2015广东高考数学经典数学系列
2015年高考数学广东卷(理科)试卷及答案(word完整版)
绝密★启用前 试卷类型:A2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
{}}{|(4)(1)0,|(4)(1)0M x x x N x x x =++==--=,则M N ⋂=}{A.1,4}{B.1,4--}{C.D.∅(32)z i i =-(i 是虚数单位),则z = A.23i -B.23i +C.32i +D.32i -3. 下列函数中,既不是奇函数,也不是偶函数的是A.y 1B.y x x=+1C.22x xy =+D.x y x e =+4. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰好有1个白球,1个红球的概率为5A.2110B.2111C.21D.15. 平行于直线2++1=0x y 且与圆225x y +=相切的直线的方程是A.250250x y x y ++=+-=或B.2020x y x y +=+=或C.250250x y x y -+=--=或D.2020x y x y -=-=或6. 若变量,x y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为A.4 23B.5C.6 31D.57. 已知双曲线2222:1x y C a b -=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为22A.143x y -= 22B.1916x y -= 22C.1169x y -= 22D.134x y -= 8. 若空间中n 个不同的点两两距离都相等,则正整数n 的取值A.3至多等于B.4至多等于C.5等于D.5大于二、填空题:本大题 共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.在4)的展开式中,x 的系数为 .10. 在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .11. 设ABC∆的内角A,B,C的对边分别为a,b,c,若a=1sin2B=,6Cπ=,则b= .12. 某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言。
2015高考数学广东卷(理科)及解析
2015数学广东卷(理科)参考公式:样本数据x1,x2,…,x n的方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考广东卷,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于( D )(A){1,4} (B){-1,-4} (C){0} (D)○解析:化简集合得M={-4,-1},N={1,4},显然M∩N=⌀,故选D.2.(2015高考广东卷,理2)若复数z=i(3-2i)(i是虚数单位),则等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以=2-3i,故选A.3.(2015高考广东卷,理3)下列函数中,既不是奇函数,也不是偶函数的是( D )(A)y=(B)y=x+(C)y=2x+(D)y=x+e x解析:易知y=与y=2x+是偶函数,y=x+是奇函数,故选D.4.(2015高考广东卷,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( B )(A)(B)(C)(D)1解析:从15个球中任取2个球,取法共有种,其中恰有1个白球,1个红球的取法有×种,所以所求概率为P==,故选B.5.(2015高考广东卷,理5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( A )(A)2x+y+5=0或2x+y-5=0(B)2x+y+=0或2x+y-=0(C)2x-y+5=0或2x-y-5=0(D)2x-y+=0或2x-y-=0解析:切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得=,解得c=±5.故选A.6.(2015高考广东卷,理6)若变量x,y满足约束条件则z=3x+2y的最小值为( B )(A)4 (B)(C)6 (D)解析:由约束条件画出可行域如图.由z=3x+2y得y=-x+,易知目标函数在直线4x+5y=8与x=1的交点A1,处取得最小值,故z min=,故选B.7.(2015高考广东卷,理7)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( C )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.8.(2015高考广东卷,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值( B )(A)至多等于3 (B)至多等于4(C)等于5 (D)大于5解析:首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015高考广东卷,理9)在(-1)4的展开式中,x的系数为.解析:(-1)4的展开式通项为T r+1=()4-r(-1)r=(-1)r··,令=1,得r=2,从而x的系数为(-1)2=6.答案:610.(2015高考广东卷,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .解析:利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8=2a5=10.答案:1011.(2015高考广东卷,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b= .解析:在△ABC中,由sin B=可得B=或B=,结合C=可知B=.从而A=π,利用正弦定理=,可得b=1.答案:112.(2015高考广东卷,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)解析:因为同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,所以全班共写了40×39=1560(条)毕业留言.答案:156013.(2015高考广东卷,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:(二)选做题(14~15题,考生只能从中选做一题)14.(2015高考广东卷,理14)(坐标系与参数方程选做题)已知直线l的极坐标方程为2ρsinθ-=,点A的极坐标为A2,,则点A到直线l的距离为.解析:将直线l的极坐标方程2ρsinθ-=化为直角坐标方程为x-y+1=0.由A2,得A点的直角坐标为(2,-2),从而点A到直线l的距离d==.答案:15.(2015高考广东卷,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD= .解析:易得AC==,由OP∥BC,且O为AB的中点可知CP=AC=,OP=BC=,∠APO=∠ACB=90°.所以∠CPD=90°.因为EC是切线,所以∠DCP=∠B,从而△CPD∽△BCA,故=,所以DP=.故OD=DP+OP=+=8.答案:8三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015高考广东卷,理16)在平面直角坐标系xOy中,已知向量m=,-,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.解:(1)因为m⊥n,所以m·n=sin x-cos x=0.即sin x=cos x,又x∈0,,所以tan x==1.(2)易求得|m|=1,|n|==1.因为m与n的夹角为,所以cos==.则sin x-cos x=sin x-=.又因为x∈0,,所以x-∈-,.所以x-=,解得x=.17.(本小题满分12分)(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在-s与+s之间有多少人?所占的百分比是多少?(精确到0.01%)?解:(1)由系统抽样知识知,将36名工人分为9组(4人一组),每组抽取一名工人.因为在第一分段里抽到的是年龄为44的工人,即编号为2的工人,故所抽样本的年龄数据为44,40,36,43,36,37,44,43,37.(2)均值==40;方差s2=×[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=.(3)由(2)可知s=.由题意,年龄在-s与+s之间,即在区间[37,43]内的工人共有23人,所占的百分比为×100%≈63.89%.18.(本小题满分14分)(2015高考广东卷,理18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P AD C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:因为PD=PC,点E为DC中点,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,所以PE⊥平面ABCD.又FG⊂平面ABCD,所以PE⊥FG.(2)解:由(1)可知PE⊥AD.因为四边形ABCD为长方形,所以AD⊥DC.又因为PE∩DC=E,所以AD⊥平面PDC.而PD⊂平面PDC,所以AD⊥PD.由二面角的平面角的定义可知∠PDC为二面角P AD C的一个平面角.在Rt△PDE中,PE==,所以tan∠PDC==.从而二面角P AD C的正切值为.(3)解:连接AC.因为==,所以FG∥AC.易求得AC=3,PA==5.所以直线PA与直线FG所成角等于直线PA与直线AC所成角,即∠PAC,在△PAC中,cos∠PAC==.所以直线PA与直线FG所成角的余弦值为.19.(本小题满分14分)(2015高考广东卷,理19)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.(1)解:函数f(x)的定义域为R.因为f'(x)=2x·e x+(1+x2)e x=(x2+2x+1)e x=(x+1)2e x≥0,所以函数f(x)在R上单调递增,即f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:因为a>1,所以f(0)=1-a<0,f(ln a)=(1+ln2a)e ln a-a=aln2a>0,所以f(0)·f(ln a)<0,由零点存在性定理可知f(x)在(0,ln a)内存在零点.又由(1)知f(x)在R上单调递增,故f(x)在(-∞,+∞)上仅有一个零点.(3)证明:设点P(x0,y0),由题意知,f'(x0)=(x0+1)2=0,解得x0=-1.所以y0=(1+)-a=-a,所以点P的坐标为-1,-a.所以k OP=a-.由题意可得f'(m)=(m+1)2e m=a-.要证明m≤-1,只需要证明m+1≤,只需要证明(m+1)3≤a-=(m+1)2e m,只需要证明m+1≤e m.构造函数:h(x)=e x-x-1(x∈R),则h'(x)=e x-1.当x<0时,h'(x)<0,即h(x)在(-∞,0)上单调递减;当x>0时,h'(x)>0,即h(x)在(0,+∞)上单调递增;所以函数h(x)有最小值,为h(0)=0,则h(x)≥0.所以e x-x-1≥0,故e m-m-1≥0,即m+1≤e m,故原不等式成立.20.(本小题满分14分)(2015高考广东卷,理20)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解:(1)圆C1的方程x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆心坐标为(3,0).(2)设A(x1,y1),B(x2,y2),M(x0,y0),则x0=,y0=.由题意可知直线l的斜率必存在,设直线l的方程为y=tx.将上述方程代入圆C1的方程,化简得(1+t2)x2-6x+5=0.由题意可得Δ=36-20(1+t2)>0(*),x1+x2=,所以x0=,代入直线l的方程得y0=.因为+=+===3x0,所以x0-2+=.由(*)解得t2<,又t2≥0,所以<x0≤3.所以线段AB的中点M的轨迹C的方程为x-2+y2=<x≤3.(3)由(2)知,曲线C是在区间,3上的一段圆弧.如图,D,,E,-,F(3,0),直线L过定点G(4,0).于是k GD=-,k GE=.当直线L与圆C相切时,=,解得k=±,由图可知,当k∈-,∪-,时直线L与曲线C只有一个交点.21.(本小题满分14分)(2015高考广东卷,理21)数列{a n}满足:a1+2a2+…+na n=4-,n∈N*.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+1+++…+a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2ln n.(1)解:当n=1时,a1=1;当n=2时,a1+2a2=2,解得a2=;当n=3时,a1+2a2+3a3=,解得a3=.(2)解:当n≥2时,a1+2a2+…+(n-1)a n-1+na n=4-,①a1+2a2+…+(n-1)a n-1=4-,②由①-②得na n=,所以a n=(n≥2),经检验,a1=1也适合上式,所以a n=(n∈N*).所以数列{a n}是以1为首项,为公比的等比数列.所以T n==2-.(3)证明:b1=1,b n=-·+1+++…+·(n≥2).当n=1时,S1=1<2+2ln 1.当n≥2时,b n=+1+++…+·a n=+1+++…+·(T n-T n-1)=+1+++…+·T n-1+++…+·T n-1=1+++…+·T n-1+++…+·T n-1,所以S n=1+1+·T2-1·T1+1++·T3-1+·T2+…+1+++…+·T n-1+++…+·T n-1=1+++…+·T n<21+++…+=2+2++…+,以下证明++…+<ln n(n≥2).构造函数h(x)=ln x-1+(x>1),则h'(x)=-=>0(x>1),所以函数h(x)在区间(1,+∞)上单调递增,即h(x)>h(1)=0.所以ln x>1-(x>1),分别令x=2,,,…,得ln 2>1-=,ln >1-=,ln >1-=,…ln>1-=.累加得ln 2+ln +…+ln>++…+,即ln 2+(ln 3-ln 2)+…+[ln n-ln(n-1)]>++…+,所以++…+<ln n(n≥2).综上,S n<2+2ln n,n∈N*.。
2015广东高考数学经典数学系列
深圳市明珠学校高三数学(理)试卷总分:150分 时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选 项中,只有一项是符合题目要求的1.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -=( )A .1B .1-C .2D .2-2.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( )A.3 B.2 C.1 D.2-3.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),4.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是( ) A.5ππ6⎡⎤--⎢⎥⎣⎦, B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,5.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是(012)am a <<、4m ,不考虑树的粗细。
现在想用16m 长的篱笆,借助墙角围成一个矩形的花圃ABCD 。
设此矩形花圃的面积为Sm 2,S 的最大值为()f a ,若将这棵树围在花圃内,则函数()u f a =的图象大致是( )6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x有且仅有一个交点,则椭圆的长轴长为(A )23 (B )62 (C )72 (D )248.已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255 二、填空题(本大题共6小题,共30分,把答案填写在答题卡相应位置上)9满足|1|3z -=的纯虚数z =__________.10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
(原创)2015广东高考文数解析版
绝密★启用前 试卷类型:B2015年高考真题—文科数学(广东卷)解析版一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-1.解析:本题考查集合的基本运算,属于基础题. {}1=N M ,故选C. 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 2.解析:本题考查复数的乘法运算,属于基础题.i i i i 221)1(22=++=+,故选D 3、下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122x xy =+D .sin 2y x x =+ 3、解析:本题考查函数的奇偶性.对于A ,()()()x x x x x x sin sin sin 222+±≠-=-+-,所以非奇非偶,对于B ,函数定义域为R ,关于原点对称.()x x x x cos )cos(22-=---,故为偶函数;对于C, 函数定义域为R ,关于原点对称,因为x x x xx f -+=+=22212)(,所以)(22)(x f x f x x=+=--,故为偶函数; D 中函数的定义域为R ,关于原点对称,且)2sin ()(2sin x x x x +-=-+-,故为奇函数. 故答案为A 。
4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 4、解析:本题考查线性规划问题。
在平面直角坐标系中画图,作出可行域,可得该可行域是由(-2,2),(4,-4),(4,-1)组成的三角形。
由于该区域是封闭的,可以通过分别代这三个个边界点进行检验,易知当x=4,y=-1时,z=2x+y 取得最大值5。
2015年广东卷数学试题及答案(文)
层抽
0.0075
2
230 , 224
3
5.
