合情推理课时跟踪训练22

合集下载

合情推理演绎推理(带答案)

合情推理演绎推理(带答案)

合情推理1:和代数式有关的推理问题例1、观察()()()()()()223322443223,a b a b a b a b a b a ab b a b a b aa b ab b -=-+-=-++-=-+++进而猜想n n a b -= 练习:观察下列等式:332123+=,33321236++=,33332123410+++=,…,根据上述规律,第五个...等式..为 。

解析:第i 个等式左边为1到i+1的立方和,右边为1+2+...+(i+1)的平方所以第五个...等.式.为333333212345621+++++=。

2:和三角函数有关的推理问题例1、观察下列等式,猜想一个一般性的结论。

2020202020202020202020203sin 30sin 90sin 150,23sin 60sin 120sin 18023sin 45sin 105sin 165,23sin 15sin 75sin 1352++=++=++=++= 练习:观察下列等式:① cos2α=2 cos 2α-1;② cos 4α=8 cos 4 α-8 cos 2 α+1;③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2 α-1;④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2 α+1;⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2 α-1;可以推测,m -n+p= .答案:962 3:和不等式有关的推理例1、观察下列式子:, 由上可得出一般的结论为: 。

答案:222111211......,23(1)1n n n ++++<++练习、由331441551,,221331441+++>>>+++。

可猜想到一个一般性的结论是: 。

课时跟踪检测(三十八) 合情推理与演绎推理 (4)

课时跟踪检测(三十八) 合情推理与演绎推理 (4)

课时跟踪检测(三十八)合情推理与演绎推理第Ⅰ组:全员必做题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A.①B.②C.③D.①和②2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c=ab”.以上的式子中,类比得到的结论正确的个数是( )A.1 B.2C.3 D.43.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则S1S2=14,推广到空间可以得到类似结论;已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则V1V2=( )A.18B.19C.164D.1274.下列推理中属于归纳推理且结论正确的是( )A.设数列{a n}的前n项和为S n.由a n=2n-1,求出S1=12,S2=22,S3=32,…,推断:S n=n2B.由f(x)=x cos x满足f(-x)=-f(x)对∀x∈R都成立,推断:f(x)=x cos x为奇函数C.由圆x2+y2=r2的面积S=πr2,推断:椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n +1)2>2n5.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31………A.809 B.852C.786 D.8936.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是________.7.若{a n}是等差数列,m,n,p是互不相等的正整数,则有:(m-n)a p+(n -p)a m+(p-m)a n=0,类比上述性质,相应地,对等比数列{b n},有__________________.8.(2013·湖北高考)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=________(用数值作答).9.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S=12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论.10.(2012·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin213°+cos217°-sin 13°cos 17°;(2)sin215°+cos215°-sin 15°cos 15°;(3)sin218°+cos212°-sin 18°cos 12°;(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.第Ⅱ组:重点选做题1.观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,……若某数m3按上述规律展开后,发现等式右边含有“2 013”这个数,则m=________.2.(2014·东北三校联考)在数列{a n}中,a1=1,a2=2,a n=(-1)n·2a n-(n≥3,n∈N*),其前n项和为S n.2(1)a2n+1关于n的表达式为________;(2)观察S1,S2,S3,S4,…S n,在数列{S n}的前100项中相等的项有________对.答案第Ⅰ组:全员必做题1.选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.选B ①②正确,③④⑤⑥错误.3.选D 正四面体的内切球与外接球的半径之比为1∶3,故V1V2=127.4.选A 选项A由一些特殊事例得出一般性结论,且注意到数列{a n}是等差数列,其前n项和等于S n=n1+2n-12=n2,选项D中的推理属于归纳推理,但结论不正确.5.选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.6.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S21+S22+S23=S24.答案:S21+S22+S23=S247.解析:设{b n}的首项为b1,公比为q,则b m-n p·b n-p m·b p-m n=(b1q p-1)m-n·(b1q m-1)n-p·(b1q n-1)p-m=b01·q0=1.答案:b m-n p·b n-p m·b p-m n=18.解析:(1)由定义知,四边形DEFG由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,S四边形DEFG=3.(2)由待定系数法可得,⎩⎪⎨⎪⎧ 12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c ,⇒⎩⎪⎨⎪⎧a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79.答案:(1)3,1,6 (2)799.解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.10.解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin2α+3cos2α+3sin αcos α+1sin2α-3sin αcos α-1sin2α=34sin2α+34cos2α=34.法二:sin2α+cos2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos60°-2α2-sin α·(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcosα-12sin2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.第Ⅱ组:重点选做题1.解析:某数m3按上述规律展开后,等式右边为m个连续奇数的和,观察可知每行的最后一个数为1=12+0,5=22+1,11=32+2,19=42+3,…,所以第m行的最后一个数为m2+(m-1).因为当m=44时,m2+(m-1)=1 979,当m =45时,m2+(m-1)=2 069,所以要使等式右边含有“2 013”这个数,则m=45.答案:452.解析:(1)a3a1=a5a3=…=a2n+1a2n-1=-2,又a1=1,从而a2n+1=(-2)n.(2)由(1)及条件知,数列{a n}为1,2,-2,22,(-2)2,23,(-2)3,24,…,从而可知S1=S3,S5=S7,S9=S11,…,故在{S n}的前100项中相等的项有25对.答案:(1)a2n+1=(-2)n(2)25。

2022届高三数学(文)高考总复习课时跟踪检测 (三十六) 合情推理与演绎推理 Word版含解析

2022届高三数学(文)高考总复习课时跟踪检测 (三十六) 合情推理与演绎推理 Word版含解析

课时跟踪检测 (三十六) 合情推理与演绎推理一抓基础,多练小题做到眼疾手快1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确D .全不正确解析:选C 由于f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.2.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2D .a n =3n -1解析:选C a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”; ⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B ①②正确,③④⑤⑥错误.4.(2021·云南名校联考)观看下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,依据上述规律,第n 个等式为______________________.解析:由第一个等式13=12,得13=(1+0)2;其次个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22.答案:13+23+33+43+…+n 3=⎣⎡⎦⎤n (n +1)225.(2021·黑龙江哈三中检测)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则____________________成等比数列.解析:利用类比推理把等差数列中的差换成商即可. 答案:T 4,T 8T 4,T 12T 8,T 16T 12二保高考,全练题型做到高考达标1.(2021·洛阳统考)下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B A 项中小前提不正确,选项C 、D 都不是由一般性结论到特殊性结论的推理,所以选项A 、C 、D 都不正确,只有B 项的推导过程符合演绎推理三段论形式且推理正确.2.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b 2=1(a >b >0)的面积S =πab D .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n解析:选A 选项A 由一些特殊事例得出一般性结论,且留意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确. 3.(2021·济宁模拟)对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 016次操作后得到的数是( )A .25B .250C .55D .133解析:选B 由题意知,第3次操作为53+53=250,第4次操作为23+53+03=133,第5次操作为13+33+33=55,….因此每次操作后的得数呈周期排列,且周期为3,又2 016=672×3,故第2 016次操作后得到的数是250.4.给出以下数对序列: (1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1)……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm =( ) A .(m ,n -m +1) B .(m -1,n -m ) C .(m -1,n -m +1)D .(m ,n -m )解析:选A 由前4行的特点,归纳可得:若a n m =(a ,b ),则a =m ,b =n -m +1,∴a n m =(m ,n -m +1).5.古希腊人常用小石子在沙滩上摆成各种外形来争辩数.比如:他们争辩过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378解析:选C 观看三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…,a n=a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n ),∴a n =1+2+3+…+n =n (n +1)2,观看正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有 1 225.6.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观看上述结果,可推想一般的结论为____________________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22.答案:f (2n )≥n +227.用火柴棒摆“金鱼”,如图所示,依据图中的规律,第n 个“金鱼”需要火柴棒的根数为________.解析:由题意知,第1个图中有8根火柴棒,第2个图中有8+6根火柴棒,第3个图中有8+2×6根火柴棒,……,依此类推,第n 个“金鱼”需要火柴棒的根数为8+6(n -1)=6n +2.答案:6n +28.假如函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.答案:3329.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .10.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常接受“面积法”:OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想,对于空间中的四周体A BCD ,存在什么类似的结论,并用“体积法”证明. 解:在四周体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OHCH =1.证明:在四周体O BCD 与A BCD 中, OE AE =h 1h =13S △BCD ·h113S △BCD ·h =V OBCD V ABCD.同理有OF DF =V OABCV DABC;OG BG =V OACDV B ACD;OH CH =V OABD V C ABD.∴OE AE +OF DF +OG BG +OHCH =V OBCD +V OABC +V OACD +V OABDV ABCD=V A BCD V ABCD=1.三上台阶,自主选做志在冲刺名校1.(2021·河北“五校联盟”质检)古希腊的数学家争辩过各种多边形数.记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n四边形数 N (n,4)=n 2 五边形数 N (n,5)=32n 2-12n六边形数 N (n,6)=2n 2-n ……可以推想N (n ,k )的表达式,由此计算N (20,15)的值为________. 解析:原已知式子可化为N (n,3)=12n 2+12n =3-22n 2+4-32n ;N (n,4)=n 2=4-22n 2+4-42n ;N (n,5)=32n 2-12n =5-22n 2+4-52n ;N (n,6)=2n 2-n =6-22n 2+4-62n .故N (n ,k )=k -22n 2+4-k 2n ,N (20,15)=15-22×202+4-152×20=2 490.答案:2 4902.某同学在一次争辩性学习中发觉,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)依据(1)的计算结果,将该同学的发觉推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α·(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.。

