矩阵的初等变换及初等矩阵

合集下载

矩阵的初等变换

矩阵的初等变换

o 等价。 o
13
第一章
例2.3 问矩阵

1 1 4 0 1 2 1 0 A 0 1 2 0 , B 1 3 0 2 2 2 0 1 0 1 1 2
A
与矩阵
B
是否等价?
解 先求矩阵 A 与矩阵
1 4 1 2 0 2 4 0 0 11 3 2r3r1 2 2 r1 0 0 0 r 0 00 0 0 0
B 的标准形
11 11 4 4
4 4 2 2 8 8 11 1 14 0 r3r3 44r4 4r 0 0 0 1 1 2 0 0 0 0 0 0 0
1 1 A 0 A 0 1 2 2 2
3 2
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
第一章
0 1 2 1 0 1 2 1 0 1 1 0 2 0 1 0 r r2 r1 rr32 0 1 1 2 r3 2 B 1 3 0 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 0 0 0 0 0 0 0

r1 4 r2 1 r3 143
5 1 0 59 0 1 14 3 0 0 1 0
1 0 0 5 0 1 0 3 0 0 1 0
r2 14 r3 r1 59 r3
1 0 0 5 D 0 1 0 3 0 0 1 0
1 0 3 D. 0 1 0 0 0 1
例2:写出上题中初等矩阵的逆

初等变换与初等矩阵

初等变换与初等矩阵
设矩阵A已通过初等行变换化为阶梯 形矩阵(2.5.1),我们再对它的第k行分别乘以
1 (k 1,2,, r) ,然后再对矩阵作第三种
bk
初等行变换,则矩阵A就可以化为简化阶 梯形
0 0
1 0
0
0 1
0 0
0 0 0 0 0 1
0 0 0 0 0 0 0 0
r4 12r3
0 0 0
0 0 0
1 0 0
2 1
2 0
6 12
这就是矩阵 A的阶梯形. 再对其进行初
等行变换 1 3 2 2 1
A
0 0 0
0 0 0
1 0 0
2 1
2 0
6 12
1 3 0 6 3
( 12)rr13, r2112r4
0 0 0
0 0 0
1 0 0
2 1 0
1 13
Ps P2 P1 AQ1Q2 Qt B
若记P= P1,P2,…,Ps,Q=Q1,Q2,…,Qt , 则 P为 m阶可逆矩阵, Q为 n阶可逆矩阵, 于是得到
推论1 mn矩阵A与B等价存在m阶 可逆矩阵P与n阶可逆矩阵 Q ,使得
PAQ B
结合定理2.5.2,我们有 推论2 对于任意非零mn矩阵A,必 存在m阶可逆矩阵 P与 n阶可逆矩阵Q,使 得
外,还满足条件: (3) 各非零行的第一个非零元素均为1,
且所在列的其它元素都为零,
则称 A为简化阶梯形矩阵.
例如
0 2 1 4 A 0 0 5 7
0 0 0 0
1 2 0 5 3
B
0 0 0
0 0 0
4 0 0
8 3 0
3 10
为阶梯形矩阵;
1 2 0 0 2 C 0 0 1 0 1

线性代数 2-5 矩阵的初等变换和初等矩阵

线性代数 2-5  矩阵的初等变换和初等矩阵
所以 A Ps1 P11IQt 1 Q11 Ps1 P11Qt 1 Q11 .
"" 因为初等矩阵可逆,所以充分性显然。.
设 Ann 可逆, 则存在初等矩阵P1 , Pm , 使 I Pm P1 A
所以 A1 Pm P1 Pm P1I

0
0
2
1
0
1
1(2)(1) 1 12(3) 0
0
0 1 0
1 0 1
2
1 1
2
1 1 0
0
1
0 1

2
1(3)(1) 0

0
0 1 0
0 0 1
5
2 1 1
2
1 1 0
1 2 0 1
.2
0L L L 1
i
Eij
M1
M


M
O
M


M
1M


1L L L 0
j

1


O

1

将单位矩阵的第i,j行(列)对换而得到;.
三、初等矩阵与初等变换的关系 例1 计算下列初等矩阵与矩阵
A (aij )3n , C (cij )32 , B (bij )33 的乘积:
B ( AT A 2 AT )1
1 0 0 1 1 0 0