1 由 ( 0.002 + 0.0095 + 0.011 + 0.0125 + x + 0.005 + 0.0025 ) × 20 = 1 得 x = 0.0075 ,
所以直方图中 x 的值是 0.0075
考点 1、频率
直方图 2、样本的数字特征 众数、中位数
( −4,1)
−4 < x < 1 ,所以 等式 − x 2 − 3 x + 4 > 0 的解集为 ( −4,1) ,所
试题 析 由 − x 2 − 3 x + 4 < 0 得 以答案应填
( −4,1) .
考点 一元 次 等式. 12. 已知样本数据 x1 , x2 , ⋅⋅⋅ , xn 的均值 x = 5 ,则样本数据 2 x1 + 1 , 2 x2 + 1 , ⋅⋅⋅ , 2 xn + 1 的 均值为 答案 .
ΑD =
答案
3
考点 1、 线的性质
2、平行线 线段成比例定理
3、 割线定理.
、解答题 骤.
16、 本小题满
本大题共 6 小题,满
已知 tan α = 2 .
80
.解答须写出文字说明、证明过程和演算步
12
(1) 求 tan α +
的值 4 sin 2α 的值. ( 2) 求 2 sin α + sin α cos α − cos 2α − 1
11
考点 均值的性质. 13. 若 个正数 a , b , c 成等比数列,其中 a = 5 + 2 6 , c = 5 − 2 6 ,则 b = .
15年高考真题——理科数学(广东卷)-推荐下载
(D)4
(B) x2 y2 1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2015广东高考数学经典数学系列
2012年深圳市普通高中高三综合训练卷数 学 (文科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:棱锥的体积公式:13V Sh =. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,则集合A ∩B =A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x > 2.在等比数列{a n }中,已知a 2=2, a 4=8,则a 5=( ) A .16 B .16或-16 C .32 D .32或-32 3.幂函数()f x x α=的图像经过点)21,4(,则f (161)的值为 A .4 B .3 C .2 D .1 4.若复数i iaz ++=1为实数,则实数a =( )A .0B .1C .2D .2i5.已知直线l :x -y +2=0,点C 是圆224460x y x y +-++=上任意一点,则点C 到直线l 距离的最小值是( )A .22B .C .2D .6.“关于x 的不等式x 2-2ax +a ≤0 的解集为Φ”是“01a ≤≤”A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 7.函数y =cos(x +3π)的图像向左平移6π个单位后, 得到()x g y =的图像,则()x g 的解析式为俯视图侧视图正视图4 A.xsin B.xcos-C.xsin-D.xcos8.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为()A.6 B.24C.123D.329.某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:A.甲组技工的总体水平高;B.已组技工的总体水平高;C.两组技工的总体水平相同,甲组技工的技术水平差异比乙组大;D.两组技工的总体水平相同,乙组技工的技术水平差异比甲组大.10.已知()f x为偶函数,且f (1+x)=f (3-x),当-2<x<0时,f(x)=3x-1若*,()nn N a f n∈=,则2012a= ()A.13-B.3C.3-D.13二、填空题:本大共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题)11.为了保证食品安全,现采用分层抽样的方法对某市场的甲、乙、丙、丁四个厂家生产的奶粉进行检测,若甲、乙、丙、丁四个厂家生产的奶粉分别为120袋、100袋、80袋、60袋,已知甲乙两个厂家抽取的袋数之和为22袋,则四个厂家一共抽取袋;12.已知不等式组⎪⎩⎪⎨⎧≤-≥≤axxyxy,表示的平面区域的面积为4,点),(yxP在所给平面区域内,则yxz+=2的取值范围是;13.在实数的原有运算法则中,我们补充定义新运算“⊕”:当a b≥时,a b a⊕=;当a b<时,a b b⊕=2.则函数)2()1()(xxxxf⊕-⋅⊕=,[]22x∈-,的最大值等于___________(其中“⋅”和“-”仍为通常的乘法和减法). (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 ; 15.(几何证明选讲选做题)如图, AB 为⊙O 的直径,AC 切⊙O 于点A 且cm AC 22=,过C 的割线CMN 交AB 的延长线于点 D ,CM=MN=ND ,则CD 的长等于_______cm .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a b c 、、,角6B π=,(1)若11cos()14B C +=-,求cos C 的值; (2)若△ABC 是锐角三角形,求cos sin A C +的取值范围.17.(本题满分12分)某班的有50名学生,按随机抽样抽出5名学生(记为A 、B 、C 、D 、E ),记录他们的文成绩的波动情况;(2)若两科都达75分及以上,称之为“优良生”,从这5名学生中任意抽两名,求“至少有一名优良生”的概率. 18.(本题满分14分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)111ABC A B C -中, 14BB AB ==,3AC =,5BC =,D 是1A B 和1B A 的交点,E 是BC 的中点.(1)求证:1A B ⊥平面1B AC ; (2)求证:1//AC 平面1B AE (3)求锥体11A B AC -的体积.A 1C 1B 1C BADE19.(本题满分14分)已知圆221:(2)1C x y -+=,圆222:(4)1C x y +-=,圆1C ,2C 关于直线l 对称. (1)求直线l 的方程;(2)直线l 上是否存在点Q ,使Q 点到(2,0)A -点的距离减去Q 点到(2,0)B 点的距离的差为2,如果存在求出Q 点坐标,如果不存在说明理由.20.(本题满分14分)已知函数()ln()f x x x a =--在x =1处取得极值. (1)求实数a 的值;(2)若关于x 的方程2()2f x x x b +=+在[12,2]上恰有两个不相等的实数根,求实数b 的取值范围.21.(本题满分14分)设*n N ∈,圆n C :222(0)n n x y R R +=>与y 轴正半轴的交点为M ,与曲线y 的交点为(,)n n N x y ,直线MN 与x 轴的交点为(,0)n A a . (1)用n x 表示n R 和n a ;(2)若数列{}n x 满足:1143,3n n x x x +=+=.①求常数p 的值使数列{}1n n a p a +-⋅成等比数列; ②比较n a 与23n⋅的大小.2012年深圳市普通高中高三综合训练 数学试题(文科)参考答案和评分标准本大题共5小题,考生作答4小题,每小题5分,满分20分.11.36 12.[0,6] 13. 6 14.215. 6 三、解答题 本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.16.(本题满分12分) 解:(1)∵11cos()14B C +=-, ∴ 1435)(cos 1)sin(2=+-=+C B C B …………………3分 ∴()cos cos cos()cos sin()sin C B C B B C B B C B =+-=+++⎡⎤⎣⎦=11114214214-⨯+=-………………………………6分 (2)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++=3cos 2A A 3A π⎛⎫=+ ⎪⎝⎭.……………………………………8分∵ABC △为锐角三角形, ∴2C A B ππ=--<∴ 2263A B ππππ>-=-=∴ 32A ππ<< ∴2336A ππ5π<+<, ……………………………………10分∴1sin 232A π⎛⎫<+< ⎪⎝⎭3Aπ⎛⎫<+<⎪⎝⎭所以,cos sinA C+的取值范围为32⎫⎪⎪⎝⎭,.……………………………………12分17.(本题满分12分)解:(1)依题意数学成绩平均数为x11(8085747670)775=++++=……………………1分语文成绩平均数为x21(7280867572)775=++++=………………………2分数学成绩方差为2S1=222221[(8077)(8577)(7477)(7677)(7077)]5-+-+-+-+-=26.4语文成绩方差为2S2222221[(7277)(8077)(8677)(7577)(7277)]5=-+-+-+-+-=28.8 ∵2S1<2S 2∴数学成绩比语文成绩更稳定. …………………………………………………6分(2)∵两科都达75分及以上,称之为“优良生”∴“优良生”为学生B、D两人…………………………………………7分从ABCDE这5名学生任意抽取2名,基本事件总数有10个:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE.……………………………9分其中符合条件“至少有一名优良生”的事件有5个:AB,BC,BD,BE,CD,DE.∴“至少有一名优良生”的概率为51102P==…………………………………12分18.(本题满分14分)解:(1) 证明:直三棱柱111CBAABC-,底面三边长4AB=,3AC=,5BC=∴AC AB⊥,…………………………………………………………………1分又1AA ABC⊥平面,∴1AA⊥AC又1AA AB A=∴AC⊥平面11A B BA……………………………………………………3分∵1A B⊂平面11A B BA∴AC⊥1A BA1C1B1CBADE在正方形11A B BA 中,1A B ⊥1B A ,又1B AAC A =∴1A B ⊥平面1B AC ………………………………………………………5分 (2)证明:连结DE ………6分∵ E 是BC 的中点,D 是1AB 的中点,∴ 1//DE AC ………………………………………………………………8分 ∵ DE ⊂平面1B AE ,1AC ⊄平面1B AE , ∴1//AC 平面1B AE ………………………………………………………10分(3)解:法一:由(1)中AC ⊥平面11A B BA 得AC ⊥AB 1∴Rt △B 1AC的面积为111322S AC AB =⋅=⨯⨯=……………12分 由(1)中1A B ⊥平面1B AC又112AD A B ==∴11111833A B AC B ACV S AD -=⋅=⨯= ………………………14分 法二:∵11B A ⊥平面1A AC∴三棱锥11A B AC -转化为以1A AC 为底,相应的高为11B A ………9分 ∴1111111111(43)48332A B AC B A AC A AC V V S B A --==⋅=⨯⨯⋅= ………………14分19.(本题满分14分)解:(1)因为圆1C ,2C 关于直线l 对称,圆1C 的圆心1C 坐标为(2,0),圆2C 的圆心2C 坐标为(0,4), ……………………2分 显然直线l 是线段12C C 的中垂线, ……………………3分 线段12C C 中点坐标是(1,2),12C C 的斜率是1212021402y y k x x --===---…………5分所以直线l 的方程是()111y x k-=--,即2y x =. ………………………6分(2)假设这样的Q 点存在,因为Q 点到(2,0)A -点的距离减去Q 点到(2,0)B 点的距离的差为2, 所以Q 点在以(2,0)A -和(2,0)B 为焦点,实轴长为2的双曲线的右支上,即Q 点在曲线221(1)3y x x -=≥上,………………………………………10分 又Q 点在直线l 上, Q 点的坐标是方程组22132y x y x ⎧-=⎪⎨⎪=⎩的解,……………12分 消元得23x -=,方程组无解,所以点P 的轨迹上是不存在满足条件的点Q . …………………14分 20.(本题满分14分) 解:①1'()1f x x a =--,1'(1)101f a=-=-,得a =0. ……………………4分 ②2()2f x x x b +=+在[12,2]上恰有两个不相等的实数根;⇔方程23ln 0x x x b -++=在[12,2]上恰有两个不相等的实数根;⇔函数2()3ln g x x x x b =-++在[12,2]上恰有两个零点;21231(21)(1)'()23x x x x g x x x x x-+--=-+==当x =1时,g (x )最小值=g (1)=b -2g (12)=b -54-ln2,g (2)=b -2+ln2 方程23ln 0x x x b -++=在[12,2]上恰有两个不相等的实数根由15()0ln 20245(1)020ln 224(2)02ln 20g b g b b g b ⎧⎧≥--≥⎪⎪⎪⎪≤⇒-≤⇒+≤≤⎨⎨⎪⎪≤-+≤⎪⎪⎩⎩综上所述,5ln 224b +≤≤……………………14分 21.(本题满分14分) 解:(1) y n C 交于点N ,则2222,n n n n n n R x y x x R =+=+=……………………2分由题可知,点M 的坐标为()0,n R ,从而直线MN 的方程为1n nx ya R +=,3分 由点(,)n n N x y 在直线MN 上得:1n nn nx y a R +=, ………………………………4分将n R =n y =代入化简得: 1n n a x =+……………6分(2)由143n n x x +=+得:114(1)n n x x ++=+, ……………………………7分又114x +=,故11444n n n x -+=⋅=442n n nn a ∴=+=+ ……………8分①11142(42)(4)4(2)2n n n n n n n n a p a p p p +++-⋅=+-⋅+=-⋅+-⋅,22112142(42)(164)4(42)2n n n n n n n n a p a p p p ++++++-⋅=+-⋅+=-⋅+-⋅令211()n n n n a p a q a p a +++-⋅=-⋅得:(164)4(42)2(4)4(2)2n n n n p p q p q p -⋅+-⋅=-⋅+-⋅ ……………………9分由等式(164)2(42)(4)2(2)nnp p q p q p -⋅+-=-⋅+-对任意*n N ∈成立得:164(4)842(2)6p q p pq p q p p q -=-=⎧⎧⇔⎨⎨-=-+=⎩⎩,解得:24p q =⎧⎨=⎩或42p q =⎧⎨=⎩ 故当2p =时,数列{}1n n a p a +-⋅成公比为4的等比数列;当4p =时,数列{}1n n a p a +-⋅成公比为2的等比数列。
2015年广东省高考数学试卷及解析(文科)