课时跟踪检测(三十四) 合情推理与演绎推理

课时跟踪检测(三十四)  合情推理与演绎推理

课时跟踪检测(三十四) 合情推理与演绎推理一抓基础,多练小题做到眼疾手快1.推理:“①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形”中的小前提是________(填序号).解析:由三段论的形式,可知小前提是三角形不是平行四边形.故填②. 答案:②2.已知数列12,1,32,2,52,3,…,则猜想该数列的第11项为________.解析:将数列的各项均写成分数的形式为12,22,32,42,52,62,…,所以猜想该数列的第11项为112.答案:1123.(2016·重庆一诊)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.解析:因为2=1+1,3=2+1,5=3+2, 即从第三项起每一项都等于前两项的和, 所以第10年树的分枝数为21+34=55. 答案:55 4.观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.解析:观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)25.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则________成等比数列.解析:利用类比推理把等差数列中的差换成商即可. 答案:T 4,T 8T 4,T 12T 8,T 16T 12二保高考,全练题型做到高考达标1.(2016·无锡一中检测)“因为四边形ABCD 是菱形,所以四边形ABCD 的对角线互相垂直”,以上推理的大前提是________________________.解析:大前提应是菱形对角线所具备的性质:菱形的对角线互相垂直. 答案:菱形的对角线互相垂直2.用灰、白两种颜色的正六边形瓷砖,按如图所示的规律拼成若干个图案,则第5个图案中正六边形瓷砖的个数是________.解析:设第n 个图案有a n 个正六边形瓷砖,则a 1=6×1+1,a 2=6×2+1,a 3=6×3+1,故猜想a 5=6×5+1=31.答案:313.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.解析:正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.答案:1274.给出以下数对序列: (1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1) ……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a n m =________.解析:由前4行的特点,归纳可得:若a n m =(a ,b ),则a =m ,b =n -m +1,∴a n m =(m ,n -m +1).答案:(m ,n -m +1)5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是________(填序号).①289;②1 024;③1 225;④1 378.解析:观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1, a 2=a 1+2, a 3=a 2+3, …a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n ),∴a n =1+2+3+…+n =n (n +1)2, 观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个序号的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有 1 225,故填③.答案:③6.(2016·南京学情调研)设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n)≥n +22(n ∈N *).答案:f (2n )≥n +22(n ∈N *)7.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10……根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.解析:前n -1行共有正整数1+2+…+(n -1)=n (n -1)2个,即n 2-n2个,因此第n 行从左至右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.答案:n 2-n +628.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332. 答案:3329.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .10.已知O 是△ABC 内任意一点,连结AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想,对于空间中的四面体V BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体V BCD 中,任取一点O ,连结VO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE VE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与V BCD 中, OE VE =h 1h =13S △BCD ·h113S △BCD ·h =V OBCD V VBCD.同理有OF DF =V OVBCV DVBC ;OG BG =V O VCDV B VCD;OH CH =V OVBD V C VBD,∴OE VE +OF DF +OG BG +OHCH =V OBCD +V OVBC +V OVCD +V OVBDV VBCD=V VBCD V VBCD=1.三上台阶,自主选做志在冲刺名校 1.已知cos π3=12,cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, ……(1)根据以上等式,可猜想出的一般结论是________; (2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7cos 2π7cos 3π7,…,前n 项和S n =1 0231 024,则n =________. 解析:(1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n +1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n =2n -12n =1 0231 024,解得n =10.答案:(1)cos π2n +1cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *) (2)102.(2016·盐城中学检测)给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7,…”得到结论:任何一个不小于6的偶数都等于两个奇质数之和;②由“三角形内角和为180°”得到结论:等腰三角形内角和为180°; ③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方; ④由“a 2+b 2≥2ab (a ,b ∈R)”推得:sin 2x ≤1. 其中是演绎推理的序号是________.解析:演绎推理的模式是三段论模式,包括大前提、小前提和结论,演绎推理是从一般到特殊的推理,根据以上特点,可以判断②④是演绎推理.易得①是归纳推理,③是类比推理.故答案为②④.答案:②④3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α·(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.。

高中数学2.1.1合情推理课时作业(含解析)新人教A版选修22

高中数学2.1.1合情推理课时作业(含解析)新人教A版选修22

高中数学2.1.1合情推理课时作业(含解析)新人教A版选修22知识点一归纳推理1.观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,……照此规律,第五个不等式为( )A.1+122+132+142+152<95B.1+122+132+142+152<116C.1+122+132+142+152+162<95D.1+122+132+142+152+162<116答案 D解析观察每行不等式的特点,知第五个不等式为1+122+132+142+152+162<116.2.如图所示,图1是棱长为1的小正方体,图2、图3是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,……,第n层,第n层的小正方体的个数记为S n.解答下列问题:(1)按照要求填表:n 1234…S n136…(2)S10=________答案(1)10 (2)55解析 S 1=1,S 2=3=1+2,S 3=6=1+2+3, 推测S 4=1+2+3+4=10,S 10=1+2+3+…+10=55.知识点二 类比推理3.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地,在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.可类比得到的结论是______________________.答案 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300 解析 因为等差数列{a n }的公差d =3, 所以(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)=100d =300,同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. 即结论为:数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300. 4.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD2=1AB2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.解 如图①所示,由射影定理得AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC ,所以1AD2=1BD ·DC=BC 2BC ·BC ·BD ·DC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2, 所以1AD2=1AB2+1AC 2.类比猜想:四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.如图②,连接BE 交CD 于F ,连接AF ,因为AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD ,而AF ⊂平面ACD ,所以AB ⊥AF , 在Rt △ABF 中,AE ⊥BF , 所以1AE2=1AB2+1AF 2,易知在Rt △ACD 中,AF ⊥CD , 所以1AF 2=1AC2+1AD 2, 所以1AE2=1AB2+1AC2+1AD 2,猜想正确.知识点三 归纳和类比推理的应用5.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )A .归纳推理B .类比推理C .胡乱推理D .没有推理 答案 B解析 推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理.6.若数列{a n }(n ∈N *)是等差数列,则有数列b n =a 1+a 2+a 3+…+a n n(n ∈N *)也是等差数列.类比上述性质,相应地:若数列{c n }(n ∈N *)是等比数列,且c n >0,则数列d n =________(n ∈N *)也是等比数列. 答案nc 1·c 2·c 3·…·c n解析 由等差、等比数列之间运算的相似特征知, “和――→类比积,商――→类比开方”.容易得出d n =nc 1·c 2·c 3·…·c n 也是等比数列.一、选择题1.归纳推理和类比推理的相似之处为( ) A .都是从一般到一般 B .都是从一般到特殊 C .都是从特殊到特殊 D .所得结论都不一定正确 答案 D解析 归纳推理是由特殊到一般的推理,其结论不一定正确.类比推理是从特殊到特殊的推理,结论具有推测性,不一定可靠,故选D.2.下列平面图形与空间的平行六面体作为类比对象比较合适的是( ) A .三角形 B .梯形C .平行四边形D .矩形答案 C解析 由类比推理的定义和特点判断,易知选C.3.观察下列事实|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为 ( )A .76B .80C .86D .92 答案 B解析 由已知条件得,|x |+|y |=n (n ∈N *)的整数解(x ,y )个数为4n ,故|x |+|y |=20的整数解(x ,y )的个数为80.4.如图,在所给的四个选项中,最适合填入问号处,使之呈现一定的规律性的为( )答案 A解析 观察第一组中的三个图,可知每一个黑色方块都从右向左循环移动,每次移动一格,由第二组图的前两个图,可知选A.5.把下列在平面内成立的结论类比到空间,结论不成立的是( ) A .如果一条直线与两条平行线中的一条相交,则必与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则必与另一条垂直 C .如果两条直线与第三条直线都不相交,则这两条直线不相交 D .如果两条直线同时与第三条直线垂直,则这两条直线平行 答案 D解析 类比A 的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交.成立.类比B 的结论为:如果一个平面与两个平行平面中的一个垂直,则必与另一个垂直.成立.类比C 的结论为:如果两个平面与第三个平面都不相交,则这两个平面不相交.成立.类比D 的结论为:如果两个平面同时与第三个平面垂直,则这两个平面平行.不成立.二、填空题 6.已知 2+23=223, 3+38=338, 4+415=4415,…,若 6+a b=6ab(a ,b ∈R ),则a +b =________. 答案 41解析 根据题意,由于2+23=223, 3+38=338, 4+415=4415,…那么可知 6+a b =6ab,a =6,b =6×6-1=35,所以a +b =41. 7.如图,直角坐标系中每个单元格的边长为1,由下往上的6个点1,2,3,4,5,6的横纵坐标(x i ,y i )(i =1,2,3,4,5,6)分别对应数列{a n }(n ∈N *)的前12项,如下表所示:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 x 1y 1x 2y 2x 3y 3x 4y 4x 5y 5x 6y 6按如此规律下去,则a 2013+a 2014+a 2015的值为______. 答案 1007解析 由题图知a 1=x 1=1,a 3=x 2=-1,a 5=x 3=2,a 7=x 4=-2,…,则a 1+a 3=a 5+a 7=…=a 2013+a 2015=0.又a 2=y 1=1,a 4=y 2=2,a 6=y 3=3,…,则a 2014=1007,所以a 2013+a 2014+a 2015=1007.答案sin x 1+sin x 22<sin x 1+x 22解析 运用类比推理与数形结合,可知y =sin x (x ∈(0,π))的图象是上凸的,因此线段AB 的中点的纵坐标sin x 1+sin x 22总是小于函数y =sin x (x ∈(0,π))图象上的点⎝⎛⎭⎪⎫x 1+x 22,sin x 1+x 22的纵坐标,即有sin x 1+sin x 22<sin x 1+x 22成立. 三、解答题9.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 (1)选择②式计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=34.(2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°·sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.10.已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特征的性质,并加以证明.解 类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ), 则N (-m ,-n ).因为点M (m ,n )在已知的双曲线上,所以n 2=b 2a 2m 2-b 2,同理,y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。

