3.1.1 方程的根与函数的零点教案 新人教A版必修1

合集下载

3.1.1《方程的根与函数的零点》教案(新人教版必修1)

3.1.1《方程的根与函数的零点》教案(新人教版必修1)

方程的根与函数的零点一、教课目的:1.让学生娴熟掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数2.让学生认识函数的零点与方程根的联系3.让学生认识到函数的图象及基天性质(特别是单一性)在确立函数零点中的作用4.培育学生着手操作的能力二、教课要点、难点要点零点的观点及存在性的判断.难点零点确实定.三、学法与教课器具学法:学生在老师的指引下,经过阅读教材,自主学习、思虑、沟通、议论和归纳,进而达成本节课的教课目的。

教课器具:投影仪。

教课过程:( 一 ) 创建情形,揭露课题1、提出问题:一元二次方程ax2 +bx+c=0 (a≠ 0) 的根与二次函数y=ax2+bx+c( a≠ 0) 的图象有什么关系?2.先来察看几个详细的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程 x 22x30 与函数 y x22x3②方程 x 22x10 与函数 y x2 2 x1③方程 x 22x30 与函数 y x22x31.师:指引学生解方程,画函数图象,剖析方程的根与图象和x 轴交点坐标的关系.要修业生:独立思虑达成解答,察看、思虑、总结、归纳得出结论,并进行沟通.师:上述结论推行到一般的一元二次方程和二次函数又如何?( 二 )互动沟通商讨新知经过上述问题引出函数零点的观点:定义:关于函数y f (x) ,我们把使 f ( x) 0 的实数x叫做函数 y f ( x) 的零点(zeropoint ) .指出函数零点的意义:函数 y f (x) 的零点就是方程 f (x) 0 实数根,亦即函数 y f (x) 的图象与 x 轴交点的横坐标.即:方程 f (x) 0 有实数根函数y f (x) 的图象与 x 轴有交点函数y f (x) 有零点.想想,如何求函数的零点呢?师:指引学生仔细理解函数零点的意义,并依据函数零点的意义研究其求法:①代数法;求方程 f (x)0 的实数根;②几何法.将它与函数y f ( x) 的图象联系起来,并利用函数的性质找出零点。