0
1
2



0
3
2

.
0 2 3 0 2 1
注意
1 用初等行变换法求逆,只能对(A I)进行行变换

矩阵的初等变换和初等矩阵

矩阵的初等变换和初等矩阵

23xxx111
x2 3x2 6x2
2x3 x3 9x3
x4 x4 7 x4
4 2 9
增广矩阵的比较
B
2 1 4 3
1 1
6 6
1 2
2 9
1 1 2 7
42 94
B2
1 2 2 3
1 1 3 6
2 1
1 9
1 1 1 7
24 92
显然 把B的第3行乘以(1/2)即得B2
即 方程③两端乘以(1/2) B的第3行乘以(1/2)
E1ij(k)Eij(-k)
Henan Agricultural University
四、初等矩阵与初等变换的关系
设A是一个mn矩阵 对A施行一次初等行变换 相当于在 A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵
3 0 1
例如

A 10
1 1
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
2 4 9
增广矩阵的比较
B
21 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
1 1 2 1 4
B1
2 4 3
1 6
6
1 2 9
1 2
7
2 94
[i,j]
以数k乘第i行加到第j行上 记作 [i(k)j]
Henan Agricultural University
三、初等矩阵
例如,对于3阶单位矩阵E

初等变换与初等矩阵

初等变换与初等矩阵
上面的“和” 字换成分块线),左乘初等矩阵(即进行初等行变换),最后求
⎡ A⎤ 出 A-1[见 P.68 例 2 的运算(有小错)];也可把 A 和 I 做成列分块矩阵 ⎢⎢L⎥⎥ ,右
⎢⎣ I ⎥⎦ 乘初等矩阵(即进行初等列变换),最后求出 A-1(结果相同).
作业(P.71):1(1) ; 2(2) ; * 6(1).

⎢⎢⎢⎡−116
⎢2
⎢⎢⎣−
1 6
− 13 6 3
2 −1
6
4⎤
3
⎥ ⎥
−1⎥ .

1⎥
3 ⎥⎦

A−1 = ⎢⎢⎢⎡−116
− 13 6 3
4⎤
3
⎥ ⎥
−1⎥ .
⎢2 2

⎢⎢⎣−
1 6
−1 6
1⎥ 3 ⎥⎦
四.分块矩阵的初等变换(简介)
仍以上面求 A 的逆矩阵 A-1 为例,可把 A 和 I 做成行分块矩阵 [A M I ](把
⎥ ⎥ ⎥
⎢⎣
1⎥⎦ ⎢⎣ Am ⎥⎦ ⎢⎣ Am ⎥⎦
2.[ 关于矩阵的等价标准形 ] 表述①任意矩阵 Am×n 都有自己的等价标准形
⎡ Ir ⎢⎣0 q ×r
0r × p 0q×p
⎤ ⎥ ⎦
,其中
0

r

min(m,
n)
;表述②对任意矩阵
Am×n
都存在有限个
m

的初等矩阵 P1 、P2 、… 、P s 和 n 阶的初等矩阵 Q1 、Q 2 、… 、Q t 、、、,使得
⎡2 3 1⎤ 以 A = ⎢⎢0 1 3⎥⎥ 为例[P.68 例 2],对 A 和 I 进行同样的初等行变换:

初等矩阵及初等变换

初等矩阵及初等变换

初等矩阵及初等变换矩阵的初等变换⼜分为矩阵的初等⾏变换和矩阵的初等列变换。

1)初等⾏变换:所谓数域P上矩阵的初等⾏变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i⾏,即为E i(k),那它的逆矩阵⾃然就是E i(1 k)。

b. 把矩阵第i⾏的k倍加到第j⾏,这⾥k是P中的任意⼀个数,记为E ij(k),要想把第j⾏变回去,⾃然得减掉第i⾏的k倍,即E ij(−k)。

c. 互换矩阵中第i⾏和第j⾏,记为E ij,逆矩阵为E ij,这是很显然的,就是再交换⼀次就变回去了。

2)初等列变换:所谓数域P上矩阵的初等列变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i列,记为E i(k)。