课时跟踪检测(六十七) 合情推理与演绎推理

课时跟踪检测(六十七) 合情推理与演绎推理

课时跟踪检测(六十七)合情推理与演绎推理1.(2019·广东珠海一中、惠州一中联考)因为四边形ABCD为矩形,所以四边形ABCD 的对角线相等,补充以上推理的大前提为()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形解析:选B用三段论的形式推导一个结论成立,大前提应该是结论成立的依据,因为由四边形ABCD为矩形,得到四边形ABCD的对角线相等的结论,所以大前提一定是矩形的对角线相等.故选B.2.(2019·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁解析:选B由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.3.(2019·南昌调研)已知13+23=32,13+23+33=62,13+23+33+43=102,…,若13+23+33+43+…+n3=3 025,则n=()A.8 B.9C.10 D.11解析:选C∵13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,……∴13+23+33+…+n3=(1+2+3+…+n)2=n2(n+1)24.∵13+23+33+43+…+n3=3 025,∴n2(n+1)24=3 025,∴n2(n+1)2=(2×55)2,∴n(n+1)=110,解得n=10.4.(2019·武汉外国语学校月考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 如果1号或2号选手得第一名,则乙、丙、丁对,如果3号选手得第一名,则只有丁对,如果4号或5号选手得第一名,则甲、乙都对,如果6号选手得第一名,则乙、丙都对.因此只有丁猜对,故选D.5.(2019·辽宁实验中学等五校期末)如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k .类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于( )A.2V KB.V 2KC.3V KD.V 3K解析:选C 类比,得H 1+2H 2+3H 3+4H 4=3V K ,证明如下:连接Q 与三棱锥的四个顶点,将原三棱锥分成四个小三棱锥,其体积和为V ,即V 1+V 2+V 3+V 4=V ,即13(S 1H 1+S 2H 2+S 3H 3+S 4H 4)=V .又由S 11=S 22=S 33=S 44=K ,得S 1=K ,S 2=2K ,S 3=3K ,S 4=4K ,则K 3(H 1+2H 2+3H 3+4H 4)=V ,即H 1+2H 2+3H 3+4H 4=3V K ,故选C. 6.(2019·大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )A .男护士B .女护士C .男医生D .女医生解析:选A 设女护士人数为a ,男护士人数为b ,女医生人数为c ,男医生人数为d ,则⎩⎪⎨⎪⎧ a +b ≥c +d ,d >a ,a >b ,c ≥1,所以d >a >b >c ≥1.a +b +c +d =13,经检验得仅有a =4,b =3,c=1,d =5符合条件.因为无论是否把这位说话人计算在内,都满足条件,所以这位说话人是男护士.7.(2019·成都七中期中)如图,第n个图形是由正(n+2)边形“扩展”而来的,n∈N*,则在第n个图形中共有____________个顶点.(用n表示)解析:第n个图形是在第(n+2)边形的基础上每条边加上n+2个顶点,因此顶点个数为(n+2)+(n+2)(n+2)=(n+2)(n+3).答案:(n+2)(n+3)8.对于实数x,[x]表示不超过x的最大整数,观察下列等式:[ 1 ]+[ 2 ]+[ 3 ]=3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21,……按照此规律第n个等式的等号右边的结果为________.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n 个等式的等号右边的结果为n(2n+1),即2n2+n.答案:2n2+n9.(2019·石家庄模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式可能为______________________________________.解析:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式的左端是n+1项的和1+122+132+…+1(n+1)2,右端分母依次是2,3,4,…,n+1,分子依次是3,5,7,…,2n+1,故第n个不等式为1+122+132+…+1(n+1)2<2n+1n+1.答案:1+122+132+…+1(n+1)2<2n+1n+110.(2019·长春质检)有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.答案:8月4日11.(2019·台州中学期中)如图,正方形ABCD 的边长为1,分别作边AB ,BC ,CD ,DA 上的三等分点A 1,B 1,C 1,D 1,得正方形A 1B 1C 1D 1,再分别取边A 1B 1,B 1C 1,C 1D 1,D 1A 1上的三等分点A 2,B 2,C 2,D 2,得正方形A 2B 2C 2D 2,如此继续下去,得正方形A 3B 3C 3D 3,…,则正方形A n B n C n D n 的面积为________.解析:设正方形A 1B 1C 1D 1的面积为S 1,∵AB =1,∴A 1B =23,BB 1=13,∴A 1B 1=53,S 1S =⎝⎛⎭⎫532=59,∴相邻的两正方形的面积比为59,所有正方形面积构成等比数列,公比为59,首项为1,∴正方形A n B n C n D n 的面积为⎝⎛⎭⎫59n .答案:⎝⎛⎭⎫59n12.观察下列等式:1+2+3+…+n =12n (n +1); 1+3+6+…+12n (n +1)=16n (n +1)(n +2); 1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)·(n +3); ……可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=_____________. 解析:根据式子中的规律可知,等式右侧为15×4×3×2×1·n (n +1)(n +2)(n +3)(n +4)=1120n (n +1)(n +2)(n +3)·(n +4). 答案:1120n (n +1)(n +2)(n +3)(n +4)。

人教A版选修2-22.1.1合情推理能力提升(含答案解析)

人教A版选修2-22.1.1合情推理能力提升(含答案解析)

1. 如图,一个粒子在第一象限及边界运动,在第一秒内它从原点运动到(0,1),然后它接着按图示在x 轴,y 轴的平行方向来回运动,且每秒移动一个单位长度,则2 014秒时,这个粒子所处的位置对应的点的坐标为( )A .(44,10)B .(10,44)C .(11,44)D .(43,46)解析:选B.考查粒子运动到关键点(1,1)用时2秒,运动到点(2,2)用时6秒,运动到点(3,3)用时12秒,运动到点(4,4)用时20秒,…,归纳猜想粒子运动到点(n ,n )用时n (n +1)秒.又当n 为奇数时,此后x 秒粒子运动到点(n ,n -x );当n 为偶数时,此后x 秒粒子运动到点(n -x ,n )(1≤x ≤n ).由于粒子运动到点(44,44)用时44×45=1 980秒,所以2 014秒时,这个粒子所处的位置对应的点的坐标为(10,44).2.设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,a b∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是________.(把你认为正确的命题的序号都填上)解析:①错.4,5是整数,但45=0.8,0.8不是整数;②错.设M 由有理数集合Q 和元素π组成,则1,π∈M ,但是1+π不属于M ;③正确.设a ,b ∈P ,其中一个必定不等于零,设a ≠0,则a -a =0,所以0∈P ,a a=1,所以1∈P .所以0-1=-1,-1-1=-2,-2-1=-3,….所有负整数都属于P ,而负整数有无穷多个,所以③正确;④正确.把数域F ={a +b 2|a ,b ∈Q }中的2改为3,5,7,…,仍是数域,有无穷多个.故应填③④.答案:③④3.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a 的正三角形内任意一点到各边的距离之和是定值32a .类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.解:类比所得的真命题是:棱长为a 的正四面体内任意一点到四个面的距离之和是定值63a . 证明:设M 是正四面体P ABC 内任一点,M 到面ABC ,面P AB ,面P AC ,面PBC 的距离分别为d 1,d 2,d 3,d 4.由于正四面体四个面的面积相等,故有:V P ABC =V M ABC +V M P AB +V M P AC +V M PBC =13·S △ABC ·(d 1+d 2+d 3+d 4).。