高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修1

高中数学 3.1.1 方程的根与函数的零点教案精讲 新人教A版必修1

3.1 函数与方程3.1.1 方程的根与函数的零点[读教材·填要点]1.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(x)=0的根.[小问题·大思维]1.函数的“零点”是一个点吗?提示:不是,函数的“零点”是一个数,实际上是函数y=f(x)的图象与x轴交点的横坐标.2.若函数f(x)=ax+2的零点是1,则a为何值?提示:f(1)=a+2=0,∴a=-2.3.若函数y=f(x)在(a,b)内有零点,则f(a)·f(b)<0一定成立吗?提示:不一定.可能y=f(x)在x=a或x=b处无定义;即使有定义,也可能f(a)·f(b)>0.如图所示.求函数的零点[例1] 求函数f(x)=x3-7x+6的零点.[自主解答] 令f(x)=0,即x3-7x+6=0,即(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)(x2+x-6)=(x-1)(x-2)(x+3)=0解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.——————————————————求函数y=f x的零点通常有两种办法:其一是令f x=0,根据解方程f x=0的根求得函数的零点;其二是画出函数y=f x的图象,图象与x轴的交点的横坐标即为函数的零点.本题由于画函数图象比较困难,因此,只用了第一种方法.——————————————————————————————————————1.求下列函数的零点.(1)y=x2-2x;(2)y=ln x-2.解:(1)令y=x2-2x=0,则x=0或x=2,∴y=x2-2x的零点为0,2.(2)令y=ln x-2=0,则ln x=2=lne2.∴x=e2.∴函数y=ln x-2的零点为e2.[例2] 函数f(x)=e x+x-2的零点所在的一个区间是( )A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)[自主解答] 因为函数f(x)的图象是连续不断的一条曲线,又f(-2)=e-2-4<0,f(-1)=e-1-3<0,f(0)=-1<0,f(1)=e-1>0,所以f(0)f(1)<0.故函数一个零点在(0,1).[答案] C——————————————————确定函数零点、方程根所在区间,通常利用函数零点存在性定理,转化为确定区间两端点对应函数值符号是否相反.——————————————————————————————————————2.方程lg x+x=0的根所在的区间可能是( )A.(-∞,0) B.(0.1,1)C.(1,2) D.(2,4)解析:由于lg x有意义,所以x>0.令f(x)=lg x+x,显然f(x)在定义域内为增函数,又f(0.1)=-0.9<0,f(1)=1>0,故f(x)在区间(0.1,1)内有零点.答案:B[例3] 求函数f(x)=2x+lg(x+1)-2的零点个数.[自主解答] 法一:∵f(0)=1+0-2=-1<0,f(2)=4+lg3-2>0,∴f(x)在(0,2)上必定存在零点,又显然f(x)=2x+lg(x+1)-2在(0,+∞)上为增函数(图略),故f(x)有且只有一个零点.法二:在同一坐标系下作出h(x)=2-2x和g(x)=lg(x+1)的草图.由图象知g(x)=lg(x+1)的图象和h(x)=2-2x的图象有且只有一个交点,即f(x)=2x+lg(x+1)-2有且只有一个零点.——————————————————1若函数f x在[a,b]上单调,且f a f b<0,则f x存在零点,且在a,b上只有1个零点.2若通过构造有f x=g x-h x,且g x、h x图象容易作出,则f x的零点个数就是g x与h x图象交点个数,通过作图容易得到f x零点个数.3特别地,对于二次函数的零点个数可以通过Δ来判断.——————————————————————————————————————3.求函数f(x)=log2x+2x-7的零点个数,并写出它的一个大致区间.解:设y1=log2x,y2=-2x+7,可将y1,y2的图象作出,如图所示.由图可知y1与y2只有一个交点,则log2x+2x-7=0有一个根,∴函数f(x)有一个零点.f(2)=log22+22-7=-2,f(3)=log23+23-7>0,∴f(2)·f(3)<0.∴零点的一个大致区间为(2,3).k的取值范围.[巧思] 若直接利用求根公式解题,则要解复杂的无理不等式组.如果从函数观点出发,令f (x )=2kx 2-2x -3k -2,则由根的分布,知函数f (x )的图象只能如图所示.对应的条件是⎩⎪⎨⎪⎧k >0f1<0或⎩⎪⎨⎪⎧k <0,f1>0,解出即可.[妙解] 令f (x )=2kx 2-2x -3k -2,为使方程f (x )=0的两实根一个小于1,另一个大于1,只需⎩⎪⎨⎪⎧k >0,f 1<0或⎩⎪⎨⎪⎧k <0,f 1>0,即⎩⎪⎨⎪⎧k >0,2k -2-3k -2<0或⎩⎪⎨⎪⎧k <02k -2-3k -2>0,解得k >0或k <-4.故k 的取值范围是(-∞,-4)∪(0,+∞).1.函数f (x )=lg x +12的零点是 ( )A.110 B.10C.1010D .10解析:∵lg x +12=0,∴lg x =-12,∴x =10-12=1010.答案:C2.函数f (x )=πx +log 2x 的零点所在区间为( ) A .[0,18]B .[18,14]C .[14,12]D .[12,1]解析:f (14)·f (12)=(π4+log 214)(π2+log 212)=(π4-2)(π2-1)<0答案:C3.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( ) A .0 B .1 C .-1D .不能确定解析:∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 答案:A4.若函数f (x )=x 2-x +a 有两个零点,则a 的取值范围是________. 解析:∵Δ=(-1)2-4×1×a =1-4a .而f (x )=x 2-x +a 有两个零点,即方程x 2-x +a 有两个不相等的实数根.∴Δ>0即a <14.答案:(-∞,14)5.若函数f (x )=x -1x,则g (x )=f (4x )-x 的零点是________. 解析:∵f (x )=x -1x ,∴f (4x )=4x -14x. 则g (x )=4x -14x -x ,令g (x )=0.有4x -14x -x =0,解得x =12. 答案:126.试判断方程x 3=2x在区间[1,2]内是否有实数根?解:因为函数f (x )=x 3-2x的图象在区间[1,2]上是连续曲线,并且f (1)=1-2=-1<0,f (2)=8-4=4>0,所以f (1)·f (2)<0,所以函数f (x )=x 3-2x 在区间[1,2]内至少有一个零点,即方程x 3=2x在区间[1,2]内至少有一个实数根.一、选择题1.若y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )A .若f (a )·f (b )<0,不存在实数c ∈(a ,b ),使得f (c )=0B .若f (a )·f (b )<0,存在且只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )·f (b )>0,不存在实数c ∈(a ,b ),使得f (c )=0D .若f (a )·f (b )>0,有可能存在实数c ∈(a ,b ),使得f (c )=0 解析:由零点存在性定理可知选项A 不正确;对于选项B ,可通过反例“f (x )=x (x -1)(x +1)在区间[-2,2]上满足f (-2)·f (2)<0,但其存在三个零点:-1,0,1”推翻;选项C 可通过反例“f (x )=(x -1)·(x +1)在区间[-2,2]上满足f (-2)·f (2)>0,但其存在两个零点:-1,1”推翻.答案:D2.(2012·北京高考)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .3解析:因为y =x 12在x ∈[0,+∞)上单调递增,y =(12)x在x ∈R 上单调递减,所以f (x )=x 12-(12)x 在x ∈[0,+∞)上单调递增,又f (0)=-1<0,f (1)=12>0,所以f (x )=x 12-(12)x在定义域内有唯一零点.答案:B3.已知f (x )是定义域为R 的奇函数,且在(0,+∞)内的零点有1 003个,则f (x )的零点的个数为( )A .1 003B .1 004C.2 006 D.2 007解析:∵f(x)为奇函数,且在(0,+∞)内有1 003个零点,∴在(-∞,0)上也有1 003个零点,又∵f(0)=0,∴共有2 006+1=2 007个.答案:D4.方程x3-x-1=0在[1,1.5]内实数解有( )A.3个B.2个C.至少一个D.0个解析:令f(x)=x3-x-1,则f(1)=-1<0,f(1.5)=1.53-1.5-1=1.53-2.5>0.答案:C二、填空题5.根据表格中的数据,可以判定方程e x-x-2=0的一个根所在的区间为________.x -1012 3e x0.371 2.727.3920.09x+21234 5解析:令f(x)x由图表知f(-1)=0.37-1=-0.63<0,f(0)=1-2=-1<0,f(1)=2.72-3=-0.28<0,f(2)=7.39-4=3.39>0,f(3)=20.09-5=15.09>0,由于f(1)·f(2)<0,所以一个根所在的区间为(1,2).答案:(1,2)6.对于方程x3+x2-2x-1=0,有下列判断:①在(-2,-1)内有实数根;②在(-1,0)内有实数根;③在(1,2)内有实数根;④在(-∞,+∞)内没有实数根.其中正确的有________.(填序号)解析:设f(x)=x3+x2-2x-1,则f(-2)=-1<0,f(-1)=1>0,f(0)=-1<0,f(1)=-1<0,f(2)=7>0,则f(x)在(-2,-1),(-1,0)(1,2)内均有零点,即①②③正确.答案:①②③7.函数f(x)=ln x-x+2的零点个数是________.解析:取g (x )=ln x h (x )=x -2则f (x )的零点也就是g (x )与h (x )的交点如下图:答案:28.若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析:函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.答案:(1,+∞) 三、解答题9.讨论函数f (x )=(ax -1)(x -2)(a ∈R )的零点. 解:当a =0时,函数为y =-x +2,则其零点为x =2. 当a =12时,则由(12x -1)(x -2)=0,解得x 1,2=2,则其零点为x =2.当a ≠0且a ≠12时,则由(ax -1)(x -2)=0,解得x =1a 或x =2,综上所述其零点为x =1a或x =2.10.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1) (1)求函数f (x )的定义域;(2)求函数f (x )的零点;解:(1)要使函数有意义:则有⎩⎪⎨⎪⎧1-x >0,x +3>0解之得:-3<x <1, 所以函数的定义域为(-3,1). (2)函数可化为f (x )=log a (1-x )(x +3) =log a (-x 2-2x +3),由f (x )=0,得-x 2-2x +3=1, 即x 2+2x -2=0,x =-1± 3.∵-1±3∈(-3,1),∴f (x )的零点是-1± 3.。

