八年级下册数学18.2.3正方形的性质教案
人教版初中数学八年级下册18.2.3《正方形的性质与判定》教案设计
18.2.3 正方形性质与判定(1)一、教材分析《正方形性质》这节课是九年义务教育人教版数学教材八年级下册第十八章第二节的内容。
纵观整个初中教材,《正方形》是在学生掌握了平行四边形、矩形、菱形等有关知识及简单图形的平移和轴对称等平面几何知识并且具备有初步的观察、操作等活动经验的基础上出现的。
既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质难点是理解正方形与平行四边形、矩形、菱形之间的内在联系及性质的灵活运用。
根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
二、教学目的1、知识与技能:(1)掌握正方形的概念、性质并会用它们进行有关的论证和计算(2)理解正方形与平行四边形、矩形、菱形的联系和区别.2、过程与方法:经历探索归纳正方形有关性质的过程,培养学生在观察中寻求新知,在探索归纳总结过程中发展推理能力,逐步掌握说理的基本方法。
3、情感态度与价值观:通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力三、重点、难点1.教学重点:正方形的定义及正方形的性质,正方形、平行四边形、矩形、菱形的关系2.教学难点:厘清正方形、平行四边形、矩形、菱形的内在联系及正方形性质的灵活运用.四、教学准备多媒体课件五、教学流程引入——演示观察——探究、对比、归纳、总结——运用——-反思——巩固提高六、教学过程(一) 创设情境,新课引入师:假设我用同样长度的一条绳子围城一个四边形,那么围成什么样的四边形面积最大?多媒体播放生活中的正方形,师:正方形在生活中随处可见,应用广泛,在小学我们学过一些关于正方形的初步知识,今天,我们将进一步系统学习正方形的相关知识。
写出课题正方形(二)新知探索学生活动一、叙述平行四边形、矩形、菱形的定义,教师活动:通过前面的学习,我们知道了两组对边分别_____的四边形叫做平行四边形,那么什么叫矩形,什么叫菱形呢?学生说定义,教师多媒体演示平行四边形如何演变为矩形、菱形(加深定义的理解与巩固)演示完矩形、菱形定义后,(过度语:事实上,正方形比矩形、菱形更加特殊,请看演示:)(1)矩形怎样变化后就成了正方形呢?(2).菱形怎样变化后就成了正方形呢?教师引导学生观察,设问:什么样的平行四边形是正方形?类比矩形、菱形定义得出正方形定义1、正方形定义:有一组邻边相等......并且有一个角是直角.......的平行四边形.....叫做正方形.指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.学生活动:请学生用矩形纸折叠一个正方形(可请一个学生上台折叠)结论:有一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
人教版八年级数学下册18.2.3正方形的性质优秀教学案例
一、案例背景
本节课为人教版八年级数学下册18.2.3正方形的性质,通过前面的学习,学生已经掌握了矩形、菱形的基本性质,为本节课的学习奠定了基础。然而,正方形作为矩形和菱形的特殊形式,其性质更为丰富和独特,需要学生进行深入探究。
在实际教学中,我发现学生在学习正方形性质时,容易与矩形和菱形的性质混淆,难以理解正方形与其他平行四边形的关系。因此,在设计本节课的教学案例时,我力求突出正方形的特殊性,通过对比分析、动手操作、小组合作等环节,让学生在实践中掌握正方形的性质,提高学生的数学思维能力和团队协作能力。
三、教学策略
(一)情景创设
1.结合生活实际,创设与正方形相关的情景,如正方形地砖的铺设、正方形图案的设计等,激发学生的学习兴趣。
2.利用多媒体展示正方形在生活中的应用,如建筑设计、电路板布局等,让学生感受正方形在实际生活中的重要性。
3.设计具有挑战性的问题,引导学生思考正方形与其他平行四边形的区别,激发学生的探究欲望。
2.设计小组合作任务,如共同绘制正方形及相关图形,让学生在实践中掌握正方形的性质。
3.鼓励小组成员相互评价、提出改进意见,促进学生的相互学习和共同进步。
(四)反思与评价
1.引导学生对自己在课堂上的学习进行反思,总结正方形性质的理解和运用情况。
2.组织学生进行自我评价和同伴评价,让学生了解自己在学习过程中的优点和不足,提高自我调控能力。
3.运用多媒体教学手段,展示正方形与其他平行四边形的动态变化,帮助学生直观地理解正方形的性质。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使学生在探究正方形性质的过程中,体验到数学的乐趣。
2.培养学生勇于尝试、主动探究的精神,鼓励学生在面对困难时,保持积极向上的态度。
人教版初中数学八年级下册18.2.3《正方形的性质与判定》教案设计
正方形教学目标;1.理解并运用正方形的定义计算和证明.2.理解并运用正方形的性质、判定进行计算和证明.3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.经历正方形的定义及其性质和判定定理的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【重点】正方形性质和判定定理的应用.【难点】正方形与平行四边形、矩形、菱形的区别与联系.【教师准备】教学中出示的教学插图、问题和例题.【学生准备】复习平行四边形、矩形、菱形的定义、性质和判定.导入一:[过渡语]前面我们研究了平行四边形、矩形、菱形的定义、性质和判定,现在请同学们回忆学过的内容,回答下面的问题.学生观察教具变化情况,结合所学菱形、矩形知识,回答上面的问题.[设计意图]正方形是学生熟悉的几何图形,小学已经学过,这里让学生从动态的角度出发认识正方形,体会正方形与平行四边形、矩形、菱形的联系与区别,感受特殊与一般的关系.导入二:八年级(2)班的简兰同学想买一条方纱巾.