带电粒子在电场中偏转
高二物理:带电粒子在电场中的偏转(答案)
高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 带电粒子在匀强电场中的偏转222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 【答案】2. 解电偏转问题的三种方法方法一、分解法(速度三角形和位移三角形):加速度mdqU m qE a ==;时间0v L t =; 偏移2221v L md qU y =;偏角20mdv qUL tan =θ 方法二、推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。
②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
方法三、动能定理法: qEy =ΔE K 【答案】3. 带电粒子在匀强电场中偏转的功能关系(1)当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv20,其中U y =U d y ,指初、末位置间的电势差.(2)电势能的变化量:ΔE P =-qU y =-qEy 【答案】4. 电偏转中的比较与比值问题二、选择题5. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、222ql mv d B 、2202qd mvl C 、qd lmv 0 D 、v dlv q 0【答案】A【解析】图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)。
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
第八章 第4讲 带电粒子在电场中的偏转
第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.3.掌握带电粒子在电场和重力场的复合场中的运动规律.4.会分析、计算带电粒子在交变电场中的偏转问题.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿电场力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd.②离开电场时的偏移量:y =12at 2=qUl 22md v 02.③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02.1.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 (2023·广东佛山市模拟)如图所示,正方形ABCD 区域内存在竖直向上的匀强电场,质子(11H)和α粒子(42He)先后从A 点垂直射入匀强电场,粒子重力不计,质子从BC 边中点射出,则( )A .若初速度相同,α粒子从CD 边离开B .若初速度相同,质子和α粒子经过电场的过程中速度增量之比为1∶2C .若初动能相同,质子和α粒子经过电场的时间相同D .若初动能相同,质子和α粒子经过电场的过程中动能增量之比为1∶4 答案 D解析 对任一粒子,设其电荷量为q ,质量为m ,粒子在电场中做类平抛运动,水平方向有 x =v 0t ,竖直方向有y =12at 2=12·qE m ·x 2v 02,若初速度相同,水平位移x 相同时,由于α粒子的比荷比质子的小,则α粒子的偏转距离y 较小,所以α粒子从BC 边离开,由t =xv 0知两个粒子在电场中的运动时间相等,由Δv =at =qE m t ,知Δv ∝qm ,则质子和α粒子经过电场的过程中速度增量之比为2∶1,故A 、B 错误;粒子经过电场的时间为t =xv 0,若初动能相同,质子的初速度较大,则质子的运动时间较短,故C 错误;由y =12·qE m ·x 2v 02,E k =12m v 02得y =qEx 24E k ,若初动能相同,已知x 相同,则y ∝q ,根据动能定理知:经过电场的过程中动能增量ΔE k =qEy ,E 相同,则ΔE k ∝q 2,则质子和α粒子经过电场的过程中动能增量之比为1∶4,故D正确.例2 (2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受电场力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x =v 0t ,竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2,yx =tan 45°,联立解得t =2m v 0qE,故A 错误;v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =x cos 45°=22m v 02qE ,故C 正确.考向2 带电粒子在组合场中的运动例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX ′和YY ′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案 A解析U XX′和U YY′均为正值,两偏转电极的电场强度方向分别由X指向X′,Y指向Y′,电子带负电,所受电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.例4如图装置是由粒子加速器和平移器组成,平移器由两对水平放置、间距为Δd的相同平行金属板构成,极板间距离和板长均为L.加速电压为U0,两对极板间偏转电压大小相等均为U0,电场方向相反.质量为m、电荷量为+q的粒子无初速度地进入加速电场,被加速器加速后,从平移器下板边缘水平进入平移器,最终从平移器上板边缘水平离开,不计重力.下列说法正确的是()A.粒子离开加速器时速度v0=qU0 mB .粒子通过左侧平移器时,竖直方向位移y 1=L4C .Δd 与2L 相等D .