高中数学211合情推理评估训练 A选修22 试题

高中数学211合情推理评估训练 A选修22 试题

第二章 推理与证明2.1 合情推理与演绎推理创作单位:*XXX创作时间:2022年4月12日 创作编者:聂明景2. 合情推理双基达标限时20分钟1.下面使用类比推理恰当的是( ).A .“假设a ·3=b ·3,那么a =b 〞类推出“假设a ·0=b ·0,那么a =b 〞B .“(a +b )c =ac +bc 〞类推出“(a ·b )c =ac ·bc 〞C .“(a +b )c =ac +bc 〞类推出“a +bc =a c +bc(c ≠0)〞 D .“(ab )n=a n b n〞类推出“(a +b )n=a n+b n〞 解析 由实数运算的知识易得C 项正确. 答案 C2.根据给出的数塔猜测123 456×9+7等于( ).1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析 由数塔猜测应是各位都是1的七位数,即1 111 111. 答案 B3.以下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( ).A .白色B .黑色C .白色可能性大D .黑色可能性大解析 由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色. 答案 A 4.设f (x )=2xx +2,x 1=1,x n =f (x n -1)(n ≥2),那么x 2,x 3,x 4分别为________.猜测x n =________. 解析 x 2=f (x 1)=21+2=23,x 3=f (x 2)=12=24x 4=f (x 3)=2×1212+2=25,∴x n =2n +1.答案 23,24,25 2n +15.观察以下各式9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为________.解析 由四个式子可分析规律:(n +2)2-n 2=4n +4. 答案 (n +2)2-n 2=4n +46.正项数列{a n }满足S n =12⎝ ⎛⎭⎪⎫a n +1a n ,求出a 1,a 2,a 3,a 4,并推测a n .解 a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,又因为a 1>0,所以a 1=1.当n ≥2时,S n =12⎝ ⎛⎭⎪⎫a n +1a n ,S n -1=12⎝ ⎛⎭⎪⎫a n -1+1a n -1,两式相减得:a n =12⎝ ⎛⎭⎪⎫a n +1a n -12⎝ ⎛⎭⎪⎫a n -1+1a n -1,即a n -1a n=-⎝ ⎛⎭⎪⎫a n -1+1a n -1,所以a 2-1a 2=-2,又因为a 2>0,所以a 2=2-1.a 3-1a 3=-22,又因为a 3>0,所以a 3=3- 2.a 4-1a 4=-23,又因为a 4>0,所以a 4=2- 3.将上面4个式子写成统一的形式:a 1=1-0,a 2=2-1,a 3=3-2,a 4=4-3,由此可以归纳出a n =n -n -1.(n ∈N +)综合进步限时25分钟7.以下推理正确的选项是( ).A .把a (b +c )与log a (x +y )类比,那么有:log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,那么有:sin(x +y )=sin x +sin yC .把(ab )n与(a +b )n类比,那么有:(x +y )n=x n+y nD .把(a +b )+c 与(xy )z 类比,那么有:(xy )z =x (yz )解析 A 错误,因为log a x +log a y =log a xy (x >0,y >0);B 错误,因为sin(x +y )=sin x cosy +cos x sin y ;对于C ,那么有(x +y )n =C 0n x n +C 1n xn -1·y +…+C r n ·x n -r ·y r +…+C n n y n ;D 正确,为加乘法的结合律,应选D. 答案 D8.设0<θ<π2,a 1=2cos θ,a n +1=2+a n ,猜测a n =( ).A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1D .2 sin θ2n解析 法一 ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2, a 3=2+a 2=21+cosθ22=2cos θ4,…,猜测a n =2cos θ2n -1.法二 验n =1时,排除A 、C 、D ,应选B. 答案 B9.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图)试求第七个三角形数是________.解析 观察知第n 个三角形数为1+2+3+…+n =n n +12,∴当n =7时,7×7+12=28. 答案 2810.平面内正三角形有很多性质,如三条边相等,类似地写出空间中正四面体的两个性质.性质①_____________________________________________________; 性质②_________________________________________________________. 答案 六条棱长相等 四个面都全等11.在公比为4的等比数列{b n }中,假设T n 是数列{b n }的前n 项积,那么有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,假设S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确?并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解 (1)数列 S 20-S 10,S 30-S 20,S 40-S 30也是等数数列,且公差为300. 该结论是正确的.(证明略) (2)对于∀k ∈N *,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d .12.(创新拓展)如图,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α、β,那么cos 2α+cos 2β=1,那么在立体几何中,给出类比猜测.解 在长方形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c2c 2=1.于是类比到长方体中,猜测其体对角线与一共顶点的三条棱所成的角分别为α、β、γ,那么cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.。

高中数学人教B版选修1-2课时跟踪训练(3) 合情推理

高中数学人教B版选修1-2课时跟踪训练(3) 合情推理

课时跟踪训练(三) 合情推理1.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是( )A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)22.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为( ) A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×93.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为( )A.6n-2 B.8n-2C.6n+2 D.8n+24.平面内平行于同一直线的两直线平行,由此类比我们可以得到( )A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行5.(山东高考)设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,…根据以上事实,由归纳推理可得:当n∈N+且n≥2时,f n(x)=f(f n-1(x))=________. 6.给出下列推理:(1)三角形的内角和为(3-2)·180°,四边形的内角和为(4-2)·180°,五边形的内角和为(5-2)·180°,…所以凸n 边形的内角和为(n -2)·180°;(2)三角函数都是周期函数,y =tan x 是三角函数,所以y =tan x 是周期函数;(3)狗是有骨骼的;鸟是有骨骼的;鱼是有骨骼的;蛇是有骨骼的;青蛙是有骨骼的,狗、鸟、鱼、蛇和青蛙都是动物,所以,所有的动物都是有骨骼的;(4)在平面内如果两条直线同时垂直于第三条直线,则这两条直线互相平行,那么在空间中如果两条直线同时垂直于某个平面,则这两条直线互相平行.其中属于合情推理的是________.(填序号)7.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.8.已知椭圆具有以下性质:已知M,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b 2=1(a >0,b >0)写出类似的性质,并加以证明.答 案1.选B 观察很容易发现规律:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.2.D3.选C 由图形的变化规律可以看出,后一个图形比前一个图形多6根火柴棒,第一个图形为8根, 可以写成a 1=8=6+2.又a 2=14=6×2+2,a 3=20=6×3+2,…所以可以猜测,第n 个“金鱼”图需要火柴棒的根数为6n +2.4.选D 利用类比推理,平面中的直线和空间中的平面类比.5.解析:由已知可归纳如下:f 1(x)=x 21-1x +21, f 2(x)=x 22-1x +22,f 3(x)=x 23-1x +23, f 4(x)=x 24-1x +24,…, f n (x)=x 2n -1x +2n . 答案:x2n-1x +2n 6.解析:根据合情推理的定义来判断.因为(1)(3)都是归纳推理,(4)是类比推理,而(2)不符合合情推理的定义,所以(1)(3)(4)都是合情推理.答案:(1)(3)(4)7.解:当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13; 当n =3时,1S 3=-2-S 2=-53,∴S 3=-35; 当n =4时,1S 4=-2-S 3=-75,∴S 4=-57. 猜想:S n =-2n -32n -1(n ∈N +). 8.解:类似的性质为:已知M,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m,n),(x,y),则N 点的坐标为(-m,-n).∵点M(m,n)在已知双曲线x 2a 2-y 2b2=1上, ∴m 2a 2-n 2b 2=1,得n 2=b 2a 2m 2-b 2,同理y 2=b 2a2x 2-b 2. ∴y 2-n 2=b 2a 2(x 2-m 2).则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2 =b 2a 2(定值).。

课时跟踪检测(三十六) 合情推理与演绎推理(普通高中、重点高中共用)

课时跟踪检测(三十六)  合情推理与演绎推理(普通高中、重点高中共用)