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

3.1.1 方程的根与函数的零点[学习目标] 1.理解函数零点的定义,会求函数的零点.2.掌握函数零点的判定方法.3.了解函数的零点与方程的根的联系.[知识链接]考察下列一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.你能列表表示出方程的根,函数的图象及图象与x轴交点的坐标吗?答案[1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系;方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点存在的判定方法如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0.那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.温馨提示 判定函数零点的两个条件缺一不可,否则不一定存在零点;反过来,若函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0不一定成立.要点一 求函数的零点例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3;(4)f (x )=x 2+4x -12x -2.解 (1)解方程f (x )=x 2+7x +6=0, 得x =-1或x =-6, 所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1, 所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.(4)解方程f (x )=x 2+4x -12x -2=0,得x =-6,所以函数的零点为-6.规律方法 求函数零点的两种方法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点.跟踪演练1 判断下列说法是否正确: (1)函数f (x )=x 2-2x 的零点为(0,0),(2,0); (2)函数f (x )=x -1(2≤x ≤5)的零点为x =1.解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错. 要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34 答案 C解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f (12)=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,∴零点在⎝ ⎛⎭⎪⎫14,12上. 规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.跟踪演练2 函数f (x )=e x+x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,∴f (x )在(0,1)内有零点. 要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x的零点所在的大致区间是( )A .(6,7)B .(7,8)C .(8,9)D .(9,10) 答案 D解析 因为f (9)=lg 9-1<0,f (10)=lg 10-910=1-910>0,所以f (9)·f (10)<0,所以y =lg x -9x在区间(9,10)上有零点,故选D.4.方程2x -x 2=0的解的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 在同一坐标系画出函数y =2x,及y =x 2的图象,可看出两图象有三个交点,故2x-x 2=0的解的个数为3.5.函数f (x )=x 2-2x +a 有两个不同零点,则实数a 的范围是________. 答案 (-∞,1)解析 由题意可知,方程x 2-2x +a =0有两个不同解, 故Δ=4-4a >0,即a <1.1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.一、基础达标1.下列图象表示的函数中没有零点的是( )答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是( )A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是( )A.(-1,0) B.C.(1,2) D.(2,3)答案 C解析由上表可知f(1)=2.72-3<0,f(2)=7.39-4>0,∴f(1)·f(2)<0,∴f(x)在区间(1,2)上存在零点.4.函数f(x)=ln x+2x-6的零点所在的区间为( )A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案 B解析f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,f(3)=ln 3+6-6=ln 3>0,所以f(2)·f(3)<0,则函数f(x)的零点所在的区间为(2,3).5.方程log3x+x=3的解所在的区间为( )A.(0,2) B.(1,2)C.(2,3) D.(3,4)答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1,a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点.由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点, 故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3,∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1,∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎪⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1, 结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧-2a 2-16≥0,f=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在定理,得f (1)=5-2a <0,解得a >52.(3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内, 结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧f =4>0,f =5-2a <0,f =40-12a <0,f=68-16a >0,解得103<a <174.。

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1
2
(2) 2 x( x 2) 3 ; (3) x 4 x 4 ;
2
尝 试 练 习
(4) 5x 2 x 3x 5 .
2 2
师:结合图象考察零点 所在的大致区间与个 数,结合函数的单调性 说明零点的个数;让学 生认识到函数的图象及 基本性质(特别是单调 性)在确定函数零点中 的重要作用.
组 织 探 究
生:分析函数,按提示 (Ⅰ)观察二次函数 f ( x) x 2 2 x 3 的图象: 探索,完成解答,并认 真思考. 1 ○ 在区间 [2,1] 上有零点______; 师:引导学生结合函数 图象,分析函数在区间 f (2) _______, f (1) _______, 端点上的函数值的符号 情况,与函数零点是否 f (2) · f (1) _____0(<或>) . 存在之间的关系. 生:结合函数图象,思 2 在区间 [2,4] 上有零点______; ○ 考、讨论、总结归纳得 出函数零点存在的条 f (2) · f (4) ____0(<或>) . 件,并进行交流、评析. 师:引导学生理解函数 (Ⅱ)观察下面函数 y f ( x) 的图象 零点存在定理,分析其 中各条件的作用.
函数零点的概念: 师:引导学生仔细体会 左边的这段文字,感悟 其中的思想方法. 的实数 x 叫做函数 y f ( x)(x D) 的零点. 生:认真理解函数零点 函数零点的意义: 的意义,并根据函数零 点的意义探索其求法: 函数 y f ( x) 的零点就是方程 f ( x) 0 实数根, 1 代数法; ○ 2 几何法. ○ 亦即函数 y f ( x) 的图象与 x 轴交点的横坐标. 对于函数 y f ( x)(x D) ,把使 f ( x) 0 成立 组 织 探 究 即: 方程 f ( x) 0 有实数根 函数 y f ( x) 的图 象与 x 轴有交点 函数 y f ( x) 有零点. 函数零点的求法: 求函数 y f ( x) 的零点: 1 (代数法)求方程 f ( x) 0 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以 ○ 将它与函数 y f ( x) 的图象联系起来,并利用函数的 性质找出零点.

高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1

高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1

模块必修一第三单元第3.1.1节方程的根与函数零点教学案 课时:第一课时 课型:新授 编者: 日期: 年 月 日 三维目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.自主性学习1、旧知识铺垫 复习1:一元二次方程2ax +bx +c =0 (a ≠0)的解法.判别式∆= .当∆ 0,方程有两根,为1,2x = ;当∆ 0,方程有一根,为0x = ;当∆ 0,方程无实根.复习2:方程2ax +bx +c =0 (a ≠0)的根与二次函数y =ax 2+bx +c (a ≠0)的图象之间有什么关2、新知识学习探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的 .你能将结论进一步推广到()y f x =吗?总结:零点的定义反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?探究任务二:零点存在性定理问题:① 画出二次函数()223f x x x =--的图像,观察函数在区间[-2,1]上有无零点,计算f(-2)与f(1)的乘积,你能发现他们的乘积有什么特点?在区间[2,4]上是否也有这种特点呢?通过函数的图象和计算发现:()()21f f -⋅__0,()223f x x x =--在(-2,1)有零点_______,它是2230x x --=的根。