有一天她在商店里看到一块漂亮的纱巾,非常想买,但她拿起来看时感觉纱巾不太方,商店老板看她犹豫不决的样子,马上过来拉起一组对角,让她看另一组对角是否对齐,她还有些疑惑,老板又拉起另一组对角让她检验,她终于买下这块纱巾,你认为她买的这块纱巾是正方形的吗?当时采用什么方法可以检验出来?学了这节后,你就会做出准确的判断了.[设计意图]将数学问题融入生活情境,拉近了学生与数学之间的距离,激发学生研究正方形的积极性.新知构建:1.正方形的认识思路一[过渡语]结合上面的演示,请同学们回答下面的问题:(1)什么样的图形是平行四边形?(2)什么样的图形是矩形?(3)什么样的图形是菱形?(4)什么样的图形是正方形?学生讨论,回答.在学生回答的基础上,教师引导学生归纳:正方形是有一组邻边相等,有一个角是直角的平行四边形.追问:正方形与矩形、菱形之间有什么关系呢?学生思考,回答:正方形既是矩形,又是菱形.[设计意图]结合图形的演示,让学生回忆学过的平行四边形、矩形、菱形的定义、性质及判定.在此基础上尝试归纳正方形的定义,理解正方形的定义,体会它们之间的联系与区别,感受特殊与一般的关系.思路二[过渡语]前面我们学习了平行四边形、矩形、菱形的性质和判定,小学认识过了正方形,请同学们回答下面的问题.(1)正方形与矩形有怎样的关系?(2)正方形与菱形有怎样的关系?(3)正方形、平行四边形、矩形、菱形有怎样的关系?生1:正方形是特殊的矩形,即有一组邻边相等的矩形是正方形.生2:正方形是特殊的菱形,即有一个角是直角的菱形是正方形.教师画图说明,正方形、平行四边形、矩形、菱形的关系如图.总结:正方形、矩形、菱形都是特殊的平行四边形.你能根据正方形、平行四边形、矩形、菱形的关系,解释下面的问题吗?(1)把一张长方形纸片按如图所示的方式折一下,就可以裁出正方形纸片.为什么?(2)如何从一块长方形纸片中裁出一块最大的正方形纸片呢?学生动手折叠、思考、交流.(1)由折叠得所得的四边形有三个直角,且一组邻边相等.有三个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形,所以裁出的纸片是正方形.(2)要使裁出的四边形是最大的正方形,只要让四边形(正方形)的边长等于长方形的宽即可.教师总结:正方形既是特殊的矩形,又是特殊的菱形.[设计意图]结合图形的折叠,让学生归纳得出有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.从矩形、菱形的角度出发体会它们之间的关系,感受特殊与一般的关系.2.正方形的性质[过渡语]上面认识了正方形,下面我们继续研究正方形的性质.思路一正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(4)正方形有哪些性质?分小组进行讨论,整理所学的性质:[设计意图] 让学生回忆学过的平行四边形、矩形、菱形的定义和性质.在此基础上理解正方形的性质,体会它们之间的联系与区别,感受特殊与一般的关系. 思路二正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请把它们写出来,并与同桌交流. 学生梳理总结得: 正方形[设计意图] 让学生回忆学过的平行四边形、矩形、菱形的定义和性质,体会它们之间的联系与区别.在此基础上梳理得出正方形的性质,有助于这些知识的正确运用. 3.正方形的判定 思路一提问:怎样判定一个四边形是正方形呢?把你所想的判定方法写出来. 学生自由发言.教师引导学生总结、归纳得正方形的判定方法:(1)定义法:有一个角是直角,有一组邻边相等的平行四边形是正方形. (2)矩形法:有一组邻边相等的矩形是正方形. 图形 对边 对角 对角线 对称性平行四边形平行、相等相等 互相平分不是轴对称图形 矩形 平行、相等 四个角都是直角互相平分且相等 轴对称图形,有两条对称轴菱形平行、四条边都相等相等 互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边都相等四个角都是直角互相垂直、平分且相等,每条对角线平分一组对角轴对称图形,有四条对称轴思路二既然正方形是特殊的图形,那么我们就可以通过一般图形来判定正方形.请大家考虑:满足什么条件的矩形是正方形?你有哪些方法?类似地,如何通过菱形和平行四边形来判定正方形?教师深入学生中,督促学生积极探索交流,了解学生的思维深度和广度并及时加以校正和激励.派学生代表走向讲台进行总结发言,并鼓励其他学生大胆提问.师进一步归纳正方形的判定方法.[知识拓展](1)平行四边形、矩形、菱形和正方形的定义和判定方法如下表: 图形定义判定平行四边形两组对边分别平行的四边形1.两组对边分别相等的四边形2.两组对角分别相等的四边形3.对角线互相平分的四边形4.一组对边平行且相等的四边形矩形有一个角是直角的平行四边形1.对角线相等的平行四边形2.有三个角是直角的四边形菱形有一组邻边相等的平行四边形1.对角线互相垂直的平行四边形2.四条边相等的四边形正方形有一个角是直角,有一组邻边相等的平行四边形1.有一个角是直角的菱形2.有一组邻边相等的矩形3.有一个角是直角,有一组邻边相等的平行四边形4.例题讲解[过渡语]上面我们研究了正方形的定义、性质和判定,下面我们举例说明它们的应用. (教材例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. 学生分析题设和结论,画图,写出已知和求证.已知:如图,四边形ABCD是正方形,对角线AC,BD相交于点O.求证:△ABO,△BCO,△CDO,△DAO是全等的等腰直角三角形.师生分析:利用正方形的性质“对角线互相垂直平分且相等,每条对角线平分一组对角”可以得到四个三角形是全等的等腰直角三角形.学生独立完成解题过程.一生板书:证明:∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO,△BCO,△CDO,△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.教师点评,纠正写法上的不足.(补充)如图,在平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形.请说明理由.