2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1、(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A、{0、﹣1}B、{0}C、{1}D、{﹣1,1}2、(5分)已知i是虚数单位,则复数(1+i)2=()A、2iB、﹣2iC、2D、﹣23、(5分)下列函数中,既不是奇函数,也不是偶函数的是()A、y=x+sin2xB、y=x2﹣cosxC、y=2x+D、y=x2+sinx4、(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A、2B、5C、8D、105、(5分)设△ABC的内角A,B,C的对边分别为a,b,c、若a=2,c=2,cosA=、且b<c,则b=()A、B、2 C、2 D、36、(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A、l与l1,l2都不相交B、l与l1,l2都相交C、l至多与l1,l2中的一条相交D、l至少与l1,l2中的一条相交7、(5分)已知5件产品中有2件次品,其余为合格品、现从这5件产品中任取2件,恰有一件次品的概率为()A、0.4B、0.6C、0.8D、18、(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A、2B、3C、4D、99、(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A、5B、4C、3D、210、(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A、200 B、150 C、100 D、50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11、(5分)不等式﹣x2﹣3x+4>0的解集为、(用区间表示)12、(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为、13、(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=、坐标系与参数方程选做题14、(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系、曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为、几何证明选讲选做题15、如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D、若AB=4、CE=2,则AD=、三、解答题(共6小题,满分80分)16、(12分)已知tanα=2、(1)求tan(α+)的值;(2)求的值、17、(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图、(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18、(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3、(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离、19、(14分)设数列{a n}的前n项和为S n,n∈N*、已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1、+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式、20、(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B、(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由、21、(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1)、(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数、参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1、(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A、{0、﹣1}B、{0}C、{1}D、{﹣1,1}题目分析:进行交集的运算即可、试题解答解:M∩N={﹣1,1}∩{﹣2,1,0}={1}、故选:C、点评:考查列举法表示集合,交集的概念及运算、2、(5分)已知i是虚数单位,则复数(1+i)2=()A、2iB、﹣2iC、2D、﹣2题目分析:利用完全平方式展开化简即可、试题解答解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A、点评:本题考查了复数的运算;注意i2=﹣1、3、(5分)下列函数中,既不是奇函数,也不是偶函数的是()A、y=x+sin2xB、y=x2﹣cosxC、y=2x+D、y=x2+sinx题目分析:利用函数奇偶性的判断方法对选项分别分析选择、试题解答解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D、点评:本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数、4、(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A、2B、5C、8D、10题目分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值、试题解答解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大、由,解得,即B(4,﹣1)、此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B、点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法、5、(5分)设△ABC的内角A,B,C的对边分别为a,b,c、若a=2,c=2,cosA=、且b<c,则b=()A、B、2 C、2 D、3题目分析:运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2、试题解答解:a=2,c=2,cosA=、且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2、故选:B、点评:本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题、6、(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A、l与l1,l2都不相交B、l与l1,l2都相交C、l至多与l1,l2中的一条相交D、l至少与l1,l2中的一条相交题目分析:可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C 是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确、试题解答解:A、l与l1,l2可以相交,如图:∴该选项错误;B、l可以和l1,l2中的一个平行,如上图,∴该选项错误;C、l可以和l1,l2都相交,如下图:,∴该选项错误;D、“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确、故选:D、点评:考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确、7、(5分)已知5件产品中有2件次品,其余为合格品、现从这5件产品中任取2件,恰有一件次品的概率为()A、0.4B、0.6C、0.8D、1题目分析:首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可、试题解答解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6、故选:B、点评:考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理、8、(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A、2B、3C、4D、9题目分析:利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m、试题解答解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B、点评:本题考查椭圆的性质,考查学生的计算能力,比较基础、9、(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A、5B、4C、3D、2题目分析:由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求试题解答解:由向量加法的平行四边形法则可得,==(3,﹣1)、∴=3×2+(﹣1)×1=5、故选:A、点评:本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题、10、(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A、200 B、150 C、100 D、50题目分析:对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可、试题解答解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200、故选:A、点评:考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏、二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11、(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1)、(用区间表示)题目分析:首先将二次项系数化为正数,然后利用因式分解法解之、试题解答解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1)、点评:本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题、12、(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11、题目分析:利用平均数计算公式求解试题解答解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11、点评:本题考查数据的平均数的求法,是基础题、13、(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1、题目分析:由已知可得,b2=ac,代入已知条件即可求解b试题解答解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1、点评:本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14、(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系、曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4)、题目分析:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程、曲线C2的参数方程为(t为参数),化为普通方程:y2=8x、联立解出即可、试题解答解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0、曲线C2的参数方程为(t为参数),化为普通方程:y2=8x、联立,解得,则C1与C2交点的直角坐标为(2,﹣4)、故答案为:(2,﹣4)、点评:本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题、几何证明选讲选做题15、如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D、若AB=4、CE=2,则AD=3、题目分析:连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论、试题解答解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=B E•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3、点评:本题考查切割线定理,考查学生分析解决问题的能力,比较基础、三、解答题(共6小题,满分80分)16、(12分)已知tanα=2、(1)求tan(α+)的值;(2)求的值、题目分析:(1)直接利用两角和的正切函数求值即可、(2)利用二倍角公式化简求解即可、试题解答解:tanα=2、(1)tan(α+)===﹣3;(2)== ==1、点评:本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力、17、(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图、(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?题目分析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数、试题解答解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户、点评:本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题、18、(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3、(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离、题目分析:(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离、试题解答(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===、因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD、由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD、设点C到平面PDA的距离为h、因为V C=V P﹣ACD,﹣PDA所以,所以h==,所以点C到平面PDA的距离是、点评:本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题、19、(14分)设数列{a n}的前n项和为S n,n∈N*、已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1、当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式、题目分析:(1)直接在数列递推式中取n=2,求得;+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得(2)由4S n+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得、进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式、试题解答(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n (2)证明:∵4S n+2(n≥2),即4a n+a n=4a n+1(n≥2),+2∵,∴4a n+a n=4a n+1、+2∵=、∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴、即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是、点评:本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题、20、(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B、(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由、题目分析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论、试题解答解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点、理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}、点评:本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题、21、(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1)、(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数、题目分析:(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可、(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可、(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数、试题解答解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1、可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,]、当a<0时,|a|+a﹣1≤0,恒成立、综上a、∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a 时,=,所以,函数F(x)在(0,a)上是减函数、当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数、F(a)=a﹣a2+、当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a ==、所以F(ah)在(2,+∞)上是减函数,所以F(a )<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点点评:本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用21/ 21。