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1

§3.1函数与方程3.1.1 方程的根与函数的零点教学目标:1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数2.让学生了解函数的零点与方程根的联系3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用4.培养学生动手操作的能力教学重点:确定方程实数根的个数教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法教学过程:引入问题一元二次方程20(0)ax bx c a ++=≠的根与二次函数2(0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题):1.函数零点的定义:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有2.一般结论方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点3.函数变号零点具有的性质对于任意函数()y f x =,只要它的图象是连续不间断的,则有(1)当它通过零点时(不是二重零点),函数值变号。

如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。

(2)在相邻两个零点之间所有的函数值保持同号。

4.注意点(1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。

(2)如方程有二重实数根,可以称函数有二阶零点。

5.勘根定理如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有()()0f a f b ⋅<那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
问题设置:系数选择,相应解析式,函数的大致图象,函数的零点的个数。
师:提出探究,请一个小组到大屏前进行探究过程,巡视各小组完成情况,帮助学生解决相应问题,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展示后教师对每个小组的成果进行点评总结
生:小组合作探究,明确分工,完成小组探究,完成进行展示,出现问题向教师求助
五、教学资源和工具设计
教师制作PPT,设计学案(纸质)
图形计算器或者图形计算器软件,计算机,交互式触摸白板
图形计算器为教师和学生提供了一个研究函数的平台,利用图形计算器可以给学生提供一个高效快捷研究函数的环境,有助于学生的理解和探究。
六、教学重点及难点
教学重点:方程的根与函数的零点的关系
教学难点:函数的零点的判断
生:独立按时完成,能力较弱的只要完成1、2两题即可
分层完成课堂反馈有助于不同的学生得到适于本身的收获
学生回归数学方法,教师检验学生对所学知识的掌握情况
PPT展示
(六)收获小结
要解决函数 的零点问题,我们可以通过什么方法?
师:提出问题
生:进行解决方法说明
对本节课所学知识和解决本节课相关问题的方法于函数 ,把使 的实数 叫做函数 的零点
师:提出问题,根据学生回答板书问题的答案
生:思考分析定义并回答问题
检验学生的自学成果,并且落实教学重点,完成部分教学目标。
PPT展示
函数零点的定义
(三)
合作探究
结合函数的零点的定义,利用图形计算器探究函数 的图象形状与函数的零点个数之间的关系。
15
10
5
0
会应用所学知识解决函数的零点的相关问题
20
15
10
5
过程与方法

高中数学 3.1 函数与方程 1 方程的根与函数的零点(一)教学案新人教A版必修1

高中数学 3.1 函数与方程 1 方程的根与函数的零点(一)教学案新人教A版必修1

§3.1.1 方程的根与函数的零点(一)【教学目标】1.知识与技能理解函数(二次函数)零点的概念;领会函数零点与相应方程的关系;掌握零点存在的判断条件. 2.过程与方法通过观察二次函数的图像,并计算函数在区间端点处的函数值的积的符号,找到图像连续不断的函数在某个区间上存在零点的判断方法.3. 情感、态度、价值观从函数的零点和方程根的内在联系中体验数学中的转化思想的意义和价值;培养学生观察能力和抽象概括能力【预习任务】阅读P86-88页,完成下列任务1.理解一元二次函数y=ax2+bx+c的图象与相应方程ax2+bx+c=0(a≠0)的根之间的关系.设判别式△=b2-4ac(1)当△>0时,一元二次方程有两不等实数根,写出与相应二次函数的图象间的关系(2)当△=0时,一元二次方程有两相等实数根,写出与相应二次函数的图象间的关系(3)当△<0时,一元二次方程没有实数根,写出与相应二次函数的图象间的关系2.理解函数零点概念并记忆①写出函数的零点定义;②函数的零点与相应方程的根、与相应函数的图象与x轴交点的横坐标之间有什么关系?③如果函数y=f(x)在区间[a,b]上是单调函数且图像是连续不断的,零点c (a,b),判断f(a)·f(b)的符号.3.写出零点存在定理并记忆;【自主检测】1.函数f(x)= x 2-2x -3①判断方程x 2-2x -3=0根的个数.②方程x 2-2x -3=0的根与二次函数f(x)= x 2-2x -3的零点有什么关系?③-1是方程x 2-2x -3=0的一个根,介于-2与0之间,判断f(-2)∙f(0)的符号.2.函数f(x)=lnx -2x的零点所在的大致区间是( ) A.(1,2) B.(2,3) C.(1e ,1)和(3,4) D.(e,+∞)【组内互检】1.写出函数的零点定义;2.函数的零点与相应方程的根、与相应函数的图象与x 轴交点的横坐标之间的关系。

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案新人教A版必修1

3.1.1方程的根与函数的零点(教学设计)教学目标:知识与技能:理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法:零点存在性的判定.情感、态度、价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点:零点的概念及存在性的判定.难点:零点的确定.一、复习回顾,新课导入讨论:一元二次方程ax2 bx c 0(a 0)的根与二次函数y ax2 bx c(a 0)数的图象有什么关系?先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重根和无实数根三种类型.方程x22x30与函数y 2 x2x3;方程 2x2x10与函数y 2 x2x1;方程 2x2x30与函数y 2 x2x3;交点的横坐标.二、师生互动,新课讲解:1、函数的零点对于函数y f (x),我们把使f(x) 0的实数x叫做函数y f (x)的零点(zero point ).显然,函数y f(x)的零点就是方程f(x) 0的实数根,也就是函数y f (x)的图象与x轴的交点的横坐标.一兀二次方程ax bx c0(a0)有两不同根就是相应的—次函数y 2 ax bx c 0的图象与x轴有两个不同交点,且其横坐标就是根;一兀二次方程ax bx c0(a0)有两个重根就是相应的二次函数y 2 ax bx c 0的图象与x轴一个交点,且其横坐标就是根;一兀二次方程ax bx c0(a0)无实数根就是相应的二次函数y 2 ax bx c0的图象与x轴没有交点;总之,一元二次方程ax2bx c0(a 0)的根就是相应的二次函数y 2 ax bx c 0的图象与x轴的再请同学们解方程, 并分别画出三个函数的草图.方程f(x) 0有实数根函数y f(x)的图象与x 轴有交点 函数y f(x)有零点.2、函数零点的判定:第I 组能说明他的行程中一定曾渡过河 ,而第n 组中他的行程就不一定曾渡过河。