师生共同分析:(1)根据题意可得∠ADC=∠OCE,∠DAO=∠OEC,OC=OD,所以△AOD≌△EOC.(2)当∠B=∠AEB=45°时,根据△AOD≌△EOC,先证明四边形ACED是平行四边形,再根据∠COE=∠BAE=90°,得到平行四边形ACED是菱形,AB=AE,AB=CD,故AE=CD,从而可知菱形ACED是正方形.学生独立写出过程后,教师重点指导第(2)问的解答过程.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠ADC=∠OCE,∠DAO=∠OEC.又∵O是CD的中点,∴OC=OD.∴△AOD≌△EOC.解:(2)如图,当∠B=∠AEB=45°时,四边形ACED是正方形.理由如下:∵△AOD≌△EOC,又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴平行四边形ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.从而可知菱形ACED是正方形.[解题策略]探索条件类问题,先看题中的已知条件,根据正方形的判定方法,缺什么就补什么条件,一般从“矩形+一组邻边相等”或“菱形+有一个角是直角”去考虑.[设计意图]运用正方形的性质、判定解决有关的问题,培养运用所学知识解题的意识,提高解题能力.课堂小结:师生共同归纳小结.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:课堂检测1.下列命题是真命题的是()A.矩形的对角线互相垂直C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B 错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC解析:根据“对角线相等的平行四边形是矩形”可判定选项A是矩形;根据“两直线平行,同旁内角互补”“等量代换”“同旁内角互补,两直线平行”可判定选项B是平行四边形;根据“对角线互相垂直、平分且相等的四边形是正方形”可判定选项C是正方形;根据“一组邻边相等的平行四边形是菱形”可判定选项D是菱形.故选C.3.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.板书设计:18.2.3正方形1.正方形的认识2.正方形的性质3.正方形的判定4.例题讲解例1例2一、教材作业【必做题】教材第59页练习第1,2,3题;教材第61页习题18.2第7,8题.【选做题】教材第61页习题18.2第12题.二、课后作业【基础巩固】1.矩形、正方形、菱形的共同性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.每一条对角线平分一组对角2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④3.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°4.如图所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是.5.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E= 度.【能力提升】6.如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.7.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证∠ADB=∠CDB;(2)若∠ADC=90°,求证四边形MPND是正方形.【拓展探究】8.如图,在正方形ABCD中,AC是对角线,AE平分∠BAC,试猜想AB,AC,BE之间的关系,并证明你的猜想.课堂反思通过本节课的教学活动,学生进一步认识了正方形,基本掌握了正方形的判定和性质,并能运用所学的知识解决一些问题.由于课堂时间有限,加上学生个体的差异,学生不能灵活运用所学来解决。
部审人教版八年级数学下册教学设计18.2.3 第1课时《正方形的性质》
部审人教版八年级数学下册教学设计18.2.3 第1课时《正方形的性质》一. 教材分析人教版八年级数学下册第18.2.3节《正方形的性质》是初中数学的重要内容,主要让学生掌握正方形的性质。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续学习正多边形的性质和几何证明打下基础。
教材通过引入正方形,让学生在已有的矩形、菱形知识的基础上,进一步探究正方形的性质,培养学生的观察、思考、推理能力。
二. 学情分析八年级的学生已经掌握了矩形、菱形的性质,具备一定的观察、思考、推理能力。
但在证明方面,部分学生可能还存在一定的困难。
因此,在教学过程中,要注意引导学生运用已学的知识解决新问题,提高学生的证明能力。
三. 教学目标1.知识与技能:让学生掌握正方形的性质,能运用正方形的性质解决实际问题。
2.过程与方法:通过观察、思考、推理,培养学生探究几何问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:正方形的性质。
2.难点:正方形性质的证明。
五. 教学方法采用问题驱动法、合作学习法、引导发现法等,引导学生观察、思考、推理,培养学生自主学习的能力。
六. 教学准备1.课件:正方形的性质的相关图片、几何画板等。
2.学具:正方形纸片、直尺、圆规等。
3.教学素材:正方形性质的证明题、练习题等。
七. 教学过程导入(5分钟)教师通过展示正方形的图片,引导学生观察正方形的特点,激发学生的学习兴趣。
提问:你们已经掌握了矩形、菱形的性质,那么正方形和它们有什么相同和不同之处呢?呈现(10分钟)教师呈现正方形的性质,引导学生思考并证明。
1.正方形的四条边相等。
2.正方形的四个角都是直角。
3.对角线互相垂直平分,且相等。
教师引导学生分组讨论,每组选取一个性质进行证明。
在讨论过程中,教师巡回指导,帮助学生解决证明过程中遇到的问题。