b. 把矩阵的第i列的k倍加到第j列,这⾥k是P中的任意⼀个数,记为E ij(k)。

c. 互换矩阵中第i列和第j列,记为E ij。

初等矩阵:由单位矩阵E经过⼀次初等变换得到的矩阵称为初等矩阵。

矩阵经过初等变换后不会改变它原来的秩,因为初等矩阵是满秩的⽅阵,所以它是可逆的,如PA=B于是有r(B)≤r(A)因为P可逆,所以有A=P−1B于是r(A)≤r(B)所以r(A)=r(B)注:如果不了解这个过程,可以先去阅读。

左⾏右列定理:初等矩阵P左乘或(右乘) A得到PA(AP),就是对A做了⼀次与P相同的初等⾏(列)变换。

即要使矩阵A做出和初等阵相同的列变换,则A右乘P。

要使矩阵A做出和初等阵相同的⾏变换,则A左乘P。

为什么是这样的呢?可以阅读。

其实就是从向量⾓度来理解矩阵乘法,对于矩阵相乘AB=C,我们可以这样理解:1)矩阵C的每⼀个⾏向量是矩阵B的⾏向量的线性组合,组合的系数是矩阵A的每⼀⾏。

2)矩阵C的每⼀个列向量是矩阵A的列向量的线性组合,组合的系数是矩阵B的每⼀列。

Processing math: 100%。

线性代数:矩阵的初等变换和初等矩阵

线性代数:矩阵的初等变换和初等矩阵

a12 3a22
a13 3a23
a11 a21
a12 a22
a13 a23
2 0 0
0 1 0
0 0 1
2a11 2a12
a12 a22
a13 a23
10
a11 a21
a12 a22
a13 a23
c1 2
2a11 2a12
a13 a23
a12 a22
3、以数k 0乘某行(列)加到另一行(列)上去
矩阵的初等变换和 初等矩阵
1
一、矩阵的初等变换初等矩阵
定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k

i

1
1
8
以 Em (i(k)) 左乘矩阵A,
25
三、初等变换法求逆矩阵
当A可逆时,由推论4,A P1P2 Pl,有 Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11P11 A E
Pl1Pl11P11 A Pl1Pl11P11E E A1
即对 n 2n 矩阵 ( A E) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1.

矩阵的初等变换与初等矩阵

矩阵的初等变换与初等矩阵





Er O
O O

0
00
0
的矩阵等价,称之为 A 的标准形.其中r是行阶梯形矩
阵非零行的行数.
§3 矩阵的初等变换与初等矩阵
二、初等矩阵
定义 由单位矩阵 E 经过一次初等变换得到的
矩阵,称为初等矩阵.
三种初等变换对应着三种初等矩阵:
1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
行阶梯形矩
阵的特点: 阶梯 线下方的元素全 为零; 每个台阶 只有一行, 台阶 数即是非零行的 行数, 阶梯线的 竖线(每段竖线 的长度为一行) 后面的第一个元 素为非零元,也 就是非零行的第 一个非零元.
例如
1 2 0 0

0
0
1
0

0 0 0 1
1 2 1 0

E(i, j)A: 对换 A的 i, j 两行; AE(i, j): 对换 A的 i, j 两列. E(i(k))A :用非零数 k乘 A 的第 i 行; AE(i(k)) :用非零数 k 乘 A 的第 i 列.
E(i, j(k))A :A 的第 j 行乘以 k加到第 i 行 ;
第二章 矩阵
§1 矩阵的概念与运算 §2 可逆矩阵与逆矩阵 §3 矩阵的初等变换与初等矩阵 §4 矩阵的秩与矩阵的分块
习题课
§3 矩阵的初等变换与初等矩阵
一、矩阵的初等变换 二、初等矩阵 三、用初等变换求矩阵的逆
§3 矩阵的初等变换与初等矩阵
一、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行(列)变换:
1) 用非零数k乘矩阵的某一行(列); k ri,k ci 2) 把矩阵的某行(列)的k倍加到另一行() 互换矩阵中两行(列)的位置. ri rj,ci c j 矩阵A经初等行(列)变换变成矩阵B,一般地A≠B.