课时跟踪检测(三十六)合情推理与演绎推理普通高中、重点高中共用作业(高考难度一般,无须挖潜) A级——基础小题练熟练快1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.下列推理中属于归纳推理且结论正确的是()A.设数列{a n}的前n项和为S n.由a n=2n-1,求出S1=12,S2=22,S3=32,…,推断:S n=n2B.由f(x)=x cos x满足f(-x)=-f(x)对∀x∈R都成立,推断:f(x)=x cos x为奇函数C.由圆x2+y2=r2的面积S=πr2,推断:椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n+1)2>2n 解析:选A选项A由一些特殊事例得出一般性结论,且注意到数列{a n}是等差数列,其前n项和等于S n=n(1+2n-1)2=n2,选项D中的推理属于归纳推理,但结论不正确.3.(2018·衡水三调)来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是()A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英解析:选A分析题目和选项,由①知,丁不会说日语,排除B选项;由②知,没有人既会日语又会法语,排除D选项;由③知乙、丙、丁不会同一种语言,排除C选项,故选A.4.在用演绎推理证明通项公式为a n=cq n(cq≠0)的数列{a n}是等比数列的过程中,大前提是( )A .a n =cq n B.a n a n -1=q (n ≥2) C .若数列{a n }满足a n +1a n (n ∈N *)是常数,则{a n }是等比数列D .若数列{a n }满足a n +1a n(n ≥2)是常数,则{a n }是等比数列解析:选C 证明一个数列是等比数列的依据是等比数列的定义,其公式表示为a n +1a n(n∈N *)或a na n -1(n ≥2)是常数.5.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC .T 2n -1=(2n -1)b nD .T 2n -1=b 2n -1n解析:选D 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n, …,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n. 6.(2018·渭南一模)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( )A .45B .55C .65D .66解析:选B 第1个图中,小石子有1个, 第2个图中,小石子有3=1+2个, 第3个图中,小石子有6=1+2+3个, 第4个图中,小石子有10=1+2+3+4个, ……故第10个图中,小石子有1+2+3+…+10=10×112=55个,即a 10=55,故选B.7.(2018·咸阳二模)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,……,根据以上规律,第n (n ∈N *)个不等式是____________________.解析:根据所给不等式可得第n 个不等式是1×2+2×3+…+n ×(n +1)<(n +1)22(n ∈N *).答案:1×2+2×3+…+n ×(n +1)<(n +1)228.用火柴棒摆“金鱼”,如图所示,按照图中的规律,第n 个“金鱼”需要火柴棒的根数为________.解析:由题意知,第1个图中有8根火柴棒,第2个图中有8+6根火柴棒,第3个图中有8+2×6根火柴棒,……,依此类推,第n 个“金鱼”需要火柴棒的根数为8+6(n -1)=6n +2.答案:6n +29.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.答案:33210.(2018·岳阳月考)观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜想第n 个不等式为______________. 解析:观察给出的式子可得出如下规律: 1>12, 1+12+13=1+12+122-1>1=22, 1+12+13+…+17=1+12+13+…+123-1>32, 1+12+13+…+115=1+12+13+…+124-1>2=42, 1+12+13+…+131=1+12+13+…+125-1>52, ……猜想:1+12+13+…+12n -1>n2,n ∈N *.答案:1+12+13+…+12n -1>n2,n ∈N *B 级——中档题目练通抓牢1.在等比数列{a n }中,若a m =1,则有a 1a 2…a n =a 1a 2…a 2m -1-n (n <2m -1,且n ∈N *)成立,在等差数列{b n }中,若b m =0,类比上述性质,则有( )A .b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,且n ∈N *)B .b 1b 2…b n =b 1b 2…b 2m -n +1(n <2m +1,且n ∈N *)C .b 1+b 2+…+b n =b 1+b 2+…+b 2m -1-n (n <2m -1,且n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 2m -n +1(n <2m +1,且n ∈N *)解析:选C 等比数列的“比”对应等差数列的“差”,类比上述性质,等比数列的“积”对应等差数列的“和”,由此排除A 、B ,对于C 、D ,注意项数的变化知C 正确.2.给出以下数对序列: (1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1) ……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm =( ) A .(m ,n -m +1)B .(m -1,n -m )C.(m-1,n-m+1) D.(m,n-m)解析:选A由前4行的特点,归纳可得:若a n m=(x,y),则x=m,y=n-m+1,∴a n m=(m,n-m+1).3.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(n)的表达式为()A.f(n)=2n-1 B.f(n)=2n2C.f(n)=2n2-2n D.f(n)=2n2-2n+1解析:选D因为f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,…,结合图形不难得到f(n)-f(n-1)=4(n-1),累加得f(n)-f(1)=2n(n-1)=2n2-2n,故f(n)=2n2-2n+1.4.(2018·襄阳优质高中联考)将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1,(x2+x+1)1=x2+x+1,(x2+x+1)2=x4+2x3+3x2+2x+1,(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1,……观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角,其构造方法为:第0行为1,以下各行每个数是它正头顶上与左右两肩上3个数(不足3个数的,缺少的数记为0)的和,第k行共有2k+1个数,若(x2+x+1)5(1+ax)的展开式中,x7项的系数为75,则实数a的值为________.广义杨辉三角第0行 1第1行 1 1 1第2行1 2 32 1第3行13 6 763 1第4行1 4 10 16 19 1610 4 1……解析:根据题意可得广义杨辉三角第5行为:1,5,15,30,45,51,45,30,15,5,1,故(1+ax )(x 2+x +1)5的展开式中,x 7项的系数为30+45a =75,解得a =1. 答案:15.(2018·湖北八校联考)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)如图所示,课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.解析:椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2⎝⎛⎭⎫π×b 2×a -13π×b 2×a =43πb 2a . 答案:43πb 2a6.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B ,同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .7.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1.请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与A BCD 中, OE AE =h 1h =13S △BCD ·h113S △BCD ·h =V OBCD V ABCD.同理有OF DF =V OABCV DABC;OG BG =V OACD V BACD;OH CH =V OABD V CABD.∴OE AE +OF DF +OG BG +OH CH =V OBCD +V OABC +V OACD +V OABDV ABCD=V A BCD V ABCD=1.C 级——重难题目自主选做某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 2 15°-sin15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.。

课时跟踪检测(六十) 合情推理与演绎推理

课时跟踪检测(六十) 合情推理与演绎推理

课时跟踪检测(六十) 合情推理与演绎推理1.(2019·广东珠海一中、惠州一中联考)因为四边形ABCD 为矩形,所以四边形ABCD 的对角线相等,补充以上推理的大前提为( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形解析:选B 用三段论的形式推导一个结论成立,大前提应该是结论成立的依据,因为由四边形ABCD 为矩形,得到四边形ABCD 的对角线相等的结论,所以大前提一定是矩形的对角线相等.故选B.2.(2019·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.3.(2019·南昌调研)已知13+23=32,13+23+33=62,13+23+33+43=102,…,若13+23+33+43+…+n 3=3 025,则n =( )A .8B .9C .10D .11解析:选C ∵13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,……∴13+23+33+…+n 3=(1+2+3+…+n )2=n 2(n +1)24.∵13+23+33+43+…+n 3=3 025, ∴n 2(n +1)24=3 025,∴n 2(n +1)2=(2×55)2, ∴n (n +1)=110,解得n =10.4.(2019·武汉外国语学校月考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 如果1号或2号选手得第一名,则乙、丙、丁对,如果3号选手得第一名,则只有丁对,如果4号或5号选手得第一名,则甲、乙都对,如果6号选手得第一名,则乙、丙都对.因此只有丁猜对,故选D.5.(2019·辽宁实验中学等五校期末)如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k .类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于( )A.2V KB.V 2KC.3V KD.V 3K解析:选C 类比,得H 1+2H 2+3H 3+4H 4=3V K,证明如下:连接Q 与三棱锥的四个顶点,将原三棱锥分成四个小三棱锥,其体积和为V ,即V 1+V 2+V 3+V 4=V ,即13(S 1H 1+S 2H 2+S 3H 3+S 4H 4)=V .又由S 11=S 22=S 33=S 44=K ,得S 1=K ,S 2=2K ,S 3=3K ,S 4=4K ,则K 3(H 1+2H 2+3H 3+4H 4)=V ,即H 1+2H 2+3H 3+4H 4=3V K,故选C. 6.(2019·大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )A .男护士B .女护士C .男医生D .女医生解析:选A 设女护士人数为a ,男护士人数为b ,女医生人数为c ,男医生人数为d ,则⎩⎪⎨⎪⎧ a +b ≥c +d ,d >a ,a >b ,c ≥1,所以d >a >b >c ≥1.a +b +c +d =13,经检验得仅有a =4,b =3,c=1,d =5符合条件.因为无论是否把这位说话人计算在内,都满足条件,所以这位说话人是男护士.7.(2019·成都七中期中)如图,第n 个图形是由正(n +2)边形“扩展”而来的,n ∈N *,则在第n 个图形中共有____________个顶点.(用n 表示)解析:第n 个图形是在第(n +2)边形的基础上每条边加上n +2个顶点,因此顶点个数为(n +2)+(n +2)(n +2)=(n +2)(n +3).答案:(n +2)(n +3)8.对于实数x ,[x ]表示不超过x 的最大整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3, [ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10, [9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21,……按照此规律第n 个等式的等号右边的结果为________.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n个等式的等号右边的结果为n (2n +1),即2n 2+n .答案:2n 2+n9.(2019·石家庄模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n 个不等式可能为______________________________________.解析:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n 个不等式的左端是n +1项的和1+122+132+…+1(n +1)2,右端分母依次是2,3,4,…,n +1,分子依次是3,5,7,…,2n +1,故第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1. 答案:1+122+132+…+1(n +1)2<2n +1n +110.(2019·长春质检)有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m 月n 日,张老师把m 告诉了甲,把n 告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.答案:8月4日11.(2019·台州中学期中)如图,正方形ABCD 的边长为1,分别作边AB ,BC ,CD ,DA 上的三等分点A 1,B 1,C 1,D 1,得正方形A 1B 1C 1D 1,再分别取边A 1B 1,B 1C 1,C 1D 1,D 1A 1上的三等分点A 2,B 2,C 2,D 2,得正方形A 2B 2C 2D 2,如此继续下去,得正方形A 3B 3C 3D 3,…,则正方形A n B n C n D n 的面积为________.解析:设正方形A 1B 1C 1D 1的面积为S 1,∵AB =1,∴A 1B =23,BB 1=13,∴A 1B 1=53,S 1S =⎝⎛⎭⎫532=59,∴相邻的两正方形的面积比为59,所有正方形面积构成等比数列,公比为59,首项为1,∴正方形A n B n C n D n 的面积为⎝⎛⎭⎫59n .答案:⎝⎛⎭⎫59n12.观察下列等式:1+2+3+…+n =12n (n +1); 1+3+6+…+12n (n +1)=16n (n +1)(n +2); 1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)·(n +3); ……可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=_____________. 解析:根据式子中的规律可知,等式右侧为15×4×3×2×1·n (n +1)(n +2)(n +3)(n +4)=1120n (n +1)(n +2)(n +3)·(n +4). 答案:1120n (n +1)(n +2)(n +3)(n +4) 13.给出下面的数表序列:表1 表2 表31 1 3 1 3 5 ….4 4 812其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 74 8 12 12 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin 215°+cos 2 15°-sin15°cos 15°=1-12sin 30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+ 34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+ 12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.。