2015年高考数学(理)试题(广东题)含答案
绝密★启用前试卷类型:A2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N = ()A .{}1,4B .{}1,4--C .{}0D .∅2、若复数()32z i i =-(i 是虚数单位),则z =()A .23i-B .23i +C .32i +D .32i -3、下列函数中,既不是奇函数,也不是偶函数的是()A.y =B .1y x x =+C .122x x y =+D .x y x e =+4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A .521B .1021C .1121D .15、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是()A .250x y ++=或250x y +-=B.20x y ++=或20x y +=C .250x y -+=或250x y --=D.20x y -+=或20x y --=6、若变量x ,y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为()A .4B .235C .6D .3157、已知双曲线C :22221x y a b -=的离心率54e =,且其右焦点为()2F 5,0,则双曲线C 的方程为()A .22143x y -=B .221916x y -=C .221169x y -=D .22134x y -=8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A .至多等于3B .至多等于4C .等于5D .大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9、在()41x -的展开式中,x 的系数为.10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a +=.11、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若3a =,1sin 2B =,C 6π=,则b =.12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p =.(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin 24πρθ⎛⎫-= ⎪⎝⎭,点A 的极坐标为722,4π⎛⎫A ⎪⎝⎭,则点A 到直线l 的距离为.15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4AB =,C E 是圆O 的切线,切点为C ,C 1B =.过圆心O 作C B 的平行线,分别交C E 和C A 于点D 和点P ,则D O =.三、解答题16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量22(,),(sin ,cos ),(0,)222m n x x x π=-=∈ (1)若m n ⊥ ,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值.17.(本小题满分12分)某工厂36名工人年龄数据如下表(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值x 和方差2s ;(3)36名工人中年龄在x s -和x s +之间有多少人?所占百分比是多少(精确到0.01%)?18.(本小题满分14分)如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4,6,3PD PC AB BC ====,点E 是CD 的中点,点、F G 分别在线段、AB BC 上,且2,2AF FB CG GB ==.(1)证明:PE FG ⊥;(2)求二面角P AD C --的正切值;(3)求直线PA 与直线FG 所成角的余弦值.19.(本小题满分14分)设1a >,函数2()(1)x f x x ea =+-(1)求()f x 的单调区间;(2)证明()f x 在(,)-∞+∞上仅有一个零点;(3)若曲线()y f x =在点P 处的切线与x 轴平行,且在点M(m,n)处的切线与直线OP 平行,(O 是坐标原点),证明:321m a e ≤--.20.(本小题满分14分)已知过原点的动直线l 与圆221:650C xy x +-+=相交于不同的两点A、B.(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21.(本小题满分14分)数列{a }n 满足:*12122......3,2n n n a a na n N -+++=-∈.(1)求3a 的值;(2)求数列{a }n 的前n 项和n T ;(3)令111111,(1......)(2),23n n nT b a b a n n n -==+++++≥证明:数列{}n b 的前n 项和S n 满足22ln n S n<+。
2015数学广东卷(理科)
2015数学广东卷(理科)参考公式:样本数据x,…,x n的方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考广东卷,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于( D ) (A){1,4} (B){-1,-4} (C){0} (D)解析:化简集合得M={-4,-1},N={1,4},显然M∩N=⌀,故选D.2.(2015高考广东卷,理2)若复数z=i(3-2i)(i是虚数单位),则等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以=2-3i,故选A.3.(2015高考广东卷,理3)下列函数中,既不是奇函数,也不是偶函数的是( D )(A)y=(B)y=x+(C)y=2x+(D)y=x+e x解析:易知y=与y=2x+是偶函数,y=x+是奇函数,故选D.4.(2015高考广东卷,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( B )(A)(B)(C)(D)1解析:从15个球中任取2个球,取法共有种,其中恰有1个白球,1个红球的取法有×种,所以所求概率为P==,故选B.5.(2015高考广东卷,理5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( A )(A)2x+y+5=0或2x+y-5=0(B)2x+y+=0或2x+y-=0(C)2x-y+5=0或2x-y-5=0(D)2x-y+=0或2x-y-=0解析:切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得=,解得c=±5.故选A.6.(2015高考广东卷,理6)若变量x,y满足约束条件则z=3x+2y的最小值为( B )(A)4 (B)(C)6 (D)解析:由约束条件画出可行域如图.由z=3x+2y得y=-x+,易知目标函数在直线4x+5y=8与x=1的交点A(1,)处取得最小值,故z min=,故选B.7.(2015高考广东卷,理7)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( C )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:由已知得解得故b=3,从而所求的双曲线方程为-=1,故选C.8.(2015高考广东卷,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值( B )(A)至多等于3 (B)至多等于4(C)等于5 (D)大于5解析:首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015高考广东卷,理9)在(-1)4的展开式中,x的系数为.解析:(-1)4的展开式通项为T()4-r(-1)r=(-1)r··,令=1,得r=2,从而x的系数为(-1)2=6.答案:610.(2015高考广东卷,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .解析:利用等差数列的性质可得a3+a7=a4+a6=2a5,从而a3+a4+a5+a6+a7=5a5=25,故a5=5,所以a2+a8=2a5=10.答案:1011.(2015高考广东卷,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b= .解析:在△ABC中,由sin B=可得B=或B=,结合C=可知B=.从而A=π,利用正弦定理=,可得b=1.答案:112.(2015高考广东卷,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)解析:因为同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,所以全班共写了40×39=1560(条)毕业留言.答案:156013.(2015高考广东卷,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=.答案:(二)选做题(14~15题,考生只能从中选做一题)14.(2015高考广东卷,理14)(坐标系与参数方程选做题)已知直线l 的极坐标方程为2ρsin(θ-)=,点A的极坐标为A(2,),则点A 到直线l的距离为.解析:将直线l的极坐标方程2ρsin(θ-)=化为直角坐标方程为x-y+1=0.由A(2,)得A点的直角坐标为(2,-2),从而点A到直线l的距离d==.答案:15.(2015高考广东卷,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD= .解析:易得AC==,由OP∥BC,且O为AB的中点可知CP=AC=, OP=BC=,∠APO=∠ACB=90°.所以∠CPD=90°.因为EC是切线,所以∠DCP=∠B,从而△CPD∽△BCA,故=,所以DP=.故OD=DP+OP=+=8.答案:8三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015高考广东卷,理16)在平面直角坐标系xOy中,已知向量m=(,-),n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.解:(1)因为m⊥n,所以m·n=sin x-cos x=0.即sin x=cos x,又x∈(0,),所以tan x==1.(2)易求得|m|=1,|n|==1.因为m与n的夹角为,所以cos==.则sin x-cos x=sin(x-)=.又因为x∈(0,),所以x-∈(-,).所以x-=,解得x=.17.(本小题满分12分)(2015高考广东卷,理17)某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在-s与+s之间有多少人?所占的百分比是多少?(精确到0.01%)?解:(1)由系统抽样知识知,将36名工人分为9组(4人一组),每组抽取一名工人.因为在第一分段里抽到的是年龄为44的工人,即编号为2的工人,故所抽样本的年龄数据为44,40,36,43,36,37,44,43,37.(2)均值==40;方差s2=×[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37- 40)2+(44-40)2+(43-40)2+(37-40)2]=.(3)由(2)可知s=.由题意,年龄在-s与+s之间,即在区间[37,43]内的工人共有23人,所占的百分比为×100%≈63.89%.18.(本小题满分14分)(2015高考广东卷,理18)如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:因为PD=PC,点E为DC中点,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,所以PE⊥平面ABCD.又FG⊂平面ABCD,所以PE⊥FG.(2)解:由(1)可知PE⊥AD.因为四边形ABCD为长方形,所以AD⊥DC.又因为PE∩DC=E,所以AD⊥平面PDC.而PD⊂平面PDC,所以AD⊥PD.由二面角的平面角的定义可知∠PDC为二面角P-AD-C的一个平面角. 在Rt△PDE中,PE==,所以tan∠PDC==.从而二面角P-AD-C的正切值为.(3)解:连接AC.因为==,所以FG∥AC.易求得AC=3,PA==5.所以直线PA与直线FG所成角等于直线PA与直线AC所成角,即∠PAC, 在△PAC中,cos∠PAC==.所以直线PA与直线FG所成角的余弦值为.19.(本小题满分14分)(2015高考广东卷,理19)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.(1)解:函数f(x)的定义域为R.因为f′(x)=2x·e x+(1+x2)e x=(x2+2x+1)e x=(x+1)2e x≥0,所以函数f(x)在R上单调递增,即f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:因为a>1,所以f(0)=1-a<0,f(ln a)=(1+ln2a)e ln a-a= aln2a>0,所以f(0)·f(ln a)<0,由零点存在性定理可知f(x)在(0,ln a)内存在零点.又由(1)知f(x)在R上单调递增,故f(x)在(-∞,+∞)上仅有一个零点.(3)证明:设点P(x0,y0),由题意知,f′(x 0)=(x0+1)2=0,解得x0=-1.)-a=-a,所以y所以点P的坐标为(-1,-a).所以k OP=a-.由题意可得f′(m)=(m+1)2e m=a-.要证明m≤-1,只需要证明m+1≤,只需要证明(m+1)3≤a-=(m+1)2e m,只需要证明m+1≤e m.构造函数:h(x)=e x-x-1(x∈R),则h′(x)=e x-1.当x<0时,h ′(x)<0,即h(x)在(-∞,0)上单调递减; 当x>0时,h ′(x)>0,即h(x)在(0,+∞)上单调递增; 所以函数h(x)有最小值,为h(0)=0,则h(x)≥0.所以e x -x-1≥0,故e m -m-1≥0,即m+1≤e m ,故原不等式成立. 20.(本小题满分14分)(2015高考广东卷,理20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)由题意知:圆1C 方程为:22(3)4x y -+= ∴圆1C 的圆心坐标为(3,0) (2)由图可知,令111(,),|||M x y OM C M =222112222211112211||||||3(3)39()24OC OM C M x y x y x y =+∴=++-+∴-+=∵直线L 与圆1C 交于A 、B 两点 ∴直线L 与圆1C 的距离:02d ≤<221122111220(3)4930(3)()442533395C ()(,3]243x y x x x x y x ∴≤-+<∴≤-+--<∴<≤∴-+=∈轨迹的方程为:(3)∵直线L :2239(4)()124y k x x y =--+=与曲线仅有个交点联立方程:22(4)5(,3]393()24y k x x x y =-⎧⎪∈⎨-+=⎪⎩, 得:2222(1)(83)160k x k x k +-++=,5(,3]13在区间有且仅有个解22224=(83)-64+1=3k k k k ∆+=±当()0时, 此时,125(,3]53x =∈,仅有一个交点,符合题意。
15年高考真题——理科数学(广东卷)