只增加加速电压,粒子将不能从平移器离开 答案 B解析 根据qU 0=12m v 02,粒子离开加速器时速度为v 0=2qU 0m,故A 错误;粒子在左侧平移器电场中的偏移量为y 1=12at 2,又q U 0L =ma ,L =v 0t ,得y 1=L4,故B 正确;根据类平抛运动的特点和对称性,粒子在两平移器之间做匀速直线运动,它的轨迹延长线分别过平行板中点,根据几何关系可知Δd =L ,故C 错误;由B 选项可得y 1=qU 0L2m v 02,由A 选项可知当加速电压增大时,粒子进入平移器的速度增大,粒子在平移器中竖直方向偏移量变小,粒子可以离开平移器,位置比原来靠下,故D 错误.考点二 带电粒子在重力场和电场复合场中的偏转例5 如图所示,地面上某区域存在着水平向右的匀强电场,一个质量为m 的带负电小球(可视为质点)以水平向右的初速度v 0,由O 点射入该区域,刚好竖直向下通过竖直平面中的P 点,已知OP 与初速度方向的夹角为60°,重力加速度为g ,则以下说法正确的是( )A .所受电场力大小为3mg2B .小球所受的合外力大小为3mg3 C .小球由O 点到P 点用时3v 0gD .小球通过P 点时的动能为52m v 02答案 C解析 设OP =L ,小球从O 到P 水平方向做匀减速运动,到达P 点时水平速度为零,竖直方向做自由落体运动,则水平方向L cos 60°=v 02t ,竖直方向L sin 60°=12gt 2,解得t =3v 0g ,选项C 正确;水平方向受电场力F 1=ma =m v 0t =3mg3,小球所受的合外力是F 1与mg 的合力,可知合力的大小F =(mg )2+F 12=233mg ,选项A 、B 错误;小球通过P 点时的速度大小v P =gt =3v 0,则动能E k P =12m v P 2=32m v 02,选项D 错误.例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1·t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).考点三 带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等. 3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例7 在如图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m 、电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能沿OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子沿OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,减速到零后反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k T2(k=0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d4,解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 例8 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器极板长L =10 cm ,极板间距d =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,荧光屏足够长,在电容器两极板间接一交变电压,上极板与下极板的电势差随时间变化的图像如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t =0.06 s 时刻,电子打在荧光屏上的位置到O 点的距离; (2)荧光屏上有电子打到的区间长度. 答案 (1)13.5 cm (2)30 cm解析 (1)设电子经电压U 0加速后的速度为v 0,根据动能定理得eU 0=12m v 02,设电容器间偏转电场的场强为E ,则有E =Ud,设电子经时间t 通过偏转电场,偏离轴线的侧向位移为y ,则沿中心轴线方向有t =Lv 0,垂直中心轴线方向有a =eE m ,联立解得y =12at 2=eUL 22md v 02=UL 24U 0d,设电子通过偏转电场过程中产生的侧向速度为v y ,偏转角为θ,则电子通过偏转电场时有v y =at ,tan θ=v y v 0,则电子在荧光屏上偏离O 点的距离为Y =y +L tan θ=3UL 24U 0d ,由题图乙知t=0.06 s 时刻,U =1.8U 0,解得Y =13.5 cm.(2)由题知电子偏移量y 的最大值为d 2,根据y =UL 24U 0d可得,当偏转电压超过2U 0时,电子就打不到荧光屏上了,所以代入得Y max=3L,所以荧光屏上电子能打到的区间长度为2Y max=3L2=30 cm.课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小答案BC解析对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A错误,B正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C正确,D错误.2.(多选)(2023·辽宁葫芦岛市高三检测)如图所示,在竖直向上的匀强电场中,A球位于B球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断正确的是()A.如果A球带电,则A球一定带负电B.如果A球带电,则A球的电势能一定增加C.如果B球带电,则B球一定带负电D.如果B球带电,则B球的电势能一定增加答案AD解析 平抛时的初速度相同,在水平方向通过的位移相同,故下落时间相同,A 球在上方,竖直位移较大,由h =12at 2可知,A 球下落的加速度较大,所受合外力较大,如果A 球带电,则A 球受到向下的电场力,一定带负电,电场力做正功,电势能减小,故A 正确,B 错误;如果B 球带电,由于B 球的竖直位移较小,加速度较小,所受合外力较小,则B 球受到的电场力向上,应带正电,电场力对B 球做负功,电势能增加,故C 错误,D 正确.3.