人教A版选修2-2 合情推理 课时作业

人教A版选修2-2  合情推理 课时作业

一、选择题1.下列推理是归纳推理的是( )A .F 1,F 2为定点,动点P 满足|PF 1|+|PF 2|=2a >|F 1F 2|,得P 的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B 项为归纳推理. 答案:B 2.已知2+23=223, 3+38=338, 4+415=4415,….若6+a b =6ab(a ,b ∈R),则( ) A .a =5,b =24 B .a =6,b =24 C .a =6,b =35D .a =5,b =35解析:观察式子的特点可知,分式a b的分子a 与根号外的数相同,而分母b 则为a 的平方减1.答案:C3.在数学解题中,常会碰到形如“x +y1-xy”的结构,这时可类比正切的和角公式.如:设a ,b 是非零实数,且满足a sin π5+b cosπ5a cos π5-b sinπ5=tan 8π15,则ba 等于( )A .4 B.15 C .2D. 3解析:将已知式变形,则有a sin π5+b cos π5a cos π5-b sin π5=a tan π5+ba -b tanπ5=tan π5+b a1-b a tanπ5=tan8π15=tan ⎝ ⎛⎭⎪⎫π5+π3,类比正切的和角公式,即tan(α+β)=tan α+tan β1-tan αtan β,可知只有当b a =tan π3=3时,上式成立.答案:D4.设n 是自然数,则18(n 2-1)[1-(-1)n ]的值( )A .一定是零B .不一定是偶数C .一定是偶数D .是整数但不一定是偶数解析:当n 为偶数时,18(n 2-1)[1-(-1)n ]=0为偶数;当n 为奇数时(n =2k +1,k ∈N),18(n 2-1)[1-(-1)n ]=18(4k 2+4k )·2=k (k +1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数.答案:C5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( ) A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的;各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.答案:D 二、填空题6.已知x ∈(0,+∞),观察下列不等式:x +1x ≥2,x +4x 2=x 2+x 2+4x2≥3,…,类比有x +axn ≥n +1(n ∈N *),则a =________.解析:由类比推理可得x +a x n =x n +…+x n ,\s \up 6(,n 个))+axn ≥(n +1)·x n ·x n ·…·x n ·axn =n +1,此时a =n n . 答案:n n7.在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.解析:正三角形内切圆半径与外接圆半径之比为1∶2,故面积之比为1∶4,正四面体中,内切球半径与外接球半径之比为1∶3,故体积之比为1∶27.答案:1278.观察下列各式:①(x 3)′=3x 2;②(sin x )′=cos x ;③(e x -e -x )′=e x +e -x ;④(x cos x )′=cos x -x sin x .根据其中函数f (x )及其导数f ′(x )的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f (x )=x 3为奇函数,f ′(x )=3x 2为偶函数;对于②,g (x )=sin x 为奇函数,f ′(x )=cos x 为偶函数;对于③,p (x )=e x -e -x 为奇函数,p ′(x )=e x +e -x 为偶函数;对于④,q (x )=x cos x 为奇函数,q ′(x )=cos x -x sin x 为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.如图所示为m行m+1列的士兵方阵(m∈N*,m≥2).(1)写出一个数列,用它表示当m分别是2,3,4,5,…时,方阵中士兵的人数.(2)若把(1)中的数列记为{a n},归纳该数列的通项公式.(3)求a10,并说明a10表示的实际意义.(4)已知a n=9 900,问:a n是数列第几项?解:(1)当m=2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m=3,4,5,…时的士兵人数分别为12,20,30,…,故所求数列为6,12,20,30,…,(2)因为a1=2×3,a2=3×4,a3=4×5,…,所以猜想a n=(n+1)(n+2),n∈N*.(3)a10=11×12=132.a10表示11行12列的士兵方阵的人数为132.(4)令(n+1)(n+2)=9 900,所以n=98,则a n是数列的第98项,此时方阵为99行100列.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC 所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n 个“金鱼”图需火柴棒的根数为6n +2.答案:C2.若S n 是等差数列{a n }的前n 项和,则有S 2n -1=(2n -1)a n ,类似地,若T n 是等比数列{b n }的前n 项积,则有T 2n -1=________.解析:T 2n -1=b 1·b 2·b 3·…·b 2n -1=(b 1·b 2n -1)·(b 2·b 2n -2)·…·b n =b 2n -1n . 答案:b 2n -1n3.观察下列等式:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想. 解:由①②知,两角相差30°,运算结果为34,猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.。