数学:3.1.1《方程的根与函数的零点》教案(新人教A版必修1)1

数学:3.1.1《方程的根与函数的零点》教案(新人教A版必修1)1

课题:§3.1.1方程的根与函数的零点(教案)【课 型】新授课 【教学目标】(一)知识与技能:1.了解函数零点的概念,领会方程的根与函数零点之间的关系,掌握函数零点存在性判定定理。

2.培养学生自主发现、探究实践的能力。

(二)过程与方法:通过研究具体二次函数,探究函数存在零点条件和存在零点的判定方法。

从具体到一般的认知过程中培养学生自主发现、探究实践的能力,并渗透相关的数学思想。

(三)情感态度与价值观:在函数与方程的联系中体验数学转化思想的意义和价值,树立从具体到抽象、从特殊到一般的辩证唯物主义观点,并初步形成实事求是的科学态度和锲而不舍的求学精神。

鼓励学生通过观察类比提高发现、分析、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

【教学重点】体会函数的零点与方程的根之间的关系,掌握函数零点存在定理, 能结合图象求解零点问题。

【教学难点】 1、引导学生探究发现函数零点的概念及零点定理。

2、函数零点个数的确定。

【教学过程】设置情景 提出问题【动手】求解下列一元二次方程①2230x x --= ②2210x x -+= ③2230x x -+= 【动手】画出下列函数的图象,①223y x x =-- ②221y x x =-+ ③223y x x =-+【设问】1.一元二次方程20(0)ax bx c a ++=≠形式和二次函数2(0)y ax bx c a =++≠的解析式有什么关系?2.一元二次方程20(0)ax bx c a ++=≠的根和二次函数2(0)y ax bx c a =++≠的图象有什么关系?3.方程()0f x = 与函数()y f x = 之间存在哪些关系?分析问题 寻找规律【观察】1。

当①223y x x =--、②221y x x =-+、③223y x x =-+中的y 值等于零时,分别得的什么?【结论】当二次函数①223y x x =--、②221y x x =-+、③223y x x =-+中的y 等于0 时,即可得到一元二次方程①2230x x --=、②2210x x -+=、 ③2230x x -+=。

高中数学 3.1.1方程的根与函数的零点教案1 新人教A版

高中数学 3.1.1方程的根与函数的零点教案1 新人教A版

课题:§3.1.1方程的根与函数的零点教学内容分析:本节课选自高中数学人教A版必修1第三章《函数与方程》第一节《方程的根和函数的零点》。

函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。

在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。

学生在学习了基本初等函数之后,对于函数的概念已经有了更进一步的认识,并掌握了研究函数性质的一些方法,初步了解数形结合、函数与方程、化归与转化的数学思想方法。

函数作为高中的重点知识,有着广泛的应用,与其他数学有着有机联系。

本节课选取探究具体的一元二次方程的根与其对应的二次函数的图像与x轴的焦点的横坐标之间的关系作为教学的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系,充分体现了函数图像与性质的应用。

因此把握课本要从三方面入手:新旧知识的练习,学生的认知规律,数学思想方法。

学生学习情况分析学生大多来自市区,学生接触面较广,个性较活跃,故采用一些形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。

学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。

再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。

这也为我们归纳函数的零点与方程的根联系提供了知识基础。

但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A 版必修1四、教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。

用屏幕显示判断下列方程是否有实根,有几个实根?(1)2230x x --=;(2)062ln =-+x x .学生活动:回答,思考解法。

教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。

对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。

教师活动:用屏幕显示函数223y x x =--的图象。

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。

用屏幕显示表格,让学生填写2230x x --=的实数根和函数图象与x 轴的交点。

学生活动:得到方程的实数根应该是函数图象与x 轴交点的横坐标的结论。

教师活动:我们就把使方程成立的实数x 称做函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。

板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x 叫做函数y=f(x)的零点)。

教师活动:我可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答。

教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。

教师活动:这是我们本节课的第二个知识点。

板书(方程的根与函数零点的等价关系)。

教师活动:检验一下看大家是否真正理解了这种关系。

如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答。

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

“方程的根与函数的零点”【教学过程设计】 (一)设问激疑,引出新知方程解法史话:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学家阿贝尔成功地证明了五次以上一般方程没有根式解。

随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法. 【设计意图:了解数学史,激发学生学习兴趣。

】 问题1 求下列方程的根.(1)023=+x ; (2)0652=+-x x ; (3)062ln =-+x x .问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标。

方 程 0322=--x x 0122=+-x x 0322=+-x x函 数 322--=x x y 122+-=x x y 322+-=x x y函 数 图 象 (简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与x 轴交点的横坐标。

问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x轴交点的关系,上述结论是否仍然成立?)0(02>=++a c bx ax方 程 的 根函数的图象(简图)图象与x 轴 的交点0>∆0=∆0<∆【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