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合()(){}|410M x x x =++=,()(){}|410N x x x =--=,则MN =( ) (A )∅ (B ){}1,4-- (C ){}0 (D ){}1,42.若复数()32z i i =-(i 是虚数单位),则z =( )(A )32i - (B )32i + (C )23i + (D )23i -3.下列函数中,既不是奇函数,也不是偶函数的是( ) (A )xe x y += (B )x x y 1+= (C )x xy 212+= (D )21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )(A )1 (B )2111 (C )2110 (D )215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( ) (A )052=+-y x 或052=--y x (B )052=++y x 或052=-+y x (C )052=+-y x 或052=--y x (D )052=++y x 或052=-+y x6.若变量,x y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x ,则y x z 23+=的最小值为( )(A )31 (B )6 (C )235 (D )47.已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C的方程为( ) (A )13422=-y x (B )191622=-y x (C )116922=-y x (D )14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )(A )大于5 (B )等于5 (C )至多等于4 (D )至多等于3二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2015年广东高考(文科)数学试卷及答案-解析版【1】汇编
2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.若集合{1,1}M =-,{2,1,0}N =-,则M N ⋂=A.{0,1}-B.{1}C.{0}D.{1,1}-【答案】B【解析】}1{=⋂N M 2.已知i 是虚数单位,则复数2(1)i +=A.2iB.2i -C.2D.2-【答案】A 【解析】()()i i i i 221122=++=+3. 下列函数中,既不是奇函数,也不是偶函数的是A.sin 2y x x =+2B.cos y x x =- 1C.22x x y =+ 2D.sin y x x =+【答案】D 【解析】A 为奇函数,B 和C 为偶函数,D 为非奇非偶函数4. 若变量,x y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为A.2B.5C.8D.10【答案】B【解析】由题意可做出如图所示阴影部分可行域,则目标函数 23z x y =+过点(4,-1)时z 取得最大值为max 243(1)5z =⨯+⨯-=5. 设ABC ∆的内角A,B,C 的对边分别为a,b,c,若=b c <,则b =A.3B. C.2 D.【答案】C 【解析】由余弦定理得,23344122cos 2222=-+=-+=bb bc a c b A ,化简得0862=+-b b ,解得42或=b ,因为b c <,2b =所以,6. 若直线1l 与2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是12A.,l l l 与都不相交 12B.,l l l 与都相交12C.,l l l 至多与中的一条相交12D.,l l l 至少与中的一条相交 【答案】D7. 已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.8D.1【答案】B 【解析】设5件产品中2件次品分别标记为A ,B ,剩余的3件合格品分别设为a ,b ,c. 则从5件产品中任取2件,共有10种情况,分别为(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c )、(a ,b )、(a ,c )、(b ,c )、(A ,B )其中,恰有一件次品的情况有6种,分别是(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c ),则其概率为0.6106= 8. 已知椭圆2221025x y m m +=>()的左焦点为1-F (4,0),则=m A.2B.3C.4D.9【答案】B【解析】因为椭圆的左焦点为(-4,0),则有4=c ,且椭圆的焦点在x 轴上,所以有916252522=-=-=c m ,因为,0>m 所以3=m9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD 则AD ACA.5B.4C.3D.2【答案】A【解析】因为四边形ABCD 是平行四边形,所以)1,3()1,2()2,1(-=+-=+=AD AB AC ,则5)1(132=-⨯+⨯=⋅AC AD10. 若集合{}(,,,)|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,{}(,,,)|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=A.200B.150C.100D.50 【答案】A【解析】当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种;当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种;当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种;当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=.当0t =时,u 取1,2,3,4中的一个,有4种;当1t =时,u 取2,3,4中的一个,有3种;当2t =时,u 取3,4中的一个,有2种;当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=所以()()card card F 100100200E +=+=二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11. 不等式2340x x --+>的解集为 .(用区间表示)【答案】(-4,1)【解析】解不等式2340x x --+> 得14<<-x ,所以不等式的解集为(-4,1)12. 已知样本数据12,,,n x x x 的均值5x =,则样本1221,21,,21n x x x +++的均值为 .【答案】10【解析】由题意知,当样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =时,样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=13. 若三个正数a,b,c 成等比例,其中526,526a c =+=-,则b = .【答案】1【解析】由等比中项性质可得,1)62(5)625)(625(222=-=-+==ac b ,由于b 为正数,所以b=1(二)选做题(14-15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程(cos sin )2ρθθ+=-,曲线2C 的参数方程为222x t y t⎧=⎪⎨=⎪⎩(t 为参数). 则1C 与2C 交点的直角坐标为 .【答案】(2,-4)【解析】曲线1C 的直角坐标系方程为2-=+y x ,曲线2C 的直角坐标方程为x y 82=.联立方程⎩⎨⎧=-=+x y y x 822,解得⎩⎨⎧-==42y x ,所以1C 与2C 交点的直角坐标为(2,-4) 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 延长线上一点,过点E 作圆O 的切线,切点为C 过点A 作直线EC 的垂线,垂足为D ,若4,23AB CE ==,则AD = .【答案】3【解析】由切割线定理得:2CE =BE AE ,所以,BE BE (+4)=12解得:BE=2BE 或=-6(舍去)连结OC ,则OC DE AD DE OC//AD ∴⊥,⊥,OC OE 26=,3AD AE 4OC AE AD OE ⨯∴∴===图1三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知tan 2.(1)求tan()4的值; (2)求2sin 2sin sin cos cos21的值. 【解析】(1) tan tan 4tan()41tan tan 4tan 11tan παπαπααα++=-+=-∵ tan 2α= ∴21tan()34121πα++==-- (2) 222222222sin sin cos cos21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin22sin cos ααα= ∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式 17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240的用户中应抽取多少户?【解析】(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x =(2)众数:230中位数:取频率直方图的面积平分线0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+= (3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯=[260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户∴[220,240)抽取:2511555⨯=户 18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.【解析】(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CDPE ⊂面PCD ,PE ⊥CD∴ PE ⊥面ABCD而BC ⊂面ABCD∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E∴ BC ⊥面PCDPD ⊂面PCD∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯ 在等腰三角形PCD 中,PE=7,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯= ∴P-ADC 1V 79373=⨯⨯= 设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯ 而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯= ∴13763h =⨯⨯∴h =,即:点C 到平面PDA19.(本小题满分14分) 设数列n a 的前n 项和为*,n S n N ,已知123351,,,24a a a 且当2n 时,211458n n n n S S S S . (1)求4a 的值;(2)证明:112n n a a 为等比数列;(3)求数列n a 的通项公式. 【解析】 (1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=12-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列 (3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列 111411()()22{}2,411()22=2+41()2121()()221n n n nn nn n n n n a a a a a n n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20.(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B. (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L yk x 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1) 2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kxx y x x k x x k x x x x k k ky y k x k ky k x yx x x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即2229535(,3]13530(,3]3x k x x y x ∴=∈+∴-+=∈轨迹方程:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时: 21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a .(1)若(0)1f ,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a 时,讨论4()f x x 在区间0,内的零点个数.【解析】(1) 222(0)||(1)||||f a a a a a a a a a a=+--=+-+=+10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述:(2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+> ∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-.①当2a =时,-22()(m in==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点.当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x 综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与a a g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >,所以当),(+∞∈a x 时,)()(x g x f 与有一个交点;故当2>a 时,()y f x =与x x g 4)(-=有两个交点. 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。
2015年广东高考数学理科卷带详解
2015年高考数学广东卷(理科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. (15广东高考)若{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =( )A. ∅B. {1,4}--C. {0}D. {1,4} 【参考答案】 A【测量目标】 一元二次方程、集合的基本运算.【试题分析】 因为{|(4)(1)0}M x x x =++=={4,1}--,{|(4)(1)0}N x x x =--=={1,4},所以M N =∅,故选A.2. (15广东高考)若复数i(32i)z =- (i 是虚数单位),则z =( )A. 3-2iB. 3+2iC. 2+3iD. 2-3i【参考答案】 D【测量目标】 复数的基本运算.【试题分析】 因为i(32i)23i z =-=+,所以23i z =-,故选D. 3. (15广东高考)下列函数中,既不是奇函数,也不是偶函数的是( )A. e xy x =+ B. 1y x x =+C. 122xx y =+ D. y =【参考答案】 A【测量目标】 函数的奇偶性.【试题分析】 令()e x f x x =+,则(1)1e f =+,1(1)1e f --=-+即(1)(1)f f -≠,(1)(1)f f -≠-,所以e x y x =+既不是奇函数也不是偶函数,而B 、C 、D 依次是奇函数、偶函数、偶函数,故选A.4. (15广东高考)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.521 B. 1021 C. 1121D. 1 【参考答案】 B【测量目标】 排列组合、古典概型的计算.【试题分析】 从袋中任取2个球共有215C 105=种,其中恰好1个白球1个红球共有11105C C 50=种,所以恰好1个白球1个红球的概率为501010521=,故选B. 5. (15广东高考)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A. 20x y -=或20x y -=B. 20x y +=或20x y += C. 250x y -+=或250x y --= D. 250x y ++=或250x y +-= 【参考答案】 D【测量目标】 直线与圆的位置关系.【试题分析】 设所求切线方程为20x y c ++==5c =±,所以所求切线的直线方程为250x y ++=或250x y +-=,故选D.6. (15广东高考)若变量x ,y 满足约束条件4581302x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤则32z x y =+的最小值为( )A.315 B. 6 C.235D.4 【参考答案】 C【测量目标】 二元一次不等式的线性规划问题.