操练(10分钟)教师出示一些关于正方形性质的练习题,让学生独立完成。
八年级数学下册18.2.3正方形第1课时正方形的性质教案
18.2.3 正方形第1课时正方形的性质1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算;(重点)2.理解正方形与平行四边形、矩形、菱形的联系和区别.(难点)一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究探究点一:正方形的性质【类型一】特殊平行四边形的性质的综合菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE =EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EFA=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE=2x.∴2x=1-x,解得x=2-1,即BE 的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】利用正方形的性质解决角的计算或证明问题在正方形ABCD中,点F是边AB上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数. 解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF 中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB和△DEC 中,⎩⎪⎨⎪⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用 【类型一】 利用正方形的性质解决线段的倍、分、和、差关系如图,AE 是正方形ABCD 中∠BAC的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ; (2)OF =12CE .解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE .证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE .方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题如图,正方形AFCE 中,D 是边CE上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt△AED和Rt△AFB中,⎩⎪⎨⎪⎧AD =AB ,AE =AF ,∴Rt△AED ≌Rt△AFB (HL),∴S △AED =S △AFB .∵S 四边形ABCD =24cm 2,∴S 正方形AFCE =24cm 2,∴AE =EC =26cm.根据勾股定理得AC =(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、板书设计1.正方形的定义和性质 四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.。
人教版八年级数学下册18.2.3正方形性质(教案)
5.激发对数学几何图形的兴趣,培养数学审美和学科素养。
三、教学难点与重点
1.教学重点
-正方形的定义及特征:确保学生理解正方形是一种特殊的矩形,具有四条边相等、四个角都是直角的特点。
-正方形的性质:强调正方形四条边相等、四个角都是直角、对角线互相垂直平分且相等的核心性质。
4.正方形对角线与边长的关系,即对角线将正方形平分成长度为边长一半的小正方形;
5.运用正方形性质解决实际问题。
二、核心素养目标
1.理解并掌握正方形的定义、性质及判定定理,提高空间观念和几何直观能力;
2.能够运用正方形性质解决实际问题,增强数学应用意识和问题解决能力;
3.通过探索正方形性质,培养推理能力和逻辑思维能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方形的基本概念。正方形是四条边相等、四个角都是直角的特殊平行四边形。它在几何图形中具有重要地位,广泛应用于日常生活和建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过观察正方形的实物模型,分析其性质和特点。
3.重点难点解析:在讲授过程中,我会特别强调正方形的性质和判定定理这两个重点。对于难点部分,如对角线性质,我会通过举例和图形演示来帮助大家理解。
人教版八年级数学下册18.2.3正方形性质(教案)
一、教学内容
人教版八年级数学下册18.2.3正方形性质。本节课我们将学习以下内容:
1.正方形的定义及特征;
2.正方形的性质,包括四条边相等、四个角都是直角、对角线互相垂直平分且相等;
3.正方形的判定定理,即有一组邻边相等且一个角是直角的平行四边形是正方形;
(四)学生小组讨论(用时10分钟)
人教版八年级下册数学18.2.3正方形教学设计
二、学情分析
八年级学生在经过前期的数学学习后,已具备了一定的几何图形认识和性质探究能力。在此基础上,他们对正方形这一特殊四边形的学习,既有兴趣,也存在一定的挑战。学生对矩形、菱形的性质已有所掌握,这为学习正方形打下了良好的基础。然而,正方形的性质和判定方法相较于矩形、菱形更为复杂,学生可能会在理解上遇到困难。
作业要求:
1.学生需独立完成作业,书写规范,保持卷面整洁。
2.家长签字确认,确保作业质量。
3.教师批改作业后,及时给予反馈,指导学生改正错误,巩固所学知识。
a.创设生活情境,引导学生发现正方形在实际生活中的应用,如地板砖、桌面等,从而激发学生探究正方形性质的兴趣。
b.通过直观演示和实际操作,让学生观察正方形的特点,引导他们发现并掌握正方形的性质。
c.设计具有代表性的例题和练习题,让学生在实际操作中运用正方形的性质解决问题,提高解题能力。
2.针对教学难点,采取以下措施:
a.提问:同学们,我们之前学习了矩形和菱形,谁能告诉我矩形和菱形的性质分别是什么?