如图所示,一电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,方向竖直向上,P 、Q 两点间的电势差为U (U >0),不计粒子重力,P 点的电势为零.则下列说法正确的是( )A .粒子带负电B .带电粒子在Q 点的电势能为qUC .P 、Q 两点间的竖直距离为d 2D .此匀强电场的电场强度为23U3d答案 D解析 由题图可知,带电粒子的轨迹向上弯曲,则粒子受到的电场力方向竖直向上,与电场方向相同,所以该粒子带正电,故A 错误;粒子从P 点运动到Q 点,电场力做正功,大小为W =qU ,则粒子的电势能减少了qU ,P 点的电势为零,可知带电粒子在Q 点的电势能为-qU ,故B 错误;Q 点速度的反向延长线过水平位移的中点,则y =d 2tan 30°=32d ,电场强度大小为E =U y =23U3d,故D 正确,C 错误.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm ,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,3m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A .增大偏转电压UB .增大加速电压U 0C .增大偏转极板间距离D .将发射电子改成发射负离子 答案 A解析 设偏转极板长为l ,极板间距为d ,由eU 0=12m v 02,t =l v 0,a =eU md ,y =12at 2,联立得偏转位移y =Ul 24U 0d ,增大偏转电压U ,减小加速电压U 0,减小偏转极板间距离,都可使偏转位移增大,选项A 正确,B 、C 错误;由于偏转位移y =Ul 24U 0d 与粒子质量、带电荷量无关,故将发射电子改成发射负离子,偏转位移不变,选项D 错误.6.(多选)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0且周期性变化的电压,在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0、方向平行于金属板的相同带电粒子,t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场,已知电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力及相互间的作用力,则( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场答案 AD解析 粒子进入电场后,水平方向做匀速运动,则t =0时刻进入电场的粒子在电场中运动时间t =2dv 0,此时间正好是交变电压的一个周期,粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;在竖直方向,t =0时刻进入电场的粒子在T 2时间内的位移为d 2,则d 2=12a ·(T 2)2=U 0q 2dm (d v 0)2,计算得出q =m v 02U 0,选项B 错误;在t =T8时刻进入电场的粒子,离开电场时在竖直方向上的位移为d =2×12a (38T )2-2×12a (T 8)2=d 2,故电场力做功为W =U 0q d ×12d =12U 0q =12m v 02,电势能减少了12m v 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T4,然后向下减速运动T 4,再向上加速T 4,然后再向上减速T4,由对称可以知道,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.7.(2023·重庆市高三模拟)如图所示,一圆形区域有竖直向上的匀强电场,O 为圆心,两个质量相等、电荷量大小分别为q 1、q 2的带电粒子甲、乙,以不同的速率v 1、v 2从A 点沿AO 方向垂直射入匀强电场,甲从C 点飞出电场,乙从D 点飞出,它们在圆形区域中运动的时间相同,已知∠AOC =45°,∠AOD =120°,不计粒子的重力,下列说法正确的是( )A.v 1v 2=2-22+3 B.v 1v 2=2-23 C.q 1q 2=32 D.q 1q 2= 2 答案 B解析 甲、乙在电场中均做类平抛运动,沿初速度方向做匀速直线运动,它们在圆形区域中运动时间t 相同,在水平方向上,根据题图中几何关系可得x AC =v 1t =R -R cos 45°,x AD =v 2t =R +R cos 60°,联立可得v 1v 2=1-221+12=2-23,A 错误,B 正确;甲、乙在电场中沿电场力方向均做初速度为零的匀加速直线运动,则有y AC =12·q 1E m t 2=R sin 45°,y AD =12·q 2Em t 2=R sin 60°,联立可得q 1q 2=sin 45°sin 60°=23,C 、D 错误.8.(2022·浙江6月选考·9)如图所示,带等量异种电荷的两正对平行金属板M 、N 间存在匀强电场,板长为L (不考虑边界效应).t =0时刻,M 板中点处的粒子源发射两个速度大小为v 0的相同粒子,垂直M 板向右的粒子,到达N 板时速度大小为2v 0;平行M 板向下的粒子,刚好从N 板下端射出.不计重力和粒子间的相互作用,则( )A .M 板电势高于N 板电势B .两个粒子的电势能都增加C .粒子在两板间的加速度为a =2v 02LD .