【试题分析】 不等式所表示的可行域如下图所示, 由32z x y =+得322z y x =-+,依题当目标函数直线l : 322z y x =-+经过41,5A ⎛⎫⎪⎝⎭时,z 取得最小值即min 42331255z =⨯+⨯=,故选C.第6题图7. (15广东高考)已知双曲线2222:1x y C a b-=的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A.22143x y -= B. 221169x y -= C. 221916x y -= D. 22134x y -= 【参考答案】 B【测量目标】 双曲线的标准方程及其简单基本性质.【试题分析】 因为所求双曲线的右焦点为()25,0F 且离心率为54c e a ==,所以5c =,4a =,2229b c a =-=所以所求双曲线方程为221169x y -=,故选B.8. (15广东高考)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A. 大于5 B. 等于5 C. 至多等于4 D. 至多等于3 【参考答案】 C【测量目标】 空间想象能力、推理能力. 【试题分析】 正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n 的取值至多等于4,故选C.二、填空题:本大题共7个小题,考生作答6小题,每小题5分,共30分. (一) 必做题(9~13题) 9. (15广东高考)在)41的展开式中,x 的系数为______________.【参考答案】 6【测量目标】 二项式定理. 【试题分析】由题可知()414C1rrr r T -+=-=()424C1r rr x--,令412r-=解得2r =,所以展开式中x 的系数为()224C 1-=6,故应填入6. 10. (15广东高考)在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a +=_____________.【参考答案】 10【测量目标】 等差数列的性质.【试题分析】 因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即 55a =,285210a a a +==,故应填入10.11. (15广东高考)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若a =1sin 2B =,π6C =,则b =_______________. 【参考答案】 1【测量目标】 正弦定理解三角形. 【试题分析】 因为1sin 2B =且()0,πB ∈,所以π6B =或5π6B =,又π6C =,所以π6B =, πA BC =--=2π3,又a =sin sin a b A B =即2πsin3=πsin 6b解得1b =,故应填入1.12. (15广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了_______________条毕业留言.(用数字作答) 【参考答案】 1560【测量目标】 排列组合问题.【试题分析】 依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了240A 40391560=⨯=条毕业留言,故应填入1560.13. (15广东高考)已知随机变量X 服从二项分布B (),n p ,若E (X )=30,D (X )=20,则p =__________.【参考答案】13【测量目标】 二项分布的性质.【试题分析】 依题可得E (X )=np =30且D (X )=(1)np p -=20,解得13p =,故应填入13. (二) 选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)(15广东高考)已知直线l 的极坐标方程为π2sin 4ρθ⎛⎫- ⎪⎝⎭=,点A 的极坐标为7π,4A ⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为_______________.【参考答案】2【测量目标】 极坐标与平面直角坐标的互化、点与直线的距离.【试题分析】 依题已知直线l :π2sin 4ρθ⎛⎫-⎪⎝⎭=和点7π,4A ⎛⎫ ⎪⎝⎭可化为l :10x y -+=和(2,2)A -,所以点A 与直线l 的距离为d =2. 15.(几何证明选讲选做题)(15广东高考)如图,已知AB 是圆O 的直径,AB =4,EC 是圆O 的切线,切点为C , 1BC =,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =_________________.第15题图【参考答案】 8【测量目标】 直线与圆、直角三角形的射影定理. 【试题分析】 如图所示,第15题图连接OC ,因为OD BC ∥,又BC AC ⊥,所以OP AC ⊥,又O 为AB 线段的中点,所以1122OP BC ==,在Rt OCD △中,12OC =2AB =,由直角三角形的射影定理可得2OC OP OD =⋅,222812OC OD OP===,故应填入8. 三 、解答题:本大题共6个小题,满分80分. 16. (15广东高考)(本小题满分12分) 在平面直角坐标系xOy 中,已知向量m=,n =(sin x ,cos x ),x ∈(0,π2). (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. 【测量目标】(1)向量数量积的坐标运算;(2)两角和差公式的逆用、知角求值、值知求角等问题.【试题分析】 (1)∵m=22-(),n =(sin x ,cos x )且m ⊥n , ∴m ·n=(22-⋅(sin x ,cos x )=2sin x-2cos x =sin (x -π4),又x ∈(0,π2), ∴x -π4∈ππ,44⎛⎫- ⎪⎝⎭,∴x -π4=0即x =π4,∴tan x =tan π4=1; (2)由(1)依题知cos π3=⋅⋅m n m nπsin()x -(π4x -), ∴sin (π4x -)=12又π4x -∈(-π4,π4), ∴π4x -=π6即5π12x =.17. (15广东高考)(本小题满分12分)(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x和方差2s;(3)36名工人中年龄在x-s与x+s之间有多少人?所占的百分比是多少(精确到0.01%)?【测量目标】(1)系统抽样;(2)样本的均值与方差;(3)样本数据统计等知识.【试题分析】(1)依题所抽样本编号是一个首项为2,公差为4的等差数列,故其所有样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37;(2)由(1)可得其样本的均值为x1[44409=++364336++37444337]40++++=,方差为2s19=[()()2244404040-+-+ 222(3640)(4340)(3640)-+-+-23740+-()2244404340+-+-()()2+-(3740)]=1 9[22224+043+-++()2222243433-+-+++-()()()]=1009;(3)由(2)知s10=3,∴x-s=3623,x+s=4313,年龄在x-s与x+s之间共有23人,所占百分比为2336≈63.89%.18. (15广东高考)(本小题满分14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.证明:(1)PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线P A与直线FG所成角的余弦值.第17题图【测量目标】(1) 直线与直线垂直的判定;(2)二面角的正切值;(3)异面直线所成角的余弦值.【试题分析】(1)证明:∵PD =PC 且点E 为CD 的中点,∴PE ⊥DC ,又平面PDC ⊥平面ABCD ,且平面PDC 平面ABCD =CD ,PE ⊂平面PDC , ∴PE ⊥平面ABCD ,又FG ⊂平面ABCD , ∴PE ⊥FG .(2)∵ABCD 是矩形,∴AD ⊥DC ,又平面PDC ⊥平面ABCD ,且平面PDC 平面ABCD =CD ,AD ⊂平面ABCD , ∴AD ⊥平面PDC ,又CD 、PD ⊂平面PDC ∴AD ⊥DC ,AD ⊥PD ,∴∠PDC 即为二面角P -AD -C 的平面角,在Rt △PDE 中,PD =4,DE =12AB =3,PE =∴tan ∠PDC =PE DE 即二面角P -AD -C ; (3)如图所示,连接AC第18题图∵AF =2FB ,CG =2GB 即AF CGFB GB==2 ∴AC ∥FG ,∴∠P AC 为直线P A 与直线FG 所成角或其补角,在△P AC 中,P A ==5,AC ==,由余弦定理可得cos ∠P AC =2222PA AC PC PA AC +-⋅=25,∴直线P A 与直线FG .设a >1,函f (x )=2+e xx a -(1). (1)求()f x 的单调区间;(2)证明:()f x 在(-∞,+∞)上仅有一个零点;(3)若曲线()y f x =在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:1m . 【测量目标】(1)利用导数求函数的单调区间;(2)函数的零点问题;(3)直线与曲线的位置关系. 【试题分析】(1)依题2()(1)e x f x x ''=+22(1)(e )(1)e 0x x x x '++=+≥. ∴()f x 在(-∞,+∞)上是单调增函数; (2)证明:∵1a >,∴(0)10f a =-<且22()(1)e 10a f a a a a a =+->+->, ∴()f x 在(0,)a 上有零点又由(1)知()f x 在(-∞,+∞)上是单调增函数, ∴()f x 在(-∞,+∞)上仅有一个零点; (3)由(1)知令()0f x '=得x =-1,又2(1)e f a -=-,即2(1,)eP a --, ∴22e 10eop a k a --==---,又2()(1)e m f m m '=+,∴22(1)e emm a +=-,令()e 1m g m m =--,则()e 1mg m '=-,∴由()g m '>0得m >0,由()g m '<0得0m <, ∴函数()g m 在(,0-∞)上单调递减,在(0,+∞)上单调递增, ∴min ()(0)0g m g ==,即()0g m ≥在R 上恒成立, ∴e 1mm +≥,∴22(1)e e m a m -=+≥23(1)(1)(1)m m m ++=+m 1+,∴1m .已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B. (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :(4)y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【测量目标】(1)圆的标准方程;(2)轨迹方程;(3)直线的斜率,数形结合思想. 【试题分析】 (1)由22650x y x +-+=得22(3)4x y -+=, ∴圆1C 的圆心坐标为(3,0);(2)设M (x ,y ),则∵点M 为弦AB 中点,即1C M AB ⊥, ∴1C M AB k k ⋅=-1即3y yx x⋅-=-1, 令y kx =为直线l 方程,则l 与圆1C 相切时22(1)650k x x +-+=∆=-202160k += , ∴k =代入圆1C 方程有2246505x x x +-+=,[]1,5x ∈ ∴53x =, ∴M 点轨迹方程中5(,3]3x ∈,∴线段AB 的中点M 的轨迹C 的方程为2239()24x y -+= 5(,3]3x ∈.(3)由(2)知点M 的轨迹是以3(,0)2C 为圆心32r =为半径的部分圆弧EF (如图所示,不包括两端点),第20题图且55(,(,3333E F -,又直线L :(4)y k x =-过定点(4,0)D ,当直线L 与圆C相切时,由32=得34k =±,又0(35743DE DF k k -=-=-=-,结合上图可知33,4477k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦ 时,直线L :(4)y k x =-与曲线C 只有一个交点.21. (15广东高考)(本小题满足14分) 数列{}n a 满足1212242n n n a a na -++++=- ,*n ∈N . (1)求3a 的值;(2)求数列{}n a 前n 项和n T ; (3)令11b a =,1111123n n n T b a n n -⎛⎫=+++++ ⎪⎝⎭(2n ≥),证明{}n b 的前n 项和n S ,满足2+2ln n S n <.【测量目标】(1)递推数列求某一项的值;(2)等比数列前n 项和;(3)数列与不等式比较大小,放缩法.【试题分析】(1) 依题3312312(23)(2)a a a a a a =----=3121322234(4)224--++---=, ∴314a =; (2)依题当n >1时,n n a =(122n a a na +++ )-(1212(1)n a a n a -+++- )=4-122n n -+-(4-212n n -+)=12n n-, ∴ 11()2n n a -=,又101242a +=-=1也适合此式,∴ 11()2n n a -=,∴数列{}n a 是首项为1,公比为12的等比数列,故11()2112nn T -=-=2-11()2n -;(3)依题由12111(1+++)2n n n a a a b a n n -+++=+ 知11b a =,1221(1)22a b a =++, 123311(1)323a ab a +=+++,∴ 12n n S b b b =+++ =(111+++2n )(12n a a a +++ )=(111+++2n)n T =(1112n +++ )(1122n --)<112(1)2n⨯+++ , 记1()ln 1(1)f x x x x =+->,则22111()0x f x x x x-'=-=> ∴()f x 在(1,+∞)上是增函数,又(1)0f =即()0f x >,又2k ≥且k +∈N 时,1k k ->1 ∴1()ln 10111kkf k k k k =+->---即ln 1kk ->1k ,12131ln ,ln ,,ln ,21321nn n <<<- 即有11123ln ln ln 23121nn n +++<+++- =ln n , ∴1112(1)23n ⨯++++ 22ln n <+,即22ln n S n <+ .。
2015年广东省高考数学试卷(理科)含解析