b.学生回答后,教师总结:矩形有四个角是直角,对边相等,对角线互相平分;菱形四边相等,对角线垂直平分,且每条对角线平分一组对角。
2.引入正方形:指出正方形既是矩形也是菱形,从而引出本节课的主题——正方形。
(二)讲授新知
5.教学拓展:
a.引导学生探究正方形与其他几何图形的关系,如正方形与矩形、菱形的联系与区别。
b.介绍正方形在实际应用中的优势,如稳定性、对称美等,培养学生的几何审美观念。
c.组织学生参加数学竞赛、课外活动等,激发他们的学习兴趣,提高数学素养。
四、教学内容与过程
人教版数学八年级下册《18.2.3 正方形》教学设计
人教版数学八年级下册《18.2.3 正方形》教学设计一. 教材分析人教版数学八年级下册《18.2.3 正方形》是初中数学的重要内容,主要让学生掌握正方形的性质、判定以及正方形与其他图形的区别。
本节课的内容在学生的认知发展过程中具有承上启下的作用,为后续学习几何知识奠定基础。
教材从正方形的定义、性质、判定三个方面展开,通过丰富的实例和图示,引导学生探索正方形的特征,从而培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在八年级上册已经学习了矩形、菱形等平行四边形的性质,对平行四边形的判定有一定的了解。
但是,正方形作为一种特殊的平行四边形,其性质和判定方法与其他平行四边形有所不同,需要学生进一步探究和理解。
此外,正方形在实际生活中的应用广泛,如建筑设计、电路板设计等,学生需要将所学知识与实际应用相结合,提高学习的兴趣和积极性。
三. 教学目标1.知识与技能:理解正方形的定义,掌握正方形的性质、判定方法,能够运用正方形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生在探究过程中体验到成功的喜悦。
四. 教学重难点1.重点:正方形的性质、判定方法及其应用。
2.难点:正方形性质的证明,正方形与其他平行四边形的区别。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生关注正方形在实际中的应用,提高学生的学习兴趣。
2.探究式教学法:学生进行小组讨论、动手操作,培养学生的自主学习能力。
3.讲解法:对正方形的性质、判定方法进行详细讲解,引导学生理解并掌握。
六. 教学准备1.教学课件:制作正方形的相关课件,包括图片、动画、实例等,以便于生动展示正方形的性质和应用。
2.学具:准备一些正方形的模型或图片,供学生观察和操作。
3.练习题:挑选一些有关正方形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如建筑设计、电路板设计等,引出正方形的概念,激发学生的学习兴趣。
人教版数学八年级下册18.2.3正方形正方形的性质教学设计
(一)教学重难点
1.正方形性质的深入理解:正方形的性质是本章节的核心内容,学生需要深刻理解正方形的四边相等、四角相等、对边平行、对角线垂直平分且相等等性质,并能灵活运用这些性质解决相关问题。
-难点解析:对角线性质的理解,特别是对角线互相垂直平分且相等的性质,需要通过直观演示和实际操作来加强学生的认知。
(三)学生小组讨论
1.教学活动:将学生分成小组,让他们根据讲授的新知,讨论正方形的性质和判定方法。
2.交流分享:各小组汇报讨论成果,分享正方形性质和判定的心得体会。
3.教师点评:针对学生的讨论,进行点评和指导,纠正错误观念,巩固正确知识。
(四)课堂练习
1.设计练习题:针对正方形的性质和判定,设计不同难度的练习题,让学生巩固所学知识。
2.正方形的判定方法:正方形的判定是学生容易混淆的部分,需要掌握多种判定方法,并能根据不同情况灵活运用。
-难点解析:判定定理的选择和应用,如何从给定的条件中找到关键信息,快速准确地判断一个图形是否为正方形。
3.实际问题的解决:将正方形的性质应用于解决实际问题,是考察学生知识运用能力的重点。
-难点解析:如何引导学生将抽象的几何性质与具体的实际问题联系起来,设计合理的解题方案。
4.家长应关注孩子的学习情况,适时给予指导和鼓励,共同促进孩子的几何学习。
1.喜爱几何:激发学生对几何图形的兴趣,培养学生对数学美的感受。
2.积极主动:鼓励学生主动参与课堂活动,勇于探索、质疑、解决问题,培养学生积极向上的学习态度。
3.严谨细致:通过正方形性质的探究,培养学生严谨细致的思考习惯,提高学生几何逻辑思维。
4.团队合作:培养学生团队合作精神,学会倾听他人意见,互相学习,共同提高。
人教版八年级数学下册教案 18-2-3 第1课时 正方形的性质
18.2.3正方形第1课时正方形的性质教学目标【知识与技能】1.理解并能够说出正方形的定义和性质,理解正方形与平行四边形、菱形、矩形的内在联系;2.能正确运用正方形的性质进行简单的论证、推理或解决有关问题.【过程与方法】经历正方形的定义和性质的探索过程,体会类比、归纳、转化的数学方法.【情感、态度与价值观】通过观察、动手、探究、分析、归纳、总结等活动,培养学生合情推理、主动探究的习惯,逐步掌握证明的方法.教学重难点【教学重点】正方形的定义和性质的理解掌握.【教学难点】正方形与平行四边形、矩形、菱形的关系,并能应用它们进行有关的证明和计算.教学过程一、问题导入1.矩形是怎样定义的?它有哪些性质?2.菱形是怎样定义的?它有哪些性质?3.在小学时,我们还学过一种特殊的四边形——正方形,它是怎样定义的?又有什么性质呢?二、合作探究探究点正方形的性质典例如图,在边长为1的正方形ABCD中,对角线AC,BD相交于点O,E,F分别是OD,OC 上的动点,且DE=CF,连接DF,AE的延长线交DF于点M.(1)求证:△AED≌△DFC;(2)求证:AM⊥DF.[解析](1)∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=45°,在△AED和△DFC中,{AD=DC,∠ADE=∠DCF, DE=CF,∴△AED≌△DFC(SAS).(2)∵△AED≌△DFC,∴∠EAD=∠FDC,∵∠ADM+∠FDC=90°,∴∠ADM+∠EAD=90°,∴∠AMD=90°,∴AM⊥DF.正方形的性质:四条边都相等,两组对边分别平行;四个角都是直角;对角线相等且互相平分、互相垂直;两条对角线分正方形为四个全等的等腰直角三角形.三、板书设计正方形的性质1.正方形的定义2.正方形的性质{①具有菱形和矩形的所有性质②两条对角线分正方形为四个全等的等腰直角三角形教学反思在探究正方形性质的过程中,充分发挥了学生的主体性,让学生经历自主“做数学”的过程——动手折纸,演示自制教具,并播放矩形、菱形、平行四边形的一个角与一组邻边的变化,得到正方形的探究过程,让学生通过主动细心观察和动手实践来体验并认识到数学是解决实际问题和进行交流的重要工具,让学生感受到数学活动充满着探索性和创造性,提高学生分析问题和解决问题的能力,使学生感受到成功带来的喜悦.。