粒子从N 板下端射出的时间t =(2-1)L2v 0答案 C解析 由于不知道两粒子的电性,故不能确定M 板和N 板的电势高低,故A 错误;根据题意垂直M 板向右的粒子到达N 板时速度增加,动能增加,则电场力做正功,电势能减小,则平行M 板向下的粒子到达N 板时电场力也做正功,电势能同样减小,故B 错误;设两板间距离为d ,对于平行M 板向下的粒子刚好从N 板下端射出,在两板间做类平抛运动,有L2=v 0t ,d =12at 2,对于垂直M 板向右的粒子,在板间做匀加速直线运动,因两粒子相同,则在电场中加速度相同,有(2v 0)2-v 02=2ad ,联立解得t =L2v 0,a =2v 02L,故C 正确,D 错误. 9.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示,可知两次偏转的加速度大小相等,对两次偏转分别由牛顿第二定律得qE -mg =ma ,mg =ma ,解得a =g ,E =2mg q ,由U =Ed 得两极板间电压为U =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间电场强度不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误. 10.(2023·黑龙江佳木斯市第八中学调研)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一个不计重力的带正电的粒子电荷量q =10-10C 、质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后,可进入界面MN 和光屏PS 间的无电场的真空区域,最后打在光屏PS 上的D 点(未画出).已知界面MN 与光屏PS 相距12 cm ,O 是中心线RO 与光屏PS 的交点.sin 37°=0.6,cos 37°=0.8,求:(1)粒子穿过界面MN 时偏离中心线RO 的距离; (2)粒子射出平行板电容器时偏转角; (3)OD 两点之间的距离.答案 (1)0.03 m (2)37° (3)0.12 m解析 (1)带电粒子垂直进入匀强电场后做类平抛运动,加速度为a =F m =qU md水平方向有L =v 0t竖直方向有y =12at 2联立解得y =qUL 22md v 02=0.03 m(2)设粒子射出平行板电容器时偏转角为θ,v y =at tan θ=v y v 0=at v 0=qUL md v 02=34,故偏转角为37°.(3)带电粒子离开电场时速度的反向延长线与初速度延长线的交点为水平位移的中点,设两界面MN 、PS 相距为L ′,由相似三角形得L 2L 2+L ′=yY ,解得Y =4y =0.12 m.11.(2023·辽宁大连市第八中学高三检测)如图甲所示,真空中的电极可连续不断均匀地逸出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 的中线射入偏转电场,A 、B 两板距离为d ,A 、B 板长为L ,AB 两板间加周期性变化的电场U AB ,如图乙所示,周期为T ,加速电压U 1=2mL 2eT 2,其中m 为电子质量、e 为电子电荷量,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:(1)电子从加速电场U 1飞出后的水平速度v 0的大小;(2)t =0时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;(3)在0~T2内射入偏转电场的电子中从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比.答案 (1)2L T (2) eU 0T 28md (3)50%解析 (1)电子在加速电场中加速, 由动能定理得eU 1=12m v 02-0解得v 0=2LT(2) 电子在偏转电场中做类平抛运动,水平方向L =v 0t ,解得t =T2,t =0时刻进入偏转电场的电子加速度a =eE m =eU 0md ,电子离开电场时距离A 、B 中心线的距离y =12at 2,解得y =eU 0T 28md(3)在0~T2内射入偏转电场的电子,设向上的方向为正方向,设电子恰在A 、B 间中线离开偏转电场,则电子先向上做初速度为零、加速度大小为a 的匀加速直线运动,经过时间t ′后速度v =at ′,此后两板间电压大小变为3U 0,加速度大小变为a ′=eE ′m =3eU 0md =3a电子向上做加速度大小为3a 的匀减速直线运动,速度减为零后,向下做初速度为零、加速度大小为3a 的匀加速直线运动,最后回到A 、B 间的中线,经历的时间为T 2,则12at ′2+v (T2-t ′)-12×3a (T 2-t ′)2=0,解得t ′=T4,则能够从中线上方向离开偏转电场的电子的发射时间为t ″=T 4,则在0~T2时间内,从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比η=T 4T 2×100%=50%.12.(多选)如图,质量为m 、带电荷量为q 的质子(不计重力)在匀强电场中运动,先后经过水平虚线上A 、B 两点时的速度大小分别为v a =v 、v b =3v ,方向分别与AB 成α=60°角斜向上、θ=30°角斜向下,已知AB =L ,则( )A .质子从A 到B 的运动为匀变速运动 B .电场强度大小为2m v 2qLC .质子从A 点运动到B 点所用的时间为2Lv D .质子的最小速度为32v 答案 ABD解析 质子在匀强电场中受力恒定,故加速度恒定,则质子从A 到B 的运动为匀变速运动,A 正确;质子在匀强电场中做抛体运动,在与电场垂直的方向上分速度相等,设v a 与电场线的夹角为β,如图所示.则有v a sin β=v b cos β,解得β=60°,根据动能定理有qEL cos 60°=12m v b 2-12m v a 2,解得E =2m v 2qL ,B 正确;根据几何关系可得,AC 的长度为L sin 60°=32L ,则质子从A 点运动到B 点所用的时间为t =32L v a sin β=Lv ,C 错误;在匀变速运动过程中,当速度方向与电场力方向垂直时,质子的速度最小,有v min =v a sin β=32v ,D 正确.。