§4.1.1方程的根与函数的零点教学目标: (一)知识与技能:1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系.2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法:自主发现、探求理论,领会函数的零点与方程的根之间的联系. (三)情感、态度、价值观:在函数与方程的联系中体验数学转化思想的意义和价值. 教学重难点:重点:领会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探求发现函数零点的存在性. 教学过程设计(一)回顾旧知,发现成绩 成绩1 求以下方程的根.(1)023=+x ;(2)0652=+-x x ;成绩2观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数成绩3 若将上面特殊的一元二次方程推行到普通的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x 轴交点的关系,上述结论能否仍然成立?0>∆0=∆0<∆(二)总结归纳,构成概念 1、函数的零点:辨析练习:函数223y x x =--的零点是:( )A .(-1,0),(3,0);B .x =-1;C .x =3;D .-1和3. 2、等价关系:变式练习: 求以下函数的零点(1)65)(2+-=x x x f ; (2)12)(-=x x f (3):xy 1=; (四)分组讨论,探求结论(零点存在性)成绩4:函数y =f(x)在某个区间上能否必然有零点?怎样的条件下,函数y =f(x)必然有零点? (1)观察二次函数32)(2--=x x x f 的图象:○1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>). ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察上面函数)(x f y =的图象○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).(3)观察屏幕上的函数图象:若函数在某区间内存在零点,则函数在该区间上的图象是 (间断/连续);含零点的某一较小区间中以零点摆布两边的实数为自变量,它们各自所对应的函数值的符号是 (相反/互异)由以上探求,你可以得出甚么样的结论?讨论:(1)从这一结论中可看出,函数具备了哪些条件,就可断言它有零点存在呢? (2)如果函数具备上述两个条件时,函数有多少零点呢?(3)如果把结论中的条件“图象连续不断”除去不要,又会怎样呢? (4)如果把结论中的条件“f(a)f(b)<0’’去掉呢?(5)若函数y =f (x ) 在区间(a , b )内有零点,必然能得出f (a )·f (b )<0的结论吗? (6)在甚么样的条件下,就可确定零点的个数是唯一的呢? 变式训练1.若函数()y f x =在区间[],a b 上的影象为连续不断的一条曲线,则以下说法正确的是 ( )A .若()()0f a f b >,则不存在实数(),c a b ∈,使得()0f c =B .若()()0f a f b <,则存在且只存在实数(),c a b ∈,使得()0f c =C .若()()0f a f b >,则有可能不存在实数(),c a b ∈,使得()0f c =D .若()()0f a f b <,则有可能不存在实数(),c a b ∈,使得()0f c = 2. 已知定义在R 上的函数()f x 的图象是连续不断的,且有如下对应值表:那么函数()f x 必然存在零点的区间是 ( ) A .(),1-∞ B .()1,2 C .()2,3 D .()3,+∞ 3. 若函数2()f x x ax b =++的零点是2和-4,则a=,b=.(五)观察感知,例题学习试一试:你能判断出方程 3ln +-=x x 实数根的个数吗? 六)反思小结,提升能力 1.函数零点的定义2.等价关系 函数Y=f(x)函数Y=f(x)的图象与X 轴交点的横坐标方程f(x)=0实数根3.函数的零点或相应方程的根的存在性和个数的判断课后考虑.求函数22)(x x f x -=的零点个数。

高中数学人教A版必修1第三章3.1.1 方程的根与函数的零点教案

高中数学人教A版必修1第三章3.1.1 方程的根与函数的零点教案

3.1.1 方程的根与函数的零点教学目标一、知识与技能1、通过学生探索方程的根与函数图象之间的关系的过程,让学生理解方程的根与函数零点之间的联系,了解零点的概念,提升学生的数学抽象与数学建模素养.2、通过学生探索函数零点存在的判定及应用的过程,理解并掌握函数零点存在的判定方法提升学生的直观想象与数学抽象的素养。

.二、过程与方法1、采用“设问——探索——归纳——结论”递进的方式来突破本课的重难点。

由二次函数的图象和对应的一元二次方程为突破口,探究方程的根与函数的零点的关系,探究具体函数发现函数零点存在的条件。

2、在课堂探究中渗透由特殊到一般的认识规律,渗透数形结合思想及转化化归思想以及函数与方程的思想,培养学生观察、分析、归纳、抽象和概括能力.三、情感、态度、价值观1.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;2.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点重点:1、理解函数的零点与方程根之间的联系。

2、掌握函数零点存在的判定方法.难点:发现与理解方程的根与函数零点的关系;发现函数存在零点的判定方法及应用。

教学过程我们已经认识了一些函数的图像和性质,这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题.而函数往往与方程有联系,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”.教师活动:板书标题(方程的根与函数的零点).【一】创设情境,引出课题问题1:下列方程是否有实根,有几个实根?(多媒体展示)(1) ln x+2x-6=0.活动1:方程解法史话:(多媒体展示)要用函数思想来解决以上问题我们先来探究以下问题。

设计意图:学生利用以前的知识经验无法解决方程( 2 )是否有解时,会因好奇心存在产生强烈的探究欲望,以此激发学生学习兴趣。

【二】启发引导,形成概念探究一:方程的根与对应函数图像与x轴交点之间的关系问题1:方程x2-2x-3=0,方程x2-2x+1=0,方程x2-2x+3=0的根是什么?问题2:函数y=x2-2x-3, y=x2-2x+1,y=x2-2x+3的图像与x轴交点是什么?问题3:方程ax2+bx+c=0的根与函数y=ax2+bx+c(a≠0)的图像与x轴交点之间的关系是什么?(多媒体展示)其他函数呢?设计意图:三个问题由特殊一元二次方程和对应函数的探究,及动图观察,引导学生动手运算,思考,观察归纳两者关系,提升学生的直观想像和数学抽象素养零点概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)的零点.(多媒体展示)讨论4:零点是点吗?所有函数都有零点吗?方程,对应函数,函数图像之间有什么关系?板书等价关系,(多媒体展示)例1:求下列函数的零点.(多媒体展示)y =练习(1)y =3x ;(2)y =log 2x ;问题5:你是如何求函数零点的?问题6;求ln x +2x -6=0的根可转化成什么问题?设计意图:在学生思考问题4基础上,引导学生按特殊与一般的思想归纳得到方程的根与函数的零点关系。

高中-数学-人教A版-数学必修一3.1.1 方程的根与函数的零点 教案

高中-数学-人教A版-数学必修一3.1.1 方程的根与函数的零点 教案

§3.1.1方程的根与函数的零点教案一.教材分析:函数的应用是学习函数的一个重要方面,与其他数学知识有着广泛的联系。

学生学习函数的应用,目的是利用已有的知识分析问题和解决问题。

本节内容是函数应用的第一节课。

课本选取探究具体的一元二次方程的根与其对应的二次函数的图像与x轴的交点的横坐标之间的关系作为本节的入口,其目的是让学生从熟悉的知识发现新知识,使新知识与原有知识形成联系。

教材内容由易到难,循序渐进,符合学生的认知心理和认知规律。

二.学情分析:在初中学生已经学习了二次方程和二次函数的有关内容,已经具备了判断根的个数以及求根的知识能力,本节课从学生熟悉的知识入手,符合学生的认知规律。

但在学习中学生较多对知识的理解不够深刻,而且缺乏对探究问题的描述以及对知识的总结能力。

三 .教学目标:1.知识与技能(1)结合二次函数图像,使学生准确判断出一元二次方程根的存在性及个数;(2)通过探究让学生准确说出函数的零点与方程根的联系;(3)通过实例探究使学生能够完整说出零点存在性定理。