高中数学 2.1.1合情推理课时作业 新人教A版选修22

高中数学 2.1.1合情推理课时作业 新人教A版选修22

2.1.1 合情推理课时目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.1.归纳推理和类比推理定义特征归纳推理由某类事物的__________具有某些特征,推出该类事物的__________都具有这些特征的推理,或者由__________概括出__________的推理.归纳推理是由____________,由____________的推理.类比推理由两类对象具有某些____特征和其中一类对象的某些__________,推出另一类对象也具有这些特征的推理.类比推理是____________的推理.2.合情推理(1)含义归纳推理和类比推理都是根据已有的事实,经过________、________、________、______,再进行________、________,然后提出________的推理,我们把它们统称为合情推理.(2)合情推理的过程从具体问题出发→观察、分析比较、联想→归纳、类比→提出猜想一、选择题1.数列2,5,11,20,x,47,…中的x的值为( )A.28 B.32 C.33 D.272.设n是自然数,则18(n2-1)[1-(-1)n]的值( )A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数3.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n 等于( ) A .n B .n 2C .n 3D .n +3-n4.当a ,b ,c∈(0,+∞)时,由a +b 2≥ab ,a +b +c 3≥3abc ,运用归纳推理,可猜测出的合理结论是( )A .a 1+a 2+…+a n2≥a 1a 2…a n (a i >0,i =1,2,…n)B .a 1+a 2+…+a n 3≥3a 1a 2…a n (a i >0,i =1,2,…n)C .a 1+a 2+…+a n n≥na 1a 2…a n (a i ∈R ,i =1,2,…n )D.a 1+a 2+…+a n n≥na 1a 2…a n (a i >0,i =1,2,…n )5.已知函数y =f (x )的定义域为(0,+∞),f (8)=3,对任意的正实数x 1,x 2,f (x 1·x 2)=f (x 1)+f (x 2),猜想f (x )的表达式为( ) A .f (x )=2xB .f (x )=2xC .f (x )=log 2xD .f (x )=0 题 号 1 2 3 4 5 答 案二、填空题 6.观察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,由此推测第n 个等式为__________________________.7.设n ≥2,n ∈N ,(2x +12)n -(3x +13)n =a 0+a 1x +a 2x 2+…+a n x n,将|a k |(0≤k ≤n )的最小值记为T n ,则T 2=0,T 3=123-133,T 4=0,T 5=125-135,…,T n ,…,其中T n =________.8.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“________________”;这个类比命题的真假性是__________. 三、解答题9.平面内有n 个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,若f (n )表示这n 个圆把平面分割的区域数,试求f (n ).10.观察①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1.②ta n 5°tan 10°+tan 10°tan 75°+tan 75°tan 5°=1.由以上两式成立得到一个由特殊到一般的推广,此推广是什么?并证明你的推广.能力提升11.观察下列等式:①cos 2α=2cos2α-1;②cos 4α=8cos4α-8cos2α+1;③cos 6α=32cos6α-48cos4α+18cos2α-1;④cos 8α=128cos8α-256cos6α+160cos4α-32cos2α+1;⑤cos 10α=m cos10α-1 280cos8α+1 120cos6α+n cos4α+p cos2α-1.可以推测,m-n+p=________.12.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点的个数.(1)求f(4);(2)当n>4时,用n表示出f(n).1.归纳推理的一般步骤(1)通过观察个别事物发现某些相同的性质.(2)从已知的相同性质中推出一个明确表述的一般性命题.2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.3.合情推理获得的结论未必可靠,但能帮助我们猜测,发现结论.答案知识梳理1.定义特征归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.归纳推理是由部分到整体,由个别到一般的推理.类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.类比推理是特殊到特殊的推理.2.(1)观察分析比较联想归纳类比猜想作业设计1.B [∵5-2=3,11-5=6,20-11=9,∴x-20=12,∴x=32.]2.C [(1)当n 为偶数时,18(n 2-1)[1-(-1)n]=0为偶数.(2)当n 为奇数时(n =2k +1,k ∈N ),18(n 2-1)[1-(-1)n]=18(4k 2+4k )·2=k (k +1)为偶数. 由①②知,18(n 2-1)[1-(-1)n]的值一定为偶数.]3.B [计算得a 2=4,a 3=9,∴猜想a n =n 2.] 4.D [a 1+a 2+…+a n n≥na 1a 2…a n (a i >0,i =1,2,…n )是基本不等式的一般形式,这里等号当且仅当a 1=a 2=…=a n 时成立.结论的猜测没有定式,但合理的猜测是有目标的.] 5.C [由于log 28=log 223=3, 即满足f (8)=3.log 2(x 1·x 2)=log 2x 1+log 2x 2, 即满足f (x 1·x 2)=f (x 1)+f (x 2).] 6.12-22+32-42+…+(-1)n -1·n 2=(-1)n -1(1+2+3+…+n )7.⎩⎪⎨⎪⎧0 (n 为偶数)12n -13n (n 为奇数)解析 观察T n 表达式的特点可以看出T 2=0,T 4=0,……,∴当n 为偶数时,T n =0; 又∵T 3=123-133,T 5=125-135,……,∴当n 为奇数时,T n =12n -13n .8.夹在两个平行平面间的平行线段相等 真命题9.解 ∵f (n )表示n 个圆把平面分割成的区域数,如果再有一个圆和这n 个圆相交,则 增加2n 个交点,这些交点将增加的这个圆分成2n 段弧,且每一段弧又将原来的平面区 域一分为二,因此,增加一个圆后,平面分成的区域数增加2n 个,即f (n +1)=f (n )+2n ,亦即f (n +1)-f (n )=2n , 又f (1)=2,由递推公式得f (2)-f (1)=2×1, f (3)-f (2)=2×2, f (4)-f (3)=2×3,……,f (n )-f (n -1)=2(n -1).将以上n -1个等式累加得f (n )=2+2[1+2+3+…+(n -1)]=n 2-n +2.10.解 观察到:10°+20°+60°=90°,5°+75°+10°=90°.猜想此推广为α+β+γ=π2且α,β,γ都不为k π+π2(k ∈Z ),则tan αtan β+tan βtan γ+tan γtan α=1. 证明:①γ=0时,等式显然成立. ②当γ≠0时,由α+β+γ=π2,得α+β=π2-γ,所以tan(α+β)=1tan γ. 又因为tan(α+β)=tan α+tan β1-tan αtan β,所以tan α+tan β=tan(α+β)·(1-tan α·tan β) =1tan γ(1-tan α·tan β), 所以tan αtan β+tan βtan γ+tan γtan α =tan αtan β+tan γ(tan α+tan β) =tan αtan β+tan γ·1tan γ(1-tan αtan β)=1. 综上所述,等式成立. 11.962解析 观察得:式子中所有项的系数和为1, ∴m -1 280+1 120+n +p -1=1,∴m +n +p =162,又p =10×5=50,m =29=512, ∴n =-400,∴m -n +p =962. 12.解 (1)如图所示,可得f (4)=5. (2)∵f (3)=2;f (4)=5=f (3)+3; f (5)=9=f (4)+4; f (6)=14=f (5)+5;……∴每增加一条直线,交点增加的个数等于原来直线的条数. ∴f (n )=f (n -1)+n -1,累加得f (n )=f (3)+3+4+5+…+(n -1) =2+3+4+5+…+(n -1)=12(n +1)(n -2).。

选修2-2合情推理课时作业

选修2-2合情推理课时作业

课时作业∏合情推理时间:45分钟满分:1OO分一、选择题(每小题5分,共30分)1.下列哪个平面图形与空间的平行六面体作为类比对象较为合适()4∙三角形 B.梯形C.平行四边形D.矩形【答案】C【解析】只有平行四边形与平行六而体较为接近,故选C.2.下列类比推理恰当的是()把a(b+c)与∕oga(x+y)类比,则有:/oga(x+y)=/OgaX+∕ogayB.把a(b÷c)-⅛i s∕n(x+y)类比,则有:sin(×÷y) =Sin×+sinyC.}E(ab)n⅛(a + b)n类比,则有:(a+b)n=a n+b nD.把a(b÷c)与α∙(b+c)类比,则有:a∖b+c) = a b+a c【答案】D【解析】A, B, C三个选项没有从木质上类比,是简单类比,从而出现错误.3.如图所示,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,336420,…,记这个数列前门项的和为S(n), 则S(16)等于()A. 128 C. 155【答案】D 【解析】1,2,3,3,6Alo,5,15,6,21,7,28,8,36,9.故 5(16) = 1 + 2 + 3 +…+ 36+ 9 =164.4. 观察右图图形规律,在其右下角的空格内画上合适的图形为□ • ▲ ▲ ■ O• △A. ■B. ΔC. □D. o【答案】A【解析】 每一行、每一列的图形都有两个黑色.由题意可知该数列的前16项为:1 15.观察下列事实:∣x∣ + ∣y∣=l的不同整数解(x, y)的个数为4, ∣x∣+ Iyl =2的不同整数解(x,y)的个数为8, ∣x∣ + IyI =3的不同整数解(x, y)的个数为12,则∣x∣ + ∣y∣=20的不同整数解(x, y)的个数为() A. 76 B ・ 80C. 86D. 92【答案】B【解析】 由己知条件知∣x∣ + ∣y∣=n 的不同整数解(x, y)个数为4门,所以∣χ∣ + ∣y∣=20不同整数解(χ, y)的个数为4×20=80.归纳体现了由特殊到一般的思维过程.6.定义A*3、B*C 、C*D 、D*B 分别对应下列图形【答案】C 【解析】由A*B. B*C 、C*D 、D*B 的定义图形知A 为L B 为,D ・⑴、(4)(4))B. (2)、 (3) C ・⑵、(4) ①那么下列图形中,A.⑴、(2)(3)C为一一,D为□∙二、填空题(每小题20分,共30分)7. (2014-陕酋理)观察分析下表中的数据:猜想一般凸多面体中F, U, E所满足的等式是 __________________ .【答案】F+V~E=2【解析】木题考查归纳推理.5+ 6 — 9 = 2,6+ 6-10=2,6 + 8-22 = 2,:.F+V-E=I.8.观察下列等式:l3+23=(l + 2)243+23+33=(l + 2+3)¼3+23+ 33 + 43 = (l + 2 + 3 + 4)2, 根据上述规律,第四个等式为【答案】l3 + 23+33+43 + 53 = (l + 2 + 3+4 + 5)2(⅛g 152)【解析】根据己知条件,第四个等式应为l3 + 23 + 33 + 43 + 53 = (2 + 2 + 3+4+5)2(或152).9.如图所示,己知命题:若矩形ABCD的对角线BD与边AB和BC 所成的角分别为a, 6,则cos2α+cos2β = l,则在长方体ABCD- A I B I C I D l中,写出类似的命题:【答案】长方体ABCD-AIBICIDI中,若对角线BDl与棱AB、BBi、BC 所成的角分别为a、6、Y f贝IJ cos1 2a+cos2β+cos2∣/= 1 或sir?a +sin2β+sin2∣∕=2(或:长方体ABCD-A I B I C I D l中,若对角线BD l与平面ABCD.ABB I A1. BCC I B l所成的角分别为a、6、y,则cos2a+cos2β+cos2∣∕=2 或Sin2a+sin2β+sin2j∕=l)三、解答题(本题共3小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤)10. (13 分)已知{e}满足aι = l,4a n+ι-an∙a∏÷ι+2a∏ = 9,写出6、02、。