带电粒子在电场中的偏转(含问题详解)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
带电粒子在电场中的偏转及在电场中的运动综合应用
带电粒子在电场中的偏转及在电场中的运动综合应用知识要点一、带电粒子在电场中的偏转以初速v0垂直场强方向射入匀强电场中的带电粒子,受恒定电场力作用,做类似平抛的匀变速运动,如图所示。
有关参量如下:1、运动时间:在初速度v0方向上是匀速运动,射出板间时其位移为l,故l=v0t,所以。
2、加速度:忽略重力影响,物体所受电场力即合力,所以。
3、偏转位移:带电粒子在沿电场方向做初速度为零的匀加速直线运动,。
4、出射速度射出板间时速度大小。
5、速度偏角:。
二、带电粒子的加速与偏转问题综合应用如图所示,一个质量为m、带电量为q的粒子,由静止开始,先经过电压为U1的电场加速后,再垂直于场强方向射入两平行金属板间的匀强电场中,两金属板板长为l,间距为d,板间电压为U2。
1、粒子射出两金属板间时偏转的距离y加速过程使粒子获得速度v0,由动能定理。
偏转过程经历的时间,偏转过程加速度,偏转的距离。
2、偏转的角度φ:偏转的角度。
3、说明(1)偏转的距离y和偏转的角度φ都仅由加速电场和偏转电场的情况决定,与带电粒子的电量、质量无关。
(2)要增大偏转的距离y和偏转的角度φ,可采取的措施有:减少加速电压U1或增大偏转电压U2等。
三、用功能关系分析带电粒子在电场中的运动1、电场力及电场力做功的特点(1)电场力与带电粒子所处的运动状况无关,在匀强电场中的电场力是一个恒力,在点电荷电场中的电场力是一个中心力,受力方向一定沿着电场线.(2)电场力做功与带电粒子的具体路径无关,仅由始末位置的电势差决定.当带电粒子同时受到除电场力以外的其他力作用时,电场力的功对应着电势能的变化,合力的功对应着动能的变化.2、注意分清微观粒子和普通带电微粒研究微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化;研究普通的带电微粒(如油滴、尘埃等)在电场中的运动,必须考虑其重力及运动中重力势能的变化.3、研究带电粒子在电场中运动的两条主要线索带电粒子在电场中的运动,是一个综合电场力、电势能的力学问题,研究的方法与质点动力学相同,它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动量定理、动能定理、功能原理等力学规律.研究时,主要可以按以下两条线索展开.(1)力和运动的关系——牛顿第二定律根据带电粒粒子受到的电场力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理根据电场力对带电粒子所做的功,引起带电粒子的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电粒子的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.4、研究带电粒子在电场中运动的两类重要的思维技巧(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电粒子的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运功的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题入口或简化计算.典型例题[例1] 如图所示,两个电子a和b先后以大小不同的速度,从同一位置沿垂直于电场的方向射入匀强电场中,其运动轨迹如图所示,那么[]A.b电子在电场中运动的时间比a长B.b电子初速度比a大C.b电子离开电场时速度比a大D.两电子离开电场时的速度大小关系不确定[解析]电子在电场中只受电场力作用,做类平抛运动由图可见t b>t a,v b<v a又,因eU相同,故v0较大则v t较大,所以CD不对,选A。
一轮复习:带电粒子在电场中的偏转
6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强
带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)
第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。
M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。
带电粒子在电场中的偏转
mg=qU1/d
60V 小球向下做匀加速直线运动; 当U2=60V时,小球向下做匀加速直线运动; 60 d h
mg-qU2/d=ma 由 h=at2/2 求出时间 t 。
3、带电粒子的偏转(限于匀强电场) 带电粒子的偏转(限于匀强电场)
(1)运动状态分析: )运动状态分析:
带电粒子以速度V 垂直于电场线方向进入匀强电场, 带电粒子以速度 0垂直于电场线方向进入匀强电场,受到与 初速度垂直的恒定的电场力作用,而做匀变速曲线运动。 初速度垂直的恒定的电场力作用,而做匀变速曲线运动。 轨迹为抛物线) (轨迹为抛物线) v0
B
O
A
V
E
2、如图:在xoy平面以下区域为匀强电场,场强为 , 、如图: 平面以下区域为匀强电场, 平面以下区域为匀强电场 场强为E, 方向竖直向上, 以上无电场, 方向竖直向上,在xoy以上无电场,有一质量为 的 以上无电场 有一质量为m的 带电量为+q的小球从离 的小球从离xoy上方高为 处自由下落, 上方高为h处自由下落 带电量为 的小球从离 上方高为 处自由下落, 然后进入电场。 然后进入电场。设qE>m,求: , 坐标值。 (1)小球下落到最低处的 坐标值。 )小球下落到最低处的z坐标值 (2)小球完成一次周期性运动所需的时间。 )小球完成一次周期性运动所需的时间。
基本规律
研究此类问题的思路: 研究此类问题的思路:
牛顿第二定律; (1)力和运动的关系 )力和运动的关系--------牛顿第二定律; 牛顿第二定律 (2)功和能的关系--------动能定理; )功和能的关系 动能定理; 动能定理