2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4} B.{﹣1,﹣4} C.[0} D.∅2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=06.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4B.C.6D.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1D.﹣=18.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为.10.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 9 404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m ≤﹣1.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.2015年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4} B.{﹣1,﹣4} C.[0} D.∅考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力.2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.点评:本题考查函数的奇偶性的判断,基本知识的考查.4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.解答:解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.点评:考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.5.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0考点:圆的切线方程.专题:计算题;直线与圆.分析:设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.解答:解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2xy+5=0或2x+y﹣5=0故选:A.点评:本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4B.C.6D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.解答:解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.点评:本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1D.﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解答:解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5考点:棱锥的结构特征.专题:创新题型;空间位置关系与距离.分析:先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.解答:解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立.故选:B.点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为6.考点:二项式定理的应用.专题:计算题;二项式定理.分析:根据题意二项式(﹣1)4的展开式的通项公式为T r+1=•(﹣1)r•,分析可得,r=1时,有x的项,将r=1代入可得答案.解答:解:二项式(﹣1)4的展开式的通项公式为T r+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.解答:解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.点评:本题主要考查了等差数列性质的简单应用,属于基础试题11.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.考点:正弦定理;两角和与差的正弦函数.专题:计算题;解三角形.分析:由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b解答:解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:1点评:本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)考点:排列、组合的实际应用.专题:排列组合.分析:通过题意,列出排列关系式,求解即可.解答:解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.点评:本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:直接利用二项分布的期望与方差列出方程求解即可.解答:解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.解答:解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.点评:本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=8.考点:相似三角形的判定.专题:选作题;创新题型;推理和证明.分析:连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.解答:解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.点评:本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.考点:平面向量数量积的运算;数量积表示两个向量的夹角.专题:平面向量及应用.分析:(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.解答:解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx ﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=1,||=1,•=(,﹣)•(sinx,cosx)=sinx ﹣cosx,∴若与的夹角为,则•=||•||cos =,即sinx ﹣cosx=,则sin(x ﹣)=,∵x∈(0,).∴x ﹣∈(﹣,).则x ﹣=即x=+=.点评:本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 9 404440413340454243101112131415161718363138394345393836192021222324252627274341373442374442282930313233343536343943384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?考点:极差、方差与标准差;分层抽样方法.专题:概率与统计.分析:(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.解答:解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.点评:本题主要考查统计和分层抽样的应用,比较基础.18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.考点:二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(1)通过△POC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC的余弦值.解答:(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.点评:本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到勾股定理、余弦定理等知识,注意解题方法的积累,属于中档题.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:常规题型;导数的综合应用.分析:(1)利用f'(x)≥0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.解答:解:(1)f'(x)=e x(x2+2x+1)=e x(x+1)2…2分∴f′(x)≥0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.…3分(2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数.又f(0)=1﹣a,∵a>1.∴1﹣a<0…5分∴f(0)<0.当x→+∞时,f(x)>0成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点…7分(3)证明:f'(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:e x0(x0+1)2=0,∴x0=﹣1…9分将x0=1代入y=f(x)得y0=.∴,∴…10分令;g(m)=e m﹣(m+1)g(m)=e m﹣(m+1),则g'(m)=e m﹣1,由g'(m)=0得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0…12分∴g(m)=e m﹣(m+1)≥0∴e m≥m+1∴e m(m+1)2≥(m+1)3即:∴m≤…14分点评:本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.考点:轨迹方程;直线与圆的位置关系.专题:创新题型;开放型;圆锥曲线的定义、性质与方程.分析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.解答:解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k)x+16k2=0,令△=(3+8k)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为(﹣,)∪{﹣,}.点评:本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于中档题.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.考点:数列与不等式的综合;数列的求和.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.解答:解:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴S n=b1+b2+…+b n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)<2+lnn,即S n<2(1+lnn)=2+2lnn.点评:本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.。
2015年高考理科数学广东卷-答案
因此 ,所以 .
在等腰三角形 中, , .
因此可得 ,故而可得 .
(Ⅲ)如图所示,连接 .
∵ ,
∴ , , ,
因此,直线 与直线 所成角即为直线 与直线 所成角 ,
在矩形 中,点 为 中点,因此 ,
而且 .
又 面 ,三角形 为直角三角形,故 ,
因此在 中, ,
因此可得 .
【提示】(Ⅰ)通过等腰三角形 可得 ,利用线面垂直判定定理及性质定理即得结论.
令 ,所以 ,
因此函数在 上单调递增,在 上单调递减,因此 ,
又因为 ,因此 ,
问题得证.
【提示】(Ⅰ)利用数列的递推关系即可求 的值.
(Ⅱ)利用作差法求出数列 的通项公式,利用等比数列的前 项和公式即可求数列 的前 项和 .
(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.
【考点】数列与不等式的综合,数列的求和
若 ,由于任三点不共线,当 时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;
同理 ,不成立.
故选:B.
【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.
因此,点A到直线 的距离为 .
【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.
【考点】简单曲线的极坐标方程
15.【答案】8
【解析】连接 ,
根据 为等腰三角形可得 ,又因为 为直径,
因此可得 , ,
∵ ∴ ,
因此可得 ,因此 ,
故而可得 ,∴ .
2015年高考理科数学真题及答案(广东卷)
第1页共 1 页2015年高考理科数学真题及答案(广东卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合410x x x ,410x x x ,则N M ( ).A. B. }4,1{ C. }0{ D. }4,1{答案: A提示: {1,4},{1,4},.M N M N 2. 若复数))(23(是虚数单位i i i z ,则z ( ).A. i 23B. i 23C. i 32D. i32答案: D提示: 23,23z i z i .3. 下列函数中,既不是奇函数,也不是偶函数的是( ).A. x e x yB. x x y 1C. x x y 212D. 21xy 答案: A提示: 设(),,(),x x f x x e R f x x e 该函数的定义域为(),()(),(),().,,,,.x f x x e f x f x f x f x B C D 而-不恒等于也不恒等于-故既不是奇函数也不是偶函数三个选项中的函数依次为奇函数偶函数偶函数4. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰好有 1 个白球,1个红球的概率为( ).A. 1B. 2111C. 2110D. 215答案: C提示: 所求概率为1110521550210.151421C C C 5. 平行于直线012y x 且与圆522y x 相切的直线的方程是( ).A. 052052y x y x 或B. 052052y x y x 或C. 052052y x y x 或 D. 052052y x y x 或答案: D提示: 设所求直线的方程为2||20,5,||5, 5.21a x y a a a 依题意即6. 若变量y x,满足约束条件2031854y x y x ,则y x z 23的最小值为( ).A. 531B. 6C. 523D. 4。
广东省高考数学试题及答案【解析版】
2015 年广东省高考数学试卷(理科)一、选择题(本大题共8 小题,每小题 5 分,满分40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5 分)(2015?广东)若集合M={x| (x+4)(x+1) =0}, N={x| (x—4)(x—1) =0},贝U MA N=()A. {1,4}B. { - 1 , - 4}C. {0}D. ?考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x| (x+4)(x+1) =0}={ —1, - 4},N={x| (x-4)(xT) =0}={1 , 4},则MT N=?.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力.2.(5分)(2015?广东)若复数z=i (3-2i)(i是虚数单位),则=()A. 2- 3iB. 2+3iC. 3+2iD. 3 - 2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i (3— 2i ) =2+3i ,则=2—3i ,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5 分)(2015?广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y = B.y =x+ C.y=2x + D.y =x+e x考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A y=是偶函数,所以A不正确;对于B, y=x+函数是奇函数,所以B不正确;对于C, y=2x+是偶函数,所以C不正确;对于D,不?t足f (-x) =f (x)也不满足f (-x) =-f (x),所以函数既不是奇函数,也不是偶函数,所以 D 正确.故选:D.点评:本题考查函数的奇偶性的判断,基本知识的考查.4.( 5 分) ( 2015?广东)袋中共有15 个除了颜色外完全相同的球,其中有10 个白球, 5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为( ) A.B.C.D.1考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先判断这是一个古典概型,从而求基本事件总数和“所取的2 个球中恰有 1 个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15 个球任取 2 球的取法,而在求“所取的2 个球中恰有 1 个白球,1 个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.解答:解:这是一个古典概型,从15 个球中任取 2 个球的取法有;,基本事件总数为105;设“所取的2 个球中恰有 1 个白球, 1 个红球”为事件A;则A包含的基本事件个数为=50;• .P (A)=.故选:B.点评:考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.5.(5分)(2015?广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A. 2x+y+5=0 或2x+y - 5=0B. 2x+y+=0 或2x+y - =0C. 2x - y+5=0 或2x - y - 5=0D. 2x - y+=0 或2x - y - =0考点:圆的切线方程.专题:计算题;直线与圆.分析:设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.解答:解:设所求直线方程为2x+y+b=0,则,所以=,所以b=± 5,所以所求直线方程为:2x+y+5=0或2x+y - 5=0故选:A.点评:本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.6.