课时跟踪检测(三十八) 合情推理与演绎推理

课时跟踪检测(三十八) 合情推理与演绎推理
数学
质量铸就品牌 品质赢得未来
课时跟踪检测(三十八) 合情推理与演绎推理 结束
7.解析:由等比数列的性质可知b1b30=b2b29=„=b11b20, ∴ 10 b11b12„b20= 10 30 b1b2„b30. 30 b1b2„b30
答案:
b11b12„b20=
nn-1 8.解析:前n-1行共有正整数1+2+„+(n-1)= 个,即 2 n2-n 2 个,因此第n行从左至右的第3个数是全体正整数中第
10.解析:由题意知,凸函数满足
fx1+fx2+„+fxn x1+x2+„+xn ≤f , n n
又y=sin x在区间(0,π)上是凸函数,则sin A+sin B+sin A+ B+ C π 3 3 C≤3sin = 3sin 3 3= 2 . 3 3 答案: 2
数学
质量铸就品牌 品质赢得未来
课时跟踪检测(三十八) 合情推理与演绎推理 结束
12.解:(1)选择②式,计算如下: 1 1 3 sin 15° +cos 15° -sin 15° cos 15° =1- sin 30° =1- = . 2 4 4 (2)三角恒等式为 3 2 2 sin α+cos (30° -α)-sin α· cos(30° -α)= . 4 证明如下: sin2α+cos2(30° -α)-sin α· cos(30° -α ) = sin2α + (cos 30° cos α + sin 30° sin α)2 - sin α· (cos 30° cos α + sin 30° sin α) 3 2 3 1 2 3 1 2 2 =sin α+ cos α+ sin αcos α+ sin α- sin αcos α- sin α 4 2 4 2 2 3 2 3 2 = sin α+ cos α 4 4 3 = . 4

高中数学人教A版选修-课时跟踪检测(三)合情推理含解析

高中数学人教A版选修-课时跟踪检测(三)合情推理含解析

答案:πab
7.观察下列两个等式:
3 ①sin210°+cos240°+sin 10°cos 40°=4①;
5
3 ②sin26°+cos236°+sin 6°cos 36°=4②.
由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想.
解:由①②知若两角差为 30°,则它们的相关形式的函数运算式的值均为34. 猜想:若 β-α=30°,则 β=30°+α,sin2α+cos2(α+3 0°)+sin αcos(α+30°)=34.
课时跟踪检测(三) 合情推理
层级一 学业水平达标
1.观察图形规律,在其右下角的空格内画上合适的图形为( )
A.
B.△
C.
D.○
解析:选 A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一
次,②每行、每列有两阴影一空白,即得结果. 2.下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内
9.在平面内观察:凸四边形有 2 条对角线,凸五边形有 5 条对角线,凸六边形有 9 条
对角线,…,由此猜想凸 n 边形有几条对角线?
解:因为凸四边形有 2 条对角线,凸五边形有 5 条对角线,比凸四边形多 3 条;凸六
边形有 9 条对角线,比凸五边形多 4 条,…,于是猜想凸 n 边形的对角线条数比凸(n-1)边
体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为 1∶2,则它们的体积之
比为 1∶8.
4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结
论:
①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪训练(二十二)(时间45分钟)题型对点练(时间20分钟)题组一归纳推理1.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是()A.a k+a k+1+…+a2k B.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2k D.a k-1+a k+…+a2k-2[解析]利用归纳推理可知,第k项中第一个数为a k-1,且第k 项中有k项,且次数连续,故第k项为a k-1+a k+…+a2k-2.[答案] D2.如图所示,n个连续自然数按规律排列如下:根据规律,从2014到2016的箭头方向依次为()A.→↑B.↑→C.↓→D.→↓[解析]观察总结规律为:以4个数为一个周期,箭头方向重复出现.因此,2014到2016的箭头方向和2到4的箭头方向是一致的.故选B.[答案] B3.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色B.黑色C.白色可能性大D.黑色可能性大[解析]由图,知三白二黑周期性排列,36=5×7+1,故第36颗珠子的颜色为白色.[答案] A4.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为()A.a n=3n-1B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-3[解析]∵a1=1,a2=3,a3=9,a4=27,∴猜想a n=3n-1.[答案] A5.如图所示,在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,将圆最多分割成4部分;画三条线段,彼此最多分割成9条线段,将圆最多分割成7部分;画四条线段,彼此最多分割成16条线段,将圆最多分割成11部分.猜想:在圆内画n (n ≥2)条线段,彼此最多分割成多少条线段?将圆最多分割成多少部分?[解] 设圆内两两相交的n 条线段,彼此最多分割成的线段为f (n )条,将圆最多分割为g (n )部分.f (1)=1=12,g (1)=2; f (2)=4=22, g (2)=4=2+2; f (3)=9=32, g (3)=7=2+2+3; f (4)=16=42,g (4)=11=2+2+3+4; 猜想:f (n )=n 2,g (n )=2+2+3+4+…+n =1+(1+n )n 2=n 2+n +22. 即圆内两两相交的n (n ≥2)条线段,彼此最多分割为n 2条线段,将圆最多分割为n 2+n +22部分. 题组二 类比推理6.已知{b n }为等比数列,b 5=2,且b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[解析] 等比数列中的积(乘方)类比等差数列中的和(积),得a 1+a 2+…+a 9=2×9.[答案] D7.已知在△ABC 中,∠ACB 的平分线CE 分△ABC 面积所成的比为S △AEC S △BEC =AC BC ,将这个结论类比到空间:在三棱锥A -BCD 中,平面DEC 平分二面角A -CD -B 且与AB 交于E ,则类比的结论为__________.[解析] 平面中的面积类比到空间为体积,故S △AEC S △BEC 类比成V A -CDEV B -CDE.平面中的线段长类比到空间为面积,故ACBC 类比成S △ACD S △BDC .故有V A -CDE V B -CDE =S △ACDS △BDC.[答案] V A -CDE V B -CDE =S △ACDS △BDC8.在矩形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,在立体几何中,通过类比,给出猜想并证明.[解] 如图①,在矩形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c 2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1,证明如下:如图②,cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.综合提升练(时间25分钟)1.已知 2+23=223,3+38=338,4+415=4415,….若6+a b =6ab (a ,b ∈R ),则( )A .a =5,b =24B .a =6,b =24C .a =6,b =35D .a =5,b =35[解析] 观察式子的特点可知,分式ab 的分子a 与根号外的数相同,而分母b 则为该数的平方减1.[答案] C2.在数学解题中,常会碰到形如“x +y1-xy ”的结构,这时可类比正切的和角公式.如:设a ,b 是非零实数,且满足a sin π5+b cos π5a cos π5-b sin π5=tan 8π15,则ba 等于( )A .4 B.15 C .2D. 3[解析] 将已知式变形,则有a sin π5+b cos π5a cos π5-b sin π5=a tan π5+ba -b tan π5=tan π5+b a1-b a tan π5=tan 8π15,类比正切的和角公式,即tan(α+β)=tan α+tan β1-tan αtan β,可知只有当b a =tan π3=3时,上式成立. [答案] D3.观察下图图形规律,在其右下角的空格内画上合适的图形为( )A.■B.△C.▭D.○[解析]图中涉及○、△、▭三种图形;其中△与○各有3个,且各自有两黑一白,所以缺一个黑色▭图形,即应画上■才合适.[答案] A4.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一点.若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次跳两个点.该青蛙从5跳起,经2015次跳跃后将停在的点是()A.1 B.2C.3 D.4[解析]记a n表示青蛙第n次跳跃后所在的点数,则a1=1,a2=2,a3=4,a4=1,a5=2,a6=4,…,显然{a n}是一个周期为3的数列,故a2015=a2=2,答案为B.[答案] B5.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =________.[解析] 如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB→=(c ,b ),AB →=(-a ,b ). 又因为FB →⊥AB →,所以FB →·AB →=b 2-ac =0, 所以c 2-a 2-ac =0,所以e 2-e -1=0, 所以e =1+52或e =1-52(舍去). [答案] 1+52 6.观察下列等式: 1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为______________________________. [解析] 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项,且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .[答案] 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n7.已知:sin 230°+sin 290°+sin 2150°=32;sin 25°+sin 265°+sin 2125°=32,通过观察上述两等式的规律,请写出一般性的命题:____________________________________________________.[解析] 观察每个式子中三个角的关系:三个角分别成等差数列,即30°+60°=90°,90°+60°=150°;5°+60°=65°,65°+60°=125°.根据式子中角的这种关系,可以归纳得出:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.[答案] sin 2α+sin 2(α+60°)+sin 2(α+120°)=328.我们知道 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, …n 2=(n -1)2+2(n -1)+1, 左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 记S 1(n )=1+2+3+…+n , S 2(n )=12+22+32+…+n 2, …S k (n )=1k +2k +3k +…+n k (k ∈N *). 已知13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, …n 3=(n -1)3+3(n -1)2+3(n -1)+1.将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n .由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n 6=n (n +1)(2n +1)6.。

相关文档
最新文档