人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案
人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案一. 教材分析《正方形的性质》是人教版数学八年级下册第18章的一部分,主要让学生掌握正方形的性质,并能够运用这些性质解决实际问题。
本节课的内容包括正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,以及正方形的判定方法。
这些内容是学生进一步学习矩形、菱形和正六边形等图形的基础。
二. 学情分析学生在八年级上学期已经学习了矩形的性质,对图形的性质有一定的了解。
但正方形作为一个特殊的矩形,其性质更为特殊,需要学生进一步理解和掌握。
在导入部分,可以利用学生已知的矩形性质,引导学生发现正方形的特殊性质。
三. 教学目标1.了解正方形的性质,能够运用正方形的性质解决实际问题。
2.培养学生的观察能力、推理能力和解决问题的能力。
3.激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.正方形的性质的理解和运用。
2.正方形性质的证明和推导。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生发现正方形的性质;通过合作学习,让学生共同探讨和解决问题;通过引导发现,让学生自主探究正方形的性质。
六. 教学准备1.正方形和矩形的模型或图片。
2.直尺、量角器等测量工具。
3.教学PPT或黑板。
七. 教学过程1.导入(5分钟)利用学生已知的矩形性质,提出问题:“矩形的四个角都是直角,那么正方形的四个角是什么角?”让学生回答,并引导学生发现正方形的特殊性质。
2.呈现(10分钟)展示正方形和矩形的模型或图片,让学生观察并比较它们的性质。
引导学生发现正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。
3.操练(15分钟)让学生分组合作,利用直尺、量角器等测量工具,测量和记录正方形和矩形的边长、角度和对角线的长度。
通过实际操作,让学生加深对正方形性质的理解。
4.巩固(10分钟)给出一些实际问题,让学生运用正方形的性质解决。
人教版数学八年级下册教学设计 18.2.3《 正方形 》
人教版数学八年级下册教学设计 18.2.3《正方形》一. 教材分析人教版数学八年级下册第18章是关于几何图形的教学,其中18.2.3《正方形》是本章的重要内容。
本节主要让学生掌握正方形的性质,理解正方形与平行四边形的联系与区别,学会正方形的判定方法,并能够运用正方形的性质解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了矩形、菱形的相关知识,对平行四边形的性质有了深入的理解。
但正方形作为一种特殊的平行四边形,其性质和平行四边形存在很大的差异,学生需要通过实例和证明来进一步理解和掌握。
三. 教学目标1.知识与技能:使学生了解正方形的性质,学会正方形的判定方法,能够运用正方形的性质解决实际问题。
2.过程与方法:通过观察、操作、证明等方法,让学生体验从特殊到一般的数学思想,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学的美,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正方形的性质,正方形的判定方法。
2.难点:正方形性质的证明,正方形与其他四边形的联系与区别。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生发现正方形的存在,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:分组讨论,共同解决问题,培养学生的团队合作意识。
4.归纳总结法:引导学生总结正方形的性质,培养学生总结归纳的能力。
六. 教学准备1.准备相关的图片和实例,用于导入和讲解。
2.准备黑板和粉笔,用于板书。
3.准备练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过展示生活中的正方形实例,如魔方、瓷砖等,引导学生发现正方形的存在,激发学生的学习兴趣。
同时,提出问题:“正方形是什么?它有什么特殊的性质?”让学生思考。
2.呈现(10分钟)讲解正方形的性质,如四条边相等、四个角都是直角等。
同时,通过证明来说明正方形的性质,如利用勾股定理证明正方形的对角线相等。
人教版数学八年级下册18.2.3正方形教学设计
1.设计不同难度的练习题,让学生运用正方形的性质、公式等知识解题。
2.练习题包括:计算正方形的周长、面积;判断正方形与其他特殊四边形的区别;解决实际问题等。
3.教师巡回指导:在学生解题过程中,教师巡回指导,解答学生的疑问。
4.学生互相交流:完成练习后,学生互相交流解题思路和心得,共同提高。
2.分步骤讲解正方形的性质:从正方形的定义出发,引导学生观察、分析、归纳正方形的性质。通过动画、教具等辅助手段,让学生直观地理解正方形的性质。
3.设计针对性练习,巩固基础知识:设计不同难度的练习题,使学生在练习中巩固正方形的性质、公式等基础知识,提高解题能力。
4.突破教学难点,强化正方形与其他特殊四边形的区别与联系:通过对比分析正方形、矩形、菱形的性质,让学生明确它们之间的联系与区别,加深对正方形性质的理解。
4.针对课堂教学中讲解的正方形例题,请同学们尝试改编题目,设计一道新的正方形相关问题,并给出解答过程。这个作业旨在培养学生的创新意识和逻辑思维能力。
5.完成一道拓展题:探究正方形对角线与边长的关系,证明正方形对角线等于边长的根号2倍。此题难度较大,旨在提高学生的探究能力和数学素养。
注意事项:
1.作业布置要注重层次性,满足不同学生的学习需求。
4.通过解决实际问题,培养运用数学知识解决实际问题的能力;
5.在教师的引导下,学会自主学习、探究学习,提高学习效率。
(三)情感态度与价值观
1.喜欢数学,对数学产生浓厚的兴趣,认识到数学在现实生活中的重要作用;
2.养成良好的学习习惯,如勤奋、刻苦、独立思考等;
3.树立正确的价值观,如尊重事实、追求真理、勇于创新等;
2.鼓励学生在完成作业过程中,积极思考、主动探究,提高解决问题的能力。
人教版八年级数学下册18.2.3正方形性质说课稿
3.针对学生的反馈,给予针对性的指导和建议,帮助他们改进学习方法,提高学习效果。
(五)作业布置
课后作业布置如下:
1.巩固练习题:设计适量的正方形性质和判定方法的练习题,让学生巩固所学知识。