(5 分)(2015?广东)若变量x,y 满足约束条件,则z=3x+2y 的最小值为()A.4 B.C.6 D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.解答:解:不等式组对应的平面区域如图:由z=3x+2y 得y= - x+,平移直线y= - x+,则由图象可知当直线y= -x+,经过点A时直线y=-x+的截距最小,此时z 最小,由,解得,即A(1 ,),此时z=3X1+2X =,故选:B.点评:本题主要考查线性规划的应用,根据z 的几何意义,利用数形结合是解决本题的关键.7.(5分)(2015?广东)已知双曲线C: - =1的离心率e=,且其右焦点为F2 (5, 0),则双曲线C 的方程为()A. - =1B. - =1C. - =1D. - =1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解答:解:双曲线C: - =1的离心率e=,且其右焦点为F2 (5, 0),可得:,c=5,a=4, b==3,所求双曲线方程为:-=1.故选:C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5 分)(2015?广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5考点:棱锥的结构特征.专题:创新题型;空间位置关系与距离.分析:先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.解答:解:考虑平面上, 3 个点两两距离相等,构成等边三角形,成立;4 个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面吗的中心重合,故不成立;同理n>5,不成立.故选:B.点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11〜13题)9.(5分)(2015?广东)在(-1)4的展开式中,x的系数为6 .考点:二项式定理的应用.专题:计算题;二项式定理.分析:根据题意二项式(-1)4的展开式的通项公式为T r+1=? ( - 1)”,分析可得,r=1 时,有x的项,将r=1代入可得答案.解答:解:二项式(-1)4的展开式的通项公式为T r+1=? (- 1)「?,令2 - =1,求得r=2 ,,二项式(-1)4的展开式中x的系数为=6,故答案为:6.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5 分)(2015?广东)在等差数歹U {a n}中,若a3+a4+%+a6+a7=25,贝U a?+a8= 10 .考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.解答:解:由a3+a4+a5+a6+a7= (a3+a7)+ (a4+a6)+a5=5a5=25,得到a5=5,贝U a2+a8=2a5=10.故答案为:10.点评:本题主要考查了等差数列性质的简单应用,属于基础试题11.(5分)(2015?广东)设4ABC的内角A, B, C的对边分别为a, b, c.若a=, sinB=,C=,贝U b= 1 .考点:正弦定理;两角和与差的正弦函数.专题:计算题;解三角形.分析:由sinB=,可得B或B=,结合a=, C吸正弦定理可求b解答:解:,「sinBu,B薮B=当B=4, a=, C= A=由正弦定理可得,则b=1当B=4, C=,与三角形的内角和为兀矛盾故答案为:1点评:本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5分)(2015?广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)考点:排列、组合的实际应用.专题:排列组合.分析:通过题意,列出排列关系式,求解即可.解答:解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40X 39=1560 条.故答案为:1560.点评:本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5分)(2015?广东)已知随机变量X服从二项分布B (n, p),若E (X) =30, D (X)=20,贝U P=.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:直接利用二项分布的期望与方差列出方程求解即可.解答:解:随机变量X服从二项分布 B (n, p),若E (X) =30, D (X)=20, 可彳导 np=30, npq=20, q=,则p=,故答案为:.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5分)(2015?广东)已知直线l的极坐标方程为2psi n (。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2012届高三高考模拟试题数 学 试 题(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1. 在复平面内,复数12z i=+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知条件:1p x ≤,条件1:1q x<,则q p ⌝是成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 3. 某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ) A.y =2x -2 B.y =(12)x C.y =log 2x D.y =12(x 2-1)4. 右图是2010年在惠州市举行的全省运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,45. 已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x = ( )A . sin cos x x --B .sin cos x x -C .sin cos x x -+D .sin cos x x +6. 设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则221y x ++的最大值是 ( )A. 5B. 6C. 8D. 10 7. 已知整数以按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )A .()10,1B .()2,10C .()5,7D .()7,58. 在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2πf x x ax b =+-+有零点的概率为( )A .1-8π B .1-4π C .1- 2π D .1-34π 8 9 4 4 6 4 7 37 9俯视图侧视图二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 9.一简单组合体的三视图及尺寸 如右图示( 单位:cm)则该组合体的表面积为 _______ 2cm .10.ABC ∆中,A B C 、、所对的边长分别为a b c 、、,且2a c ==,2AB BC ⋅=-,则b = .11.在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中, x 的一次项系数是10-,则实数a 的值为 .12. 给出如图所示的程序框图,那么输出的数是________. 13. 已知ABC ∆的三边长为c b a ,,,内切圆半径为r(用的面积表示ABC S ABC ∆∆),则ABC S ∆)(21c b a r ++=; 类比这一结论有:若三棱锥BCD A -的内切球半径为R ,则三棱锥体积=-BCD A V .14. (坐标系与参数方程选讲) 在极坐标系中,若过点()1,0且与 极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB = .15.(几何证明选讲)如图,割线PBC 经过圆心O ,1OB PB ==,OB 绕点O 逆时针旋转120︒到OD ,连PD 交圆O 于点E ,则PE = .BCDEPO三、解答题:本大题共6小题,满分80分,解答必须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(Ⅰ)若//a b ,求tan θ的值; (Ⅱ)若||||,0,a b θπ=<<求θ的值。
17. (本小题满分12分) 本着健康、低碳的生活理念,租自行车骑游的人越来越多。
某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。
有人独立来该租车点则车骑游。
各租一车一次。
设甲、乙不超过两小时还车的概率分别为11,42;两小时以上且不超过三小时还车的概率分别为11,24;两人租车时间都不会超过四小时。
(Ⅰ)求甲、乙两人所付租车费用相同的概率;(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E ξ;18.(本小题满分14分)如图,在三棱柱中111ABC A B C -中,H 是正方形的中心,1AA =,111C H AAB B ⊥平面,且1C H =(Ⅰ) 求异面直线AC 与11A B 所成角的余弦值; (Ⅱ) 求二面角111A AC B --的正弦值;(Ⅲ) 设N 为棱11B C 的中点,点M 在平面11AA B B 内,且111MN A BC ⊥平面,求线段BM 的长.19. (本小题满分14分)11已知椭圆22221(0)x y a b a b+=>>的一个焦点F 与抛物线24y x =的焦点重合,且截抛物线的准线所45的直线l 过点F . (1)求该椭圆的方程;(2)设椭圆的另一个焦点为1F ,问抛物线x y 42=上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.20.(本小题满分14分)已知函数()exf x x -=()x ∈R .(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称. 证明:当1x >时,()()f x g x >.21. (本小题满分14分)已知数列{}n a ,122a a ==,112(2)n n n a a a n +-=+≥ (1)求数列{}n a 的通项公式n a . (2)当2n ≥时,求证:12111...3na a a +++< (3)若函数()f x 满足:2*1(1),(1)()().()f a f n f n f n n N =+=+∈,求证:111.()12nk f k =<+∑深圳市2012届高三高考模拟试题数 学 试 题(理)参考答案一.选择题9.12800 10.2 11.1 12.750013.)1(3ABC ABD ACD BCD R S S S S ∆∆∆∆+++ 14. 32. 15.773. 三.解答题16.解:(Ⅰ) 因为//a b ,所以2sin cos 2sin ,θθθ=-于是4sin cos θθ=,故1tan .4θ=(Ⅱ)由||||a b =知,22sin (cos 2sin )5,θθθ+-=所以212sin 24sin 5.θθ-+=从而2sin 22(1cos 2)4θθ-+-=,即sin 2cos 21θθ+=-,于是sin(2)42πθ+=-又由0θπ<<知,92444πππθ<+<,所以5244ππθ+=,或7244ππθ+=.因此2πθ=,或3.4πθ= 17. 解:(1)所付费用相同即为0,2,4元。
设付0元为1111428P =⋅=,付2元为2111248P =⋅=,付4元为31114416P =⋅= 则所付费用相同的概率为123516P P P P =++=(2)设甲,乙两个所付的费用之和为ξ,ξ可为0,2,4,6,81(0)811115(2)4422161111115(4)4424241611113(6)442416111(8)4416P P P P P ξξξξξ====⋅+⋅===⋅+⋅+⋅===⋅+⋅===⋅=84822E ξ=+++=18.解法1.如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA所在直线为x 轴,1BB 所在直线为y 轴.由题意,()0,0,0B,()A,C,()1A ,()10,B ,1C .(Ⅰ) (AC =,()11A B=-.所以111111cos ,33AC A B AC A B AC A B ⋅===⨯. (Ⅱ) ()1AA =,(11AC=,设平面11AAC 的法向量为(),,m x y z =,则1110,0.m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧=⎪⎨=⎪⎩令x=0y =,z =(5,0,m =.设平面111A B C 的法向量为(),,na b c =,则11110,0.nAC n A B ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧+=⎪⎨-=⎪⎩ 令b =0x =,c =(0,5,n =.于是2cos ,777m n m n m n ⋅===,所以35sin ,7m n =.所以二面角111A AC B --的正弦值为7.(Ⅲ) 由N为棱11B C 的中点,得222N ⎛ ⎝⎭,设点(),,0M pq ,则2,22MN p q ⎛=--⎝⎭. 因为11MN A BC ⊥1平面,则11110,0.MN AC MN AB ⎧⋅=⎪⎨⋅=⎪⎩即(((0.2p q p ⎧⎫⎫⋅+⋅⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪-⋅-= ⎪⎪ ⎪⎝⎭⎩解得24p q ⎧=⎪⎪⎨⎪=⎪⎩故M ⎫⎪⎪⎝⎭.向量2BM ⎛⎫= ⎪⎪⎝⎭,所以线段BM的长BM ⎛== . 解法2.(Ⅰ)由于11//AC AC ,故111C A B ∠是异面直线AC 与11A B 所成的角. 因为111C HAA B B ⊥平面,H 是正方形的中心,1AA =1C H =所以112A H B H ==,11113AC B C ====, 因此221111111111cos 23AC A B B C C A B AC A B +-∠==⋅. (Ⅱ) 连接1AC ,因为11C H AB ⊥及H 是1AB 的中点.则111AC B C =,又111AA B A =,1111AC AC =,所以B 1A 1C 1HRNMF ED CB A1111AC A BC A ∆∆≌.过点A 作11AR AC ⊥于R ,连1B R ,于是111B R AC ⊥, 所以1ARB ∠为二面角111A AC B --的平面角.在11Rt A RB ∆中,11111sin B R A B RA B =⋅∠=, 连1AB ,在1ARB ∆中,14AB =,1AR B R =,22211112cos 27AR B R AB ARB AR B R +-∠==-⋅,从而1sin ARB ∠= 所以二面角111A AC B --. (Ⅲ) 因为111MN A BC ⊥平面,所以11MN A B ⊥,取1HB 的中点D ,连接ND . 由于N 为棱11B C 的中点,所以1//ND C H,且112ND C H ==又111C H AA B B ⊥平面,故11ND A B ⊥, 因为MNND N =,所以11A B MND ⊥平面,连接MD 并延长交11A B 于点E ,则11MN A B ⊥.故1//NE AA . 由11111114B E B D DE AA B A B A ===,得12DE B E == 延长EM 交AB 于F,可得12BF B E ==,连接NE . 在Rt ENM ∆中,ND ME ⊥,由直角三角形的射影定理,2ND DE DM =⋅,所以24ND DM DE ==,4FM = 连接BM ,在Rt BFM ∆中,BM ==19. 解:(1)抛物线x y 42=的焦点为)0,1(F ,准线方程为1-=x ,…………………2分∴ 122=-b a ① …………………3分又椭圆截抛物线的准线1-=x∴ 得上交点为)22,1(-, ∴ 121122=+b a ②…………………4分由①代入②得01224=--b b ,解得12=b 或212-=b (舍去), 从而2122=+=b a …………………6分∴ 该椭圆的方程为该椭圆的方程为22121x y += …………………7分 (2)∵ 倾斜角为45的直线l 过点F ,∴ 直线l 的方程为)1(45tan -=x y ,即1-=x y ,…………………8分 由(1)知椭圆的另一个焦点为)0,1(1-F ,设),(00y x M 与1F 关于直线l 对称,…………………9分则得⎪⎪⎩⎪⎪⎨⎧--+=+-=⨯+-12)1(201110000x y x y …………………10分解得⎩⎨⎧-==2100y x ,即)2,1(-M …………………11分又)2,1(-M 满足x y 42=,故点M 在抛物线上。