1、带电粒子的平衡 、
①粒子在电场中静止; 粒子在电场中静止; 粒子在电场中做匀速直线运动; ②粒子在电场中做匀速直线运动; 处理方法: 处理方法:
带电粒子的偏转公式
带电粒子的偏转公式在物理学中,带电粒子的偏转公式可是一个相当重要的知识点呢!咱们先来说说带电粒子在电场中的偏转。
想象一下,一个小小的带电粒子,就像一个调皮的小精灵,在电场的作用下左冲右突。
这时候,就轮到我们的偏转公式大显身手啦!带电粒子在电场中的偏转公式为:y = (qUL²) / (2mdv₀²) 。
这里的y 表示带电粒子在电场中的偏转位移,q 是粒子的电荷量,U 是电场的电压,L 是电场的长度,m 是粒子的质量,v₀是粒子进入电场时的初速度。
咱们来举个例子感受一下这个公式的威力。
假设在一个实验室里,有一个带电的小粒子,电荷量为 1.6×10⁻¹⁹库仑,质量是 9.1×10⁻³¹千克,它以 1×10⁶米每秒的初速度水平进入一个长度为 0.1 米,电压为 100 伏的电场。
这时候,我们把这些数值代入公式,就能算出这个小粒子在电场中的偏转位移啦。
还记得我当年在学校学习这个知识点的时候,老师为了让我们更深刻地理解,专门在课堂上做了一个实验。
老师拿出一个类似示波器的装置,在上面调整各种参数,然后让我们观察带电粒子的运动轨迹。
那时候,我们一群同学都瞪大了眼睛,紧紧盯着那个小小的屏幕,心里充满了好奇和期待。
当看到带电粒子按照我们计算的轨迹偏转时,那种兴奋和成就感简直难以言表。
再来说说带电粒子在磁场中的偏转。
带电粒子在磁场中的偏转公式是:r = mv / (qB) 。
这里的 r 表示带电粒子在磁场中的偏转半径,m 还是粒子的质量,v 是粒子的速度,q 是电荷量,B 是磁场的磁感应强度。
比如说,有一个带电粒子,质量为 1×10⁻²⁷千克,电荷量为1.6×10⁻¹⁹库仑,速度是 1×10⁷米每秒,处在一个磁感应强度为 1 特斯拉的磁场中。
我们把这些数值代入公式,就能算出偏转半径啦。
学习带电粒子的偏转公式,就像是掌握了一把解开物理世界神秘大门的钥匙。
带电粒子在电场中的偏转
tan
vy vx
二、 带电粒子在电场中的偏转 1、运动的时间 2、加速度
l t v0
F qU a m md
3、偏转距离
4、分速度
1 2 qU l 2 y at 2 2 2md v0
qU l v y at md v0
5、速度偏转角
qUl tan 2 vx mdv0
vy
课堂小结:
带电粒子在电场中的偏转 粒子在与电场垂直的方 向上做匀速直线运动
类似平抛运动的分析方法
(运动的分解)
粒子在与电场平行的方 向上做匀加速运动
【尝试练习】如图所示,两个相同极板Y与Y'的 长度L=6.0 cm,相距d=2.0 cm,极板间的电压 U=200 V。一个电子沿平行于板面的方向射入 电场中,射入的速度v0=3.0×107 m/s。把两板 间的电场看作匀强电场,求电子射出电场时沿 垂直于板面方向偏移的距离y和偏转的角度 θ(m=0.9×10-30 kg,e=1.6×10-19 C)。
带电粒子在电场中的偏转
(不计粒子的重力)
水平方向:匀速直线运动
+ + + + + +
U q m v0 φ d x y
θ
x
vx v
x v0t
1 2 y at 2
vx v0
竖直方向:初速度为零匀 加速直线运动
F
y
- - -l - - -
vy
vy at
运动分析: 电荷作类平抛运动。
y tan x
vy
带电粒子在电Байду номын сангаас中的偏转
+ + + + + +
3.8带电粒子在电场中的偏转
带电粒子在电场中的偏转精讲年级:高中 科目:物理 类型:同步 制作人:黄海辉知识点:带电粒子在电场中的偏转1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响), 则有(1)加速度:a =F m =qE m =qUmd。
(2)在电场中的运动时间:t =l v 0。
(3)速度⎩⎪⎨⎪⎧v x =v 0v y =at =qUlmv 0dv =v x 2+v y 2,tan θ=v y v x =qUlmv 02d 。
(4)位移⎩⎪⎨⎪⎧l =v 0t y =12at 2=qUl22mv 02d2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的。
证明:由qU 0=12mv 02及tan φ=qUl mv 02d 得tan φ=Ul2U 0d。
(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2。
3.带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =Udy ,指初、末位置间的电势差。
[例1] 如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出。
已知电子质量为m ,电荷量为e ,加速电场电压为U 0。
偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d 。
(1)忽略电子所受重力,求电子射入偏转电场时初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法。
在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。
已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10 m/s 2。
带电粒子在电场中的运动问题2(偏转)知识讲解
带电粒子在电场中的偏转一、如图所示,某带电粒子以速度0v 沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动。
1、处理方法:类平抛运动,运动的合成与分解求解相关问题;水平方向:匀速直线运动; 竖直方向:匀加速直线运动。