2.思考题:布置一道综合性的思考题,让学生运用正方形性质解决实际问题,培养学生的解决问题能力。
(2)培养学生严谨、细致的学习态度,养成良好的学习习惯。
(3)体会数学在生活中的应用,认识数学的价值。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
1.教学重点:
(1)正方形的定义、性质及判定方法。
(2)正方形在实际问题中的应用。
2.教学难点:
(1)正方形性质的推导过程。
3.加强与同行的交流,学习先进的教学理念和方法,提高教学质量。
(3)互帮互助:学生相互解答疑问,分享学习心得,提高解决问题的能力。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将以生活中的实际情境导入新课。首先,我会向学生展示一些正方形的物品,如魔方、正方形瓷砖等,让学生直观地感受到正方形在生活中的广泛应用。接着,提出问题:“为什么这些物品要设计成正方形呢?正方形有哪些独特的性质?”通过这些问题,引发学生的思考,激发他们对正方形性质的学习兴趣。
(二)教学反思
在教学过程中,我预见到以下可能的问题或挑战:
1.学生对正方形性质的推导过程理解不深。
2.部分学生在应用正方形性质解决实际问题时遇到困难。
3.学生在小组合作中可能出现分工不均、参与度不高等问题。
应对措施:
1.在讲解性质推导时,通过动画演示和实物模型,帮助学生形象理解。
18.2.3 人教版八年级数学下册正方形的性质-教学设计
18.2.3 正方形的性质一、教学目的1. 理解并掌握正方形的概念、性质2. 经历探索正方形有关性质的过程,了解正方形与矩形、菱形的关系.二、重点、难点1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.2.教学难点:正方形与矩形、菱形的关系及正方形性质的灵活运用.三、教学背景已积累了几何中平行四边形、矩形、菱形等知识,在取得一定的经验的基础上,认知正方形.四、教学方法教学方法有讲授法、谈论法、演示法、练习法、启发法教学过程:五、温故知新六、引入新知由菱形集合和矩形集合的重合部分引出新知——正方形。
七、探究新知(此时课件中动画演示,帮助学生思考、理解,得出结论。
)菱形在什么情况下会变成正方形?②两组互相垂直的平行线围成矩形ABCD(此时课件中动画演示,帮助学生思考、理解,得出问题答案。
)问题:1. 图中CD 在平移时,这个图形始终是怎样的图形?2. 当CD 移动到C 'D '位置,此时AD '=AB ,四边形ABCD 还是矩形吗?得出正方形的定义:1、一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2、有一个角是直角的菱形是正方形.3、有一组邻边相等的矩形是正方形.八、总结归纳1、正方形是轴对称图形,有四条对称轴。
2、性质(1)它具有平行四边形的一切性质两组对边分别平行且相等,两组对角相等,对角线互相平分.(2) 具有矩形的一切性质四个角都是直角,对角线相等.(3)具有菱形的一切性质四条边相等;对角线互相垂直,每条对角线平分一组对角.九、例题分析例 如图所示,正方形ABCD 中,P 为BD 上一点,PM ⊥BC 于, MPN ⊥DC 于N.试说明:AP=MN证明:连接PC∵ 四边形ABCD 是正方形∴∠NCM=90°∵PM ⊥BC , PN ⊥DC∴四边形PMCN 是矩形∴PC=MN又∵四边形BAPC 是以BD 为轴的轴对称图形∴AP=PC∴AP=MN一组邻边相等 一内角是直角十、巩固练习如图,四边形ABCD是正方形,延长BC到E,使CE=AC,连接AE,交CD于F,求∠AFC的度数.。
人教版数学八年级下册18.2.3正方形正方形的性质优秀教学案例
4.实践操作:我设计了一系列富有挑战性的练习题,让学生在实践中运用所学知识,提高他们的解决问题的能力。这种教学方法使学生在动手实践中加深对正方形性质的理解,提高了他们的数学应用能力。
(二)问题导向
1.设计有针对性的问题,引导学生从已知四边形性质出发,推理出正方形的性质;
2.鼓励学生提出问题,培养他们的问题意识,激发他们的探究欲望;
3.引导学生通过问题分析、解答,形成对正方形性质的完整认识,提高他们的逻辑思维能力。
(三)小组合作
1.合理划分学习小组,确保每个小组成员都能在合作中发挥自己的特长;
(二)过程与方法
1.引导学生通过观察、思考、归纳、总结等方法,自主探究正方形的性质;
2.培养学生的合作交流能力,学会在小组讨论中取长补短,共同进步;
3.训练学生的逻辑思维能力,学会从已知信息中提炼出结论,并能够运用到解决问题中;
4.教会学生运用数形结合的方法,将抽象的数学概念具体化,提高他们的空间想象力。
1.贴近生活:本节课通过设计正方形地砖铺设等生活情境,让学生感受到数学与生活的紧密联系,提高了学生的学习兴趣,也使学生认识到正方形性质在实际生活中的应用价值。
2.自主探究:在教学过程中,我注重引导学生从已知四边形性质出发,通过类比推理方法,自主探究正方形的性质。这种教学方法培养了学生的自主学习能力,提高了他们的逻辑思维能力。
5.鼓励创新:在教学过程中,我鼓励学生提出问题,培养他们的问题意识,激发他们的探究欲望。同时,我还鼓励学生相互评价,取长补短,共同进步。这种教学方式培养了学生的创新精神,使他们不断提高自己,追求卓越。
人教版数学八年级下册18.2.3《正方形》教学设计
人教版数学八年级下册18.2.3《正方形》教学设计一. 教材分析人教版数学八年级下册18.2.3《正方形》是学生在学习了矩形、菱形的基础上,对正方形的性质和判定进行深入探讨的一节课。
本节课的主要内容有:正方形的性质,正方形的判定,以及正方形在实际生活中的应用。
正方形是四边相等、四角为直角的四边形,具有独特的性质和判定方法。
通过本节课的学习,使学生掌握正方形的性质和判定,提高他们的空间想象能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了矩形和菱形的性质和判定,对平行四边形的性质也有了一定的了解。
但正方形作为特殊的长方形和菱形,其性质和判定方法与它们有所不同,需要学生进行进一步的探究。
此外,正方形在实际生活中的应用也是学生需要了解和掌握的内容。
三. 教学目标1.知识与技能:使学生掌握正方形的性质和判定,能运用正方形的性质和判定解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.正方形的性质和判定。
2.正方形在实际生活中的应用。
五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受正方形的特点和作用。
2.启发式教学法:引导学生通过观察、操作、猜想、验证等方法,自主探究正方形的性质和判定。
