高等代数选讲之多项式理论

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小的数域。
(2)在有理数域与实数域之间存在无穷多个数域; 在实数域与复数域之间不存在其他的数域。
例1、设P是一个数集,有非零数 a P ,且P关于减
法、除法(除数不为零)封闭,证明P是一个数域。
证 因为 a P ,所以 0 a a P,1 a P. a
a,b P, 有 a b a 0 b P, 即P对加法封闭。
多元多项式函数 对称多项式基本性质
根ቤተ መጻሕፍቲ ባይዱ系数 的关系
重点、难点解读
这部分内容对多项式理论作了较深入、系统、全面 地论述,内容可分为一元多项式与多元多项式两大部分, 以一元多项式理论为主。可归纳为以下四个方面:
(1)一般理论:包括一元多项式的概念、运算、多 项式相等、导数等基本性质。
(2)整除理论:包括带余除法、整除、最大公因式、 互素的概念与性质。
两式相乘得 x102 1 x2 1 f x
由于x102 1与 x2 1 无奇次项,从而 f x不可能有奇
次项,故其奇次项系数之和等于零。
法2 因为 f x f x,所以 f x是偶函数,于 是 f x的奇次项系数全为零。故其奇次项系数之和等
于零。
例2、设 f x 为一多项式,若 f x y f x f y
n 是非负整数。当 an 0 时,称多项式 f x的次数为 n.
记为 f x n.
2、多项式的相等关系 设
f x anxn an1xn1 L a1x a0
g x bnxn bn1xn1 L b1x b0

f x g x ai bi i 0,1,2,L ,n
3、次数公式
知识脉络图解
数域
一元多项式概念
多项式函数
多项式的相等及运算
多项式恒等及多项式函数的运算
带余除法
综合除法
余数定理
整除性
因式分解
方程的根
不可约多项式
最大公因式
因式分解唯一性定理
重因式
复数域上的 因式分解
实数域上的 因式分解
有理多项式 不可约判定
本原多项式 求有理根
实多项式根 的性质
代数学
基本定 理
多元多项式概念 对称多项式
由于P是一个数域,所以 i a bi a P. 但 R P,
b
从而对任意实数 a, b 都有 a bi P ,即P包含了全体复数。 故P=C。
二、一元多项式的概念
1、一元多项式的概念
形式表达式
f x anxn an1xn1 L a1x a0
称为数域P上文字 x 的一元多项式,其中 a0 , a1,L , an P,
第一讲 多项式理论
多项式理论是高等代数的重要内容之 一,虽然它在高等代数课程中是一个相对 独立而自成体系的部分,但却为高等代数 所讲述的基本内容提供了理论依据。多项 式理论中的一些重要定理和方法,在进一 步学习数学理论和解决实际问题时常要用 到,是代数学中最基本的研究对象之一。 因此,在学习这部分内容时,要正确地掌 握概念,学会严谨地推导和计算。
f x qxgxrx
其中r x 0 或 r x g x.
2、整除的概念
设 f x, g xPx ,如果存在多项式 hxPx, 使 f x hx g x ,则称 g x整除 f x。
3、整除的充分必要条件
如果 g x 0,则 g x f x的充分必要条件是用 g x
对于多元多项式,则要理解 n 元多项式、对称多项 式等有关概念,掌握对称多项式表成初等对称多项式的 多项式的方法。
一、数域的判定
1、数域的概念
设P是至少含有两个数(或包含0与1)的数集,如果 P中任意两个数的和、差、积、商(除数不为零)仍是P 中的数,则称P为一个数域。
2、数域的有关结论 (1)所有的数域都包含有理数域,即有理数域是最
6、注意零多项式和另次多项式的区别。
例1、令
f x x50 x49 x48 x47 L x 1 x50 x49 L x 1
求 f x 的奇次项系数之和。
解 法1 由于
x51 1 x 1 x50 x49 x48 x47 L x 1 x51 1 x 1 x50 x49 L x 1
(3)因式分解理论:包括不可约多项式、因式分解、 重因式、实系数与复系数多项式的因式分解、有理系数多 项式不可约的判定等。
(4)根的理论:包括多项式函数、多项式的根、代 数基本定理、有理系数多项式的有理根求法、根与系数 的关系等。
一元多项式的内容十分丰富,重点是整除与因式分 解的理论,最基本的结论是带余除法定理、最大公因式 存在定理、因式分解唯一性定理。在学习的过程中,如 能把握这两个重点和三大基本定理,就能够整体把握一 元多项式的理论。
(1) f x g x maxf x,g x; (2) f x g x f x g x.
4、一元多项式环 所有系数在数域P中的一元多项式全体称为数域P
上的一元多项式环,记为 Px ,称P为 Px 的系数域。
5、一元多项式环的有关结论
多项式的加、减、乘运算对Px 封闭,且多项式的
加法、乘法均满足交换律与结合律,乘法对加法满足分 配率,乘法还满足消去律。
则 f x 0 或 f x 1. 证 若 f x 0 ,则证毕。若 f x 0 ,由于 f 2x f x x f x f x f 2 x
所以 f x只能是零次多项式。令 f x A 0 ,又因为 A f 0 f 0 0 f 2 0 A2
所以 A 1,此即 f x 1.
a,b P, 若 a, b 中有一个为零,则 ab 0 P.

ab 0,则 ab
a 1
P.
从而P对乘法封闭。
b
综上所述,P关于加法、减法、乘法、除法都封闭,所 以P是一个数域。
例2、证明:实数域与复数域之间不存在其他的数域。
证 设P是任意一个包含R且不同于R的数域,且P还
包含至少一个复数 a bi b 0 。
P31.4
例3设 f (x)是非零实系数多项式,k 是一个 正整数,且 f ( f (x) f k (x) ,则 f (x) 为零次 多项式或者 f (x) xk 。
三、多项式的带余除法及整除
1、带余除法
定理(带余除法)设 f x, g xPx, g x 0,
则存在唯一的多项式 qx,r xPx, 使
相关文档
最新文档