2、所涉及的方程及结论 ①加速度:mdqU m qE m F a ===②运动时间: A 、能飞出极板间时,0v l t = B 、打在极板上时,由qUmd a d t at d 22,212===得 ③竖直上的偏转量:A 、离开电场时,dmv U ql at y 2022221==,如果综合加速电场0U 时,由20021mv qU =得dU Ul y 024=,即经过加速电场后进入偏转电场时,竖直方向上的偏转量与粒子的比荷无关。
换句话说,就是不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时竖直方向上的偏转量都是一样的。
B 、打在极板上时,2d y =,水平方向的位移为qUmd v a d v t v x 2000=== ④偏转角:dmv qUl v at v v y2000tan ===θ,结合20021mv qU =得d U Ul 02tan =θ即经过加速电场后进入偏转电场时,偏转角与粒子的比荷无关。
换句话说,即不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时速度的方向都是一样的。
⑤如果粒子能离开偏转电场,离开电场时速度方向的反向延长线交水平位移的中点2l 处。
⑥速度:220y v v v +=或者根据动能定理:y dU U mv mv qU y y =-=,2121202例1、如图所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时竖直方向上的偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tanθ举一反三1、如图所示,质子(11H)、氘核(H21)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),三个粒子均能射出电场;求①这三个粒子射出电场时所花时间比;②这三个粒子射出电场时竖直方向上的偏转量的比;③这三个粒子射出电场时速度的偏转角的比;2、如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()A.经过加速电场过程,电场力对氚核做的功最多B.经过偏转电场过程,电场力对三种核做的功一样多C.三种原子核打在屏上时的速度一样大D.三种原子核都打在屏上的同一位置上3、在上题的基础上,求:①进入偏转电场到离开时所需时间比;二、示波器工作原理例2、如图所示是示波管的原理图.它由电子枪、偏转电极(XX′和YY′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX′和YY′上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑.下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY′上加电压,且Y′比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX′、YY′上加电压,且X比X′电势高、Y比Y′电势高C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX′上加特定的周期性变化的电压(扫描电压)D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX′上加适当频率的扫描电压、在偏转电极YY′上加按正弦规律变化的电压举一反三1、如图所示,是一个示波器工作原理图,电子经过加速后以速度v0垂直进入偏转电场,离开电场时偏转量是h,两平行板间距离为d,电势差为U,板长为l,每单位电压引起的偏移量(h/U)叫示波器的灵敏度.若要提高其灵敏度,可采用下列办法中的()A.增大两极板间的电压B.尽可能使板长l做得短些C.尽可能使板间距离d减小些D.使电子入射速度v0大些2、如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极。
2025高考物理总复习带电粒子在电场中的偏转
考点一 带电粒子在匀强电场中的偏转
思考 不同的带电粒子(带同种电性)在加速电场的同一位置由静止开始 加速后再进入同一偏转电场,带电粒子的轨迹是重合的吗?
考点一 带电粒子在匀强电场中的偏转
答案 由 qU0=12mv02 y=12at2=12·qmUd1·vl02 tan θ=vv0y=mqdUv10l2 得 y=4UU10l2d,tan θ=2UU10ld, y、θ均与m、q无关。即偏移量和偏转角总是相同的,所以它们的轨迹是 重合的。
思路二
考点二 示波管的工作原理
例3 (2023·江苏省金陵中学阶段检测)示波器可用来观察电信号随时间变化的情 况,其核心部件是示波管。示波管由电子枪、偏转电极和荧光屏组成,管内抽成 真空,结构如图甲所示。图乙是从右向左看到的荧光屏的平面图。在偏转电极 XX′、YY′上都不加电压时,从电子枪发出的电子束沿直线运动,打在荧光屏 中心,在O点产生一个亮斑。若同时在两个偏转电极上分别加ux=Usin ωt和uy= Ucos ωt两个交流电信号,
考点一 带电粒子在匀强电场中的偏转
电子做类平抛运动,在OC方向做初速度为零的匀 加速直线运动,且加速度大小相等。沿电场方向 的位移为x,垂直于电场方向的位移为y,由几何 关系可得 xAC=32R,yAC= 23R,xAB=R,yAB= 3R,由 x=12at2 得 tAC∶tAB = xAC∶ xAB= 3∶ 2,又由 v0=yt得vvCB=yyAACB×ttAACB=2 23<1,所以电 子经过 C 点的初速度小于经过 B 点的初速度,故 C 正确,D 错误。
2meU,
返回
< 考点二 >
示波管的工作原理
考点二 示波管的工作原理
在示波管模型中,带电粒子经加速电场U1加速,再经偏转电场U2偏转后, 需要经历一段匀速直线运动才会打到荧光屏上并显示亮点P,如图所示。
带电粒子在电场中偏转
·O
U2
D.使U2变为原来的1/2倍
U1
解:电子先经加速电场加速后进入偏转电场做类平抛运动.