2.过程与方法通过观察二次函数图像,并由函数在区间端点上的函数值之积的特点,让学生能够找到连续函数在某个区间上存在零点的判断方法,进一步体会数形结合思想的应用。

3.情感、态度与价值观通过本节课的学习,使学生体会数形结合的数学思想,从一般到特殊的思想,化归与转化的思想。

从直观感受、师生合作交流、自主探索使学生体会到学会数学所带来的成功的喜悦。

四 .教学重点.难点:重点:函数的零点与方程根之间的关系,连续函数零点的存在性定理。

难点:零点存在性的判定及数形结合的思想﹑转化思想在数学中的应用。

五、教学方法主要采用引导探究的教学方式,运用观察、引导、多媒体辅助教学等形式展开教学,让学生在“探究问题——尝试练习——探索研究——总结归纳”的过程中,体会数学基本思想的应用,从探究的过程中获取知识。

六、教具准备:三角板多媒体七、教学过程即:方程0)(=x f 有实数根⇔函数)(x f y =的图像与x 轴有交点⇔函数)(x f y =有零点.尝 试 练 习 (1)试试: (1)函数y =x+1的零点是 ( ) A(-1,0) B .(0,-1) C .0 D .-1 (2)函数243y x x =-+的零点为 .师:给出问题,提示学生用代数法来解决问题。

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
本节课为用二分法求方程的近似解打下了基础,函数的零点概念与函数的零点存在性定理的是二分法的必备知识。而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这类联系正是“函数与方程思想”的理论基础。用函数的观点研讨方程,本质上就是将局部的成绩放在全体中研讨,将静态的结果放在动态的过程中研讨,这为今后进一步学习函数与不等式,导数等其它知识奠定了坚实的基础。本节课也是转化思想,数形结合思想的一个载体。
二、方程的根与函数的零点的关系 四、播种小结
十、帮助与总结
本节课探求式的教学和图形计算器的运用是本节课的最大特点,先生经过对于图形计算器软件的运用,获得更多的信息,进行分析,总结归纳相关定义,并经过运用图形计算器软件提取出数学学习的相应方法,进而解决今后的成绩。本节整合课提供了一个数学图形世界,培养了先生观察归纳能力,先生的自在发挥空间大,便于师生的交流,信息技术比较巧妙的融进了课堂,帮助先生解决了感性认知,使感性上升到理性变得更加容易。
PPT展现
板书
(七)作业
1.
2.
3.
4.
各有几个零点?并指出零点的大致区间。
1、2、3全班作业
4作为能力提升作业
分层作业使不同先生获得不同播种
巩固本节课程所学内容
PPT展现
八、教学评价设计
课下完成评价量表
评价
项目
评价标准
等级(分)
自我评价
小组评价
教师评价
优秀
良好
普通

知识与技能
理解函数零点的意义,了解方程的根与函数的零点的关系
成绩设置:系数选择,相应解析式,函数的大致图象,函数的零点的个数。
师:提出探求,请一个小组到大屏前进行探求过程,巡查各小组完成情况,帮助先生解决相应成绩,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展现后教师对每个小组的成果进行点评总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“方程的根与函数的零点”【教学目标】一、知识与技能1、通过探索一元二次方程的实根与二次函数图象之间的关系,让学生领会方程的根与函数零点之间的联系,了解零点的概念.2、以具体函数在某区间上存在零点的特点,探索在某区间上图象连续的函数存在零点条件以及个数,理解并掌握在某个区间上图象连续的函数零点存在的判定方法.二、过程与方法1、采用“设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。

由二次函数的图象与x轴的交点的横坐标和对应的一元二次方程为突破口,探究方程的根与函数的零点的关系,以探究的方法发现函数零点存在的条件。

2、在课堂探究中渗透由特殊到一般的认识规律,渗透数形结合思想及转化思想以及函数与方程的思想,培养学生观察、分析、归纳、抽象和概括能力.三、情感、态度、价值观努力营造平等、民主的课堂气氛,以学生为主体,营造学习氛围,使学生产生热爱学习数学的积极心理,引导学生进行积极主动的学习,培养良好的数学学习情感. 在函数与方程的联系中体验数形结合思想,培养学生的辨证思维能力,以及分析问题解决问题的能力.从易到难,使学生体会到学习数学的成功感,体验规律发现的快乐.【教学重点】1、体会函数的零点与方程根之间的联系;2、掌握函数零点存在的判定方法.【教学难点】函数零点存在的判定方法及其运用.【教学方式与手段】电脑,多媒体,黑板.【教学过程设计】(一)设问激疑,引出新知方程解法史话:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学家阿贝尔成功地证明了五次以上一般方程没有根式解。

随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法. 【设计意图:了解数学史,激发学生学习兴趣。

】 问题1 求下列方程的根.(1)023=+x ; (2)0652=+-x x ; (3)062ln =-+x x .问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标。

方 程 0322=--x x 0122=+-x x 0322=+-x x函 数 322--=x x y 122+-=x x y 322+-=x x y函 数 图 象 (简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系? 结论:方程的根就是函数图象与x 轴交点的横坐标。

问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x轴交点的关系,上述结论是否仍然成立?)0(02>=++a c bx ax方 程 的 根函数的图象(简图)图象与x 轴 的交点0>∆0=∆0<∆【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。

】 (二)总结归纳,形成概念1、函数的零点:对于函数y=f (x ),我们把使方程f (x )=0的实数x 叫做函数y=f (x )的零点。

辨析练习:函数223y x x =--的零点是:( )A .(-1,0),(3,0);B .x=-1;C .x=3;D .-1和3. 问:零点是一个点吗?说明:①函数零点不是一个点,而是具体的自变量的取值. ②求函数零点就是求方程f(x)=0的根.【设计意图:及时矫正“零点是交点”这一误解.】2、你能说说方程的根、函数图象与x 轴的交点、函数的零点三者之间的关系吗? 等价关系:方程f (x )=0有实数根函数y=f (x )的图象与x 轴有交点 函数y=f (x )有零点【设计意图:引导学生给出函数零点的定义,并引导学生仔细体会这段文字,感悟其中的思想方法;通过引导,学生自己归纳出三者之间的关系,并且明确提出转化思想。

】 3、归纳函数的零点与方程根的关系函数的零点与方程的根有什么联系和区别?联系:(1)数值上相等:求函数零点就是求方程的根. (2)存在性相同:函数y=f(x)有零点 方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点区别:零点对于函数而言,根对于方程而言.【设计意图:进一步理解零点的概念,灵活运用三者之间的关系。