矩阵的初等变换与初等矩阵

矩阵的初等变换与初等矩阵

定义3 :如果行阶梯型矩阵满足下列两个 条件,则称其为行最简阶梯型矩阵
非零行的首非零元都是1 b 首非零元所在列的其余元素都 是零
a

1 0 0 r r 1 1 3 A 0 2 0 0 1 0 3 0

0 0 1 r2 1 0 0 2 2 0 0 1 0 1 3 r3 0 0 1 0 3
0 3 2 2 A与B之间用记号 或 0 0 0 0 连接。
2 3
定义2:满足下列条件的矩阵称为行阶梯型矩阵
a 矩阵的零行(元素全为零的行)在非 零行(元素不全为零的行)的下方 b 矩阵的每一个非零行的非零首元都出 现在上一行非零首元的右边 1 2 1 3 0 3 2 0 例 0 6 4 8
1 3 1 4 0 6 4 4 0 0 0 0
r( A) 2
1 1 2.B 3 1 1 1 ( )r 2 0 0 0
2
2 3 0 1 1 1 2 0 2 3 1 1 7 10 0 3
2 1 0 0 3 1 3 0
例:求矩阵的秩:
2 2 3 8 1. A 2 12 2 12 1 3 1 4
1 4 1 3 A 2 12 2 12 r1 r3 2 3 8 2
3 r2 r3 2
1 4 1 3 ( 2 ) r1 r2 0 6 4 4 ( 2 ) r1 r3 0 9 6 6
矩阵的初等变换
矩阵的初等变换是线性代数中一个重要的工具.
以下三种变换分别称为矩阵的第一、第二、第三种初 等变换:
(i ) 对换矩阵中第 , j两行(列)的位置,记作 i rij (cij )或ri rj (ci c j )

2.5矩阵的初等变换和初等矩阵

2.5矩阵的初等变换和初等矩阵

§2。

5 矩阵的初等变换和初等矩阵矩阵的初等变换源于线性方程组消元过程中的同解变换,它在将矩阵变换为简单形式、解线性方程组、求矩阵的逆阵、解矩阵方程以及研究矩阵的秩等方面起着重要的作用。

一 矩阵的初等变换和矩阵等价定义2。

10 设A 是矩阵,下面三种变换称为矩阵的初等行变换: n m ×(1) 交换A 的第行和第行的位置,记为i j j i r r ↔; A 的第i 行各元素,记为;i kr (2) 用非零常数乘以k 的第i 行各元素的倍加到第行对应元素,记为A j k i j kr r +。

(3) 将 若把定义2。

10中的行改为列,便得到三种对应的初等列变换,记号分别为;;。

j i c c ↔i kc i j kc c + 矩阵的初等行(列)变换统称为矩阵的初等变换。

例如⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−↔31132100101792r r ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−179200101321⎯⎯→⎯+242c c ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−177********21值得注意的是,初等变换将一个矩阵变成了另一个矩阵,在一般情况下 ,变换前后的两个矩阵并不相等,因此进行初等变换只能用来表示,而不能用等号。

另外,矩阵的初等变换可以逆向操作,即若矩阵→i r k1A B B 经过、i kr i j kc c +变换成了矩阵,那么对施以及,就可以将矩阵B A i j kc c −。

复原为矩阵A B A B 定义2。

11 如果矩阵经过有限次初等变换后化为矩阵,则称等价于矩阵,简记为B A ~。

由定义可以得到以下关于矩阵等价的一些简单性质:A A ~(1) 反身性:;(2) 对称性:则,~B A A B ~;B A ~且,则。

C B ~C A ~(3) 传递性: 定理2。

3 任意矩阵()nm ija A ×=都与形如的矩阵等价。

矩阵称为矩阵⎟⎟⎠⎞⎜⎜⎝⎛000rE ⎟⎟⎠⎞⎜⎜⎝⎛000r E ),min(1n m r ≤≤A 的标准形。

2.3 矩阵的初等变换与初等矩阵

2.3  矩阵的初等变换与初等矩阵

~
3 0 2 0 1 0 0 2 1 1 0 0 0 9 4 0 2 3
3 0 2 0 1 0 ~ 0 2 1 1 0 0 r3 9 r2 0 0 1 9 4 6 3 0 0 18 9 12 r1 2 r3 0 2 0 8 4 6 ~ r2 r3 0 0 1 9 4 6
4 1 2 1
00 00 11 00
0 0 10 20 30 00 00 00 00
9 4 6 0 0 0 2 0 8 3 0 00
矩 阵 A 的 标 准 型
例4.2

1 1 2 1 A 1 1 1 0 2 0 1 1
的等价标准形.