qU 1
1 2
mv
2 0
①
y 1 at2 2
联立①②两式可得电子的偏移量
y
q U2 x 2 2mUd2 xv022
② ③
电学搭 台,力 学唱戏。
要使电子的轨迹不变,则应使电子进入偏4U转1d电场后,任一水
平位移x所对应的侧移距离y不变. U2 U1 由此选项A正确.
运动的位移和初速度为零的匀加速运动的分运动的位移大小相等均为两板间的距离d.
过加速后以速度v0垂直进入偏转电场,离开偏转电场时 偏移量为h,两平行板间距为d,电压为U,板长为L,每
单位电压引起的偏移量(h/U)叫做示波管的灵敏度,
为了提高灵敏度,可采用的办法是( C )
A.增加两极板间的电势差U
B.尽可能缩短板长L C.尽可能减小板间距d
v0
D.使电子的入射速度v0大些
h
h 1 (eU )( L )2 2 m d v0
2U0 d ④ U
⑵对电子运动的整个过程根据动能定理可求出电子穿出电场
时的动能
EK
eU
0
e
U 2
e(U 0
U 2
)
⑤
提升物理思想:整个过程运用动能定理解题
例5.空间某区域有场强大小为E的匀强电场,电场的边
界MN和PQ是间距为d的两个平行平面,如果匀强电场的
方向第一次是垂直于MN指向PQ界面,第二次是和MN界面
④
联立②④两式可得
y1 4 y2
⑤
模型化归:带电粒子在匀强 电场中做“类平抛运动”
带电粒子在电场中的偏转
二、带电粒子在电场中偏转的几个重要推论1.结论:不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的2.作粒子速度的反向延长线,与初速度方向交于O 点,O 点与电场边缘的距离为x ,如图所示,则三、带电粒子在复合场中的运动1.带电粒子在电场中的运动是否考虑重力(1)基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2.(2010年济南模拟)如图9-3-12所示,质子(11H )和α粒子(24He),以相同的初动能垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y 之比为( ) A .1∶1 B .1∶2C .2∶1D .1∶4 解析:选B.由y =12Eq m L 2v 02和E k0=12m v 02,得:y =EL 2q 4E k0可知,y 与q 成正比,B 正确.4.(2010年广东珠海质检)分别将带正电、负电和不带电的三个等质量小球,分别以相同的水平速度由P 点射入水平放置的平行金属板间,已知上板带负电,下板接地.三小球分别落在图9-3-14中A 、B 、C 三点,则错误的是( ) A .A 带正电、B 不带电、C 带负电B .三小球在电场中加速度大小关系是:a A <a B <a C图9-3-12图9-3-14C.三小球在电场中运动时间相等D.三小球到达下板时的动能关系是E k C>E k B>E k A解析:选C.由于A的水平射程x最远,A的运动时间t=xv0最长,C错误.A的加速度a A=2ht2最小,而C的加速度a C最大,a A<a B<a C,B正确.可见,A带正电,受力方向与重力方向相反,B不带电,C 带负电,受力方向与重力方向相同,A正确.由动能定理知E k C>E k B>E k A,D正确.3.如图所示,在光滑绝缘的水平桌面上固定放置一光滑、绝缘的挡板ABCD,AB段为直线形挡板,BCD段是半径为R的圆弧形挡板,挡板处于场强为E的匀强电场,电场方向与圆直径MN平行.现有一带电量为q、质量为m的小球静止从挡板上的A点释放,并且小球能沿挡板内侧运动到D点抛出,则()A.小球运动到N点时,挡板对小球的弹力可能为零B.小球运动到N点时,挡板对小球的弹力可能为EqC.小球运动到M点时,挡板对小球的弹力可能为零D.小球运动到C点时,挡板对小球的弹力一定大于