以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础.】 (三)初步运用,示例练习例1:求函数)1lg()(-=x x f 的零点。

求函数零点的步骤: (1)令f(x)=0; (2)解方程f(x)=0; (3)写出零点变式练习:求下列函数的零点。

(1)65)(2+-=x x x f ; (2)12)(-=xx f【设计意图:让学生再次认识零点的概念,熟悉零点的求法(即求相应方程的实数根).】 (四)实例探究,发现定理 重温《小马过河的故事》问题4:观察下列三组画面,请你推断哪组画面一定能说明小马已经成功过河?①②③【设计意图:通过形象的生活问题,为引出函数零点存在性定理做准备.】问题5:函数y =f(x)在某个区间上是否一定有零点?怎样的条件下,函数y =f(x)一定有零点? 观察下面函数)(x f y =的图象1、在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>).2、在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>).3、在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>). 函数零点存在性定理:如果函数)(x f y =在区间[b a ,]上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间(b a ,)内有零点,即存在),(b a c ∈,使得0)(=c f .这个c 也就是方程0)(=x f 的根。

【设计意图:先从一个已研究过的、简单的函数入手,引导学生结合函数图象,通过计算、观察、比较得出函数在区间端点处函数值乘积的情况与函数在该区间内是否存在零点之间有什么关系。

总结归纳得出函数零点存在的条件,并进行交流、评析。

】 定理辨析与灵活运用:练习:判断正误,若不正确,请使用函数图象举出反例。

(1)已知函数)(x f y =在区间[b a ,]上连续,且0)()(<⋅b f a f ,则f(x)在区间(b a ,)内有且仅有一个零点.( )(2)已知函数)(x f y =在区间[b a ,]上连续,且0)()(>⋅b f a f ,则f(x)在区间(b a ,)内没有零点.( )(3)已知函数)(x f y =在区间[b a ,]上连续,且在区间(b a ,)内存在零点,则有0)()(<⋅b f a f 。

( )a bcxyO d(4)已知函数)(x f y =在区间[b a ,] 满足0)()(<⋅b f a f ,则f(x)在区间(b a ,)内存在零点.( )函数零点存在定理的四个注意点: (1)函数是连续的。

(2)定理不可逆。

(3)至少存在一个零点,不排除更多。

(4)在零点存在性定理的条件下,如果函数具有单调性,函数y=f(x)在区间(a,b) 上存在唯一零点。

【设计意图:通过对定理中条件的改变,将几种容易产生的误解正面给出,在第一时间加以纠正,从而促进对定理本身的准确理解。

】 (五)观察感知,例题学习例2(教材第88页)求函数62ln )(-+=x x x f 的零点个数。

(1)你可以想到什么方法来判断函数零点个数?(2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性? 解法1(借助计算工具):用计算器或计算机作出x 、f (x )的对应值表和图象.由表或图象可知,f (2)<0,f (3)>0,则f (2) f (3)<0,这说明函数f (x )在区间(2,3)内有零点.又由于函数f (x )在(0,+∞)内单调递增,所以它仅有一个零点.x 1 2 3 4 5 6 7 8 9 f (x ) -4.-1.31.13.45.67.89.912.114.2解法2(估算):估计f (x )在各整数处的函数值的正负,可得如下表格:f (x ) - - + +x1 2 3 4结合函数的单调性,f (x )在区间(2,3)内有唯一的零点.解法3(函数交点法):将方程ln x +2x -6=0化为ln x =6-2x ,分别画出g(x )=ln x 与h(x )=6-2x 的草图,从而确定零点个数为1.继而比较g(2)、h(2)、g(3)、h(3)等的大小,确定交点所在的区间,即零点的区间.由图可知f (x )在区间(2,3)内有唯一的零点.【设计意图:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.通过例题分析,能根据零点存在性定理,使用多种方法确定零点所在的区间,并且结合函数性质,判断零点个数.解法3作为选讲内容,视学生基础而定。

】试一试:你能判断出方程 3ln 2+-=x x 实数根的个数吗? 【设计意图:学以致用,练习强化学生的解题能力。

】 小结:函数零点的求法.① 代数法:求方程()0f x =的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数()y f x =的图象联系起来,并利用函数的性质找出零点.口诀:函数零点方程根,形数本是同根生。

是否存在端点判,函数连续要记清。

【设计意图:归纳总结函数零点的求法,通过口诀加深对本节内容的理解记忆。

】 基础检测1. 函数22()(2)(32)f x x x x =--+的零点个数为( ).6O xy 2 1 3 4g (x )h (x )A. 1B. 2C. 3D. 42.若函数()f x 在[],a b 上连续,且有()()0f a f b > .则函数()f x 在[],a b 上( ). A. 一定没有零点 B. 至少有一个零点 C. 只有一个零点 D. 零点情况不确定 3、方程10x x-=的一个实数解的存在区间为( ) A.(0,1) B.(0,2) C.(-1,1) D.(1,2) 4. 函数220y x x =-++的零点为 .5. 若函数()f x 为定义域是R 的奇函数,且()f x 在(0,)+∞上有一个零点.则()f x 的零点个数为 .能力提升(可供学生课外做作业)6. 已知函数2()2(1)421f x m x mx m =+++-. (1)m 为何值时,函数的图象与x 轴有两个零点; (2)若函数至少有一个零点在原点右侧,求m 值. 思考题:方程x x=-2在区间______内有解,如何求出这个解的近似值?请预习下一节.【设计意图:练习强化学生解题能力,并利用拓展延伸对于零点存在取件进一步精确化,为下一节“用二分法求方程的近似解”的学习做准备.】 (六)反思小结,提升能力学完本节课,你在知识、方法等方面有什么收获与感受?请写下来! 1.函数零点的定义2.等价关系 函数Y=f(x)的零点 函数Y=f(x)的图象与X 轴交点的横坐标方程f(x)=0实数根3.函数的零点或相应方程的根的存在性以及个数的判断【设计意图:引导学生从知识和数学思想上去归纳总结.让学生对本节课有个完整的,系统的认识.培养他们的概括能力,同时也对本节课起到反馈的作用.及时评价与反馈,注重个体差异性.】 (七)板书设计方程的根与函数的零点函数的零点:等价关系:自由书写区域零点存在定理:。

相关文档
最新文档