A
注:
1.任一矩阵都可经过初等行变换化成行阶梯矩阵; 2.任一矩阵都可经过初等行变换化成行最简矩阵;
3.任一矩阵都可经初等变换r
Er 0, E r 都是 0
0 的特殊情况. 0
O Er 。 O O
行阶梯形矩阵
也就是指可以画一条阶梯折线,
折线的下方元素全为零;并且每个阶梯只有一行,
阶梯数即为非零行的行数,阶梯线每一竖线后面第
一个元素为非零元.
3 3 2 1 0 1 0 , B 0 0 1 2 5 如: A 0 0 0 0 0 6 0 1 1 0 0 0 8 0 0 2 5 0 0 5 2 4 0 2 1 0 4 , C 0 3 0 0
0 1 1 3 0 0 0 0 0 2 0 0 0 2 0 8 1 3 0 0
为行阶梯矩阵.
行最简形矩阵
是指行阶梯形矩阵中除每一竖线后面的第一个

矩阵的初等变换

矩阵的初等变换

旳初等变换来完毕,即
r3 1
B3
r2 2r3 r1 r3
1 0
0 1
0 0
r1 2r2 0 0 1
1
0 B4 0
B4
相应方程组为
x1 1 x2 0
x3 0
第二章 矩阵旳运算
13
矩阵 B3 和 B4 都称为行阶梯形矩阵. 特点:
(1)、可划出 一条阶梯线,线 旳下方全为零;
c3 c4 c4 c1 c2
1 0
0 c5 4c1 3c2 3c3 0
0 1 0 0
0 0 1 0
0 1 044
0 0 0
1 0 0
000033033 F
矩阵 F 称为矩阵 A的标准形.
第二章 矩阵旳运算
16
特点:F的左上角是一个单位矩阵,其余元素全 为零.
m n 矩阵 A 总可经过初等变换化为 标准形
(3)传递性 若 A B,B C,则 A C. 具有上述三条性质旳关系称为等价. 例如,两个线性方程组同解,
就称这两个线性方程组等价
第二章 矩阵旳运算
10
用矩阵旳初等行变换 解方程组(1): 2 3 4 2
B 1 2 1 1 2 2 8 2
r1 r2 r3 2
1 2 1 1 2 3 4 2 B1 1 1 4 1
逆变换 逆变换 逆变换
ri rj;
ri
(1 k
)

ri
k;
ri (k )rj 或 ri krj .
第二章 矩阵旳运算
9
如果矩阵 A 经有限次初等变换变成 矩阵 B, 就称矩阵 A 与 B 等价,记作 A ~ B.
等价关系旳性质: (1) 反身性 A A; (2)对称性 若 A B ,则 B A;

线性代数:矩阵的初等变换和初等矩阵

线性代数:矩阵的初等变换和初等矩阵
记作ri krj). 同理可定义矩阵的初等列变换(所用记号
是把“r”换成“c”).
定义 矩阵的初等列变换与初等行变换统称为 2 初等变换.
矩阵的初等变换是矩阵的一种基本运算,应 用广泛.
定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵.
三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
a13 a23
a12 a22
5
a11 a21
a12 a22
a13 a23
c2
c3
a11 a12
a13 a23
a12 a22
用 m 阶初等矩阵 Em (i, j) 左乘 A (aij )mn,得
a11
a12
a1n
Em
(i
,
j)
A
a j1
aj2
a jn

i

ai1
ai 2
1
0
c1
2c3
0
1
0 E(3,1(2))
0 0 1
2 0 1
1 2
10
a11 a21
a12 a22
a13 a23
a21
a11 2a11
a12 a22 2a12
a23
a13 2a13
a11 a21
a12 a22
a13 a23
r2 2r1
a21
a11 2a11
a12 a22 2a12
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列