3.小组合作学习:让学生在小组内进行讨论、交流,共同解决问题,提高他们的合作能力。
六. 教学准备1.教具:正方形模型、矩形模型、菱形模型、多媒体课件。
2.学具:学生用书、练习册、笔记本、铅笔。
七. 教学过程1.导入(5分钟)教师通过展示正方形模型、矩形模型、菱形模型,引导学生观察它们的特点,提出问题:“你能找出这些图形的共同点和不同点吗?”学生在观察和思考后,得出正方形的特殊性质。
2.呈现(10分钟)教师通过多媒体课件,呈现正方形的性质和判定方法,引导学生进行学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.3正方形
第1课时正方形的性质
1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算;(重点)
2.理解正方形与平行四边形、矩形、菱形的联系和区别.(难点)
一、情境导入
做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.
问题:什么样的四边形是正方形?
二、合作探究
探究点一:正方形的性质
【类型一】特殊平行四边形的性质的综合
菱形,矩形,正方形都具有的性质是()
A.对角线相等且互相平分
B.对角线相等且互相垂直平分
C.对角线互相平分
D.四条边相等,四个角相等
解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.
方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.
【类型二】利用正方形的性质解决线段的计算或证明问题
如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于
点F .
(1)求证:BE =CF ;
(2)求BE 的长.
解析:(1)由角平分线的性质可得到BE =EF ,再证明△CEF 为等腰直角三角形,即可证BE =CF ;(2)设BE =x ,在△CEF 中可表示出CE .由BC =1,可列出方程,即可求得BE .
(1)证明:∵四边形ABCD 为正方形,∴∠B =90°.∵EF ⊥AC ,∴∠EF A =90°.∵AE 平分∠BAC ,∴BE =EF .又∵AC 是正方形ABCD 的对角线,∴AC 平分∠BCD ,∴∠ACB =45°,∴∠FEC =∠FCE =45°,∴EF =FC ,∴BE =CF ;
(2)解:设BE =x ,则EF =CF =x ,CE =1-x .在Rt △CEF 中,由勾股定理可得CE =2x .∴2x =1-x ,解得x =2-1,即BE 的长为2-1.
方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.
【类型三】 利用正方形的性质解决角的计算或证明问题
在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接
BE 、CE 、AE .
(1)求证:△AEB ≌△DEC ;
(2)当EB =BC 时,求∠AFD 的度数.
解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得
AE =EF =DE =12
DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .
(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF 中点,∴AE
=EF =DE =12
DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,
∴△AEB ≌△DEC (SAS);
(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边
三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12
×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.
方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.
探究点二:正方形性质的综合应用
【类型一】 利用正方形的性质解决线段的倍、分、和、差关系
如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、
BD 相交于O .求证:
(1)BE =BF ;
(2)OF =12
CE . 解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质
即可证得OG ∥BC ,OG =12
CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12
CE . 证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;
(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12
CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12
CE . 方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.
【类型二】 有关正方形性质的综合应用题
如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,
若四边形ABCD 的面积是24cm 2.则AC 长是________cm.
解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt △AED
和Rt △AFB 中,⎩
⎪⎨⎪⎧AD =AB ,
AE =AF ,∴Rt △AED ≌Rt △AFB (HL),∴S △AED =S △AFB .∵S 四边形ABCD =24cm 2,∴S 正方形AFCE =24cm 2,∴AE =EC =26cm.根据勾股定理得AC =(26)2+(26)2=43(cm).故答案为4 3.
方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.
三、板书设计
1.正方形的定义和性质
四条边都相等,四个角都是直角的四边形是正方形.
对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.
2.正方形性质的综合应用
通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.。