 BC——为水平线 AC——为侧垂线
(c)
42
[例题6] 已知线段AB的投影,试将AB分成2﹕1两段,求分点 C的投影c、c' 。
第二章正投影法及基本体的视图
第一节 投影法的概念 一、中心投影法
如图3-1所示,我们把光源S称为投射中心,光线称为投射线,平面P称为投影面, 在P面上所得到的图形称为投影。由此图可知,投射线都是从投射中心光源点灯泡 发出的,投射线互不平行,所得的投影大小总是随物体的位置不同而改变。这种 投射线互不平行且汇交于一点的投影法称为中心投影法(图3-1)。 用中心投影法所得到的投影不能反映物体的真实大小,因此,它不适用于绘制机 械图样。
投影面平行线的投影特性: 在直线所平行的投影面上,其投影反映实长并倾斜于投影轴;其余两个
投影分别平行于相应的投影轴,且小于实长。
2021/2/4
1
34
2. 投影面垂直线的投影特性
b'
B
b"
a'
A
a"
b(a)
b'
b"
a'
a"
b(a)
(a')b'
A
a"
B b"
a
b
(a')b'
a" b"
a' b' A a
c'
c
2021/2/4
1
43
第五节 平面的投影
一、平面的投影 二、各种位置平面的投影特性 三、平面上的直线和点 四、例题
2021/2/4
1
44
一、平面的投影
d a
c b
F EM
d(a) e
m
c(b) f
d a
c b
(1)平行于投影面的平面在该投影面上的投影,仍为一平面,且反映该平面的实形。
(2)垂直于投影面的平面在该投影面上的投影积聚为一直线,且该平面(包括延展面)上所 有的线和点的投影都积聚在该直线上。
两点的相对位置是以一点为基准,判别其他点相对于这一点的左右、 高低、前后位置关系。在三投影面体系中,两点的相对位置是由两点的坐 标差决定的。
图3-14 两点的相对位置
如图3-14所示,就是B点在A点的右、前、上方。
2021/2/4
1
27
[例题4] 已知点A在点B之前5毫米,之上9毫米,之右8毫米, 求点A的投影。
2021/2/4
1
15
图3-7 三视图的“三等”对应关系
2021/2/4
1
16
三视图的投影规律
主左视图高平齐
主俯视图长对正
俯左视图宽相等
主、俯视图中相应投影的长度相等——长对正;
主、左视图中相应投影的高度相等——高平齐;
俯、左视图中相应投影的宽度相等——宽相等
2021/2/4
1
17
3 方位关系
(3)倾斜于投影面的平面,在该投影面上的投影为面积缩小了的类似形,且不反映实形。
2021/2/4
1
45
二、各种位置平面的投影特性
1. 投影面垂直面的投影特性
2.
物体上垂直面的投影分析
2. 投影面平行面的投影特性
3.
物体上平行面的投影分析
4. 3. 一般位置平面的投影特性
2021/2/4
1
46
1. 投影面垂直面的投影特性
2021/2/4
图3-11 点的坐标
1
直角坐标值 的书写形式, 通常采用A(x, y,z);通常 把x坐标称为 横标,y坐标 称为纵标,z 坐标称为高标。
22
六、 点的投影与坐标
x
z y
x
点A到H面的距离 Aa=a'aX=a"aY=点A的z坐标; 点A到Y面的距离 Aa'=aaX=a"aZ=点A的y坐标; 点A到W面的距离 Aa"=a'aZ=aaY=点A的x坐标。
相关文档
最新文档