矩阵的初等变换及初等矩阵

矩阵的初等变换及初等矩阵
相当于对矩阵 A 施行第一种初等列变换 : 把 A 的第 i 列与第 j 列对调 (ci c j ).
例2
2 5 3 1 0 0 2 3 5 1 4 2 0 0 1 1 2 4 0 6 5 0 1 0 0 5 6
1 对调两行(对调i , j 两行, 记作ri
倍法变换(也称“倍行 变换”)
3 把某一行所有元素的k 倍加到另一行对应的
元素上去(第 j 行的 k 倍加到第 i 行上记作ri kr j) .
消法变换(也称“倍加 变换”)
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”). 定义2 矩阵的初等列变换与初等行变换统称 为初等变换. 初等变换的逆变换仍为初等变换, 且变换类型 相同.
把 A 的第 i 行与第 j 行对调 ( ri rj ).
例1 1 0 0 2 5 3 2 5 3 0 0 1 1 4 2 0 6 5 0 1 0 0 6 5 1 4 2
第2行与第3行对调
《线性代数》同济六版
第3章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换
---附(初等矩阵)
课件制作:黄 明
2018年9月
一、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
r j); 换法变换(也称“调行 变换”) 2 以数 k 0 乘以某一行的所有元素 ; (第 i 行乘 k , 记作 ri k)
1. 对调两行或两列; 2. 以数 k 0 乘某行或某列; 3. 以数 k 乘某行(列)加到另一 行(列)上去.
用 m 阶初等矩阵 Em ( i , j ) 左乘 A (aij )mn,得 a11 a12 a1n a 第i行 a a j2 jn j1 Em ( i , j ) A a 第 j行 a a i2 in i1 a a a m1 m2 mn 相当于对矩阵 A 施行第一种初等行变换 :

线性代数 第四讲 矩阵的初等变换与初等矩阵

线性代数 第四讲 矩阵的初等变换与初等矩阵

一、矩阵的初等变换
显然,三种初等变换都是可逆的, 显然,三种初等变换都是可逆的,且其变 换是同一类型的初等变换。变换r 换是同一类型的初等变换。变换 i↔rj的逆变换 就是本身; 就是本身;变换 rj×k 的逆变换为 rj÷k ;变换 ri+krj 的逆变换为 i− k rj。 的逆变换为r 如果 A 经过有限次初等变换变为矩阵 B, , 是等价的, 称矩阵 A与 B是等价的,记为 ↔ B 。 与 是等价的 记为A 矩阵的等价关系有如下性质: 矩阵的等价关系有如下性质: 反身性: 反身性: A ↔ A 对称性: 对称性: A ↔ B ,则B ↔ A 传递性: 传递性: A ↔ B, B ↔ C,则A ↔ C , ,
2x1 − x2 − x3 + x4 = 2 (1) x1 + x2 − 2x3 + x4 = 4 (2) 4x1 − 6x2 + 2x3 − 2x4 = 4 (3)
2 −1 −1 1 方程组的增广矩阵B = 1 1 −2 1 4 −6 2 −2
2 4 4
一、矩阵的初等变换
1 3 0 2 0 (1) 0 0 1 −1 0 0 0 0 0 1 1 2 0 −2 (2) 0 0 0 0 1 3 4 1 1 2 0 0 1 0 2 −1 (3) 0 1 4 1 0 0 0 0

×

二、阶梯形矩阵
1 1 1 1 4 ( A| b) = 2 3 1 1 9 −3 2 −8 −8 −4

r3 + 3× r1
r2 − r1
1 1 1 1 4 0 1 −1 −1 1 0 5 −5 −5 8

r3 − 5× r2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 0 2 2 5 3 2 7 13
2
0 1 0 1 4 2 1 4 2
0 0 1 0 6 5 0 6 5
将第3行乘以2,加到第一行上去
类似地,以 En (ij(k )) 右乘矩阵 A,其结果相当于 把 A 的第j列乘 k 加到第 i 列上 (ci kc j ).
AEn (ij(k ))
《线性代数》同济六版
第3章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换
---附(初等矩阵)
课件制作:黄 明
2018年9月
一、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j 两行,记作ri rj);
换法变换(也称“调行变换”)
2以数 k 0 乘以某一行的所有元素;
kain

i

amn
类似地,
例3
2
1 0 0 2 5 3 2 5 3
0 2 0 1 4 2 2 8 4 0 0 1 0 6 5 0 6 5
相当于以数 k 乘 A 的第 i 行 (ri k );
例4
2
2 1
5 4
3 1 2 0
0 2
0 0
21
10
8
3
2
0 6 5 0 0 1 0 12 5
a11
a21
am1
a1i ka1 j a2i ka2 j
ami kamj
a1 j a2 j amj
a1n a2n amn
例6 2
2 1
5 4
3 1 2 0
0 1
0 0
8
5
5
4
23
0 6 5 2 0 1 10 6 5
将矩阵的第3列乘以2后加到第1列上去
ai1
ai2
ain

j

am1 am2 amn
相当于对矩阵 A 施行第一种初等行变换:
把 A 的第 i 行与第 j 行对调 (ri rj ).
例1
1 0 0 2 5 3 2 5 3 0 0 1 1 4 2 0 6 5
0 1 0 0 6 5 1 4 2
第2行与第3行对调
类似地, 以 n 阶初等矩阵 En(i, j) 右乘矩阵 A,
变换
ri
k
的 逆 变 换 为 ri
1 k

则 E(i(k ))1 E(i( 1 )); k
变换 ri krj 的逆变换为ri (k )rj, 则 E(ij(k))1 E(ij(k)) .
二、初等矩阵的应用
定理1 设A 是一个 m n 矩阵,对 A施行一
次初等行变换,相当于在 A 的左边乘以相应的 m
阶初等矩阵;对 A 施行一次初等列变换,相当于
在A 的右边乘以相应的 n 阶初等矩阵.
初等变换
初等矩阵
初等逆变换
初等逆矩阵
变换 ri rj 的逆变换是其本身, 则E(i, j)1 E(i, j) ;
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj ri k ri krj
逆变换 逆变换 逆变换
ri rj;
ri
(1) k

ri
k;
ri (k)rj 或 ri krj .
二、初等矩阵的概念
矩阵的初等变换是矩阵的一种基本运算,应 用广泛.
定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵.
以 En(i(k)) 右乘 矩阵 A,其结果 相当于以数 k 乘 A 的第 i 列 (ci k).
3、以数k 0乘某行(列)加到另一行(列)上去
以 k 乘 E 的第 j 行加到第 i 行上 (ri krj )
[或以 k 乘 E 的第 i 列加到第 j 列上 (c j kci ),
1
E(ij(k))
三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
用 m 阶初等矩阵 Em (i, j) 左乘 A (aij )mn,得
a11 a12 a1n
a
j1
aj2
a jn

i

Em(i, j)A
a11
AEn
(i
,
j)
a21
am1
a1 j a2 j amj
a1i a2i ami
a1n a2n amn
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
例2
2 5 3 1 0 0 2 3 5
1 4 2 0 0 1 1 2 4 0 6 5 0 1 0 0 5 6
第2列与第3列对调
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k

i

1
1
以 Em (i(k)) 左乘矩阵 A,
a11 a12
Em
(
i(
k
))
A
kai1
2
am1 am2
a1n
1 k
第i行
1
第j行
1
以 Em (ij(k)) 左乘矩阵 A,
a11
a12
ai1
ka
j1
ai2 ka j2
Em (ij(k))A
a j1
aj2
am1
am 2
a1n
ain
a
jn
a jn
amn
把 A的第 j 行乘 k 加到第 i 行上 (ri krj ).
例5
(第 i 行乘 k,记作 ri k)
倍法变换(也称“倍行变换”)
3 把某一行所有元素的k 倍加到另一行对应的
元素上去(第 j 行的 k 倍加到第 i 行上记作ri krj).
消法变换(也称“倍加变换”)
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称 为初等变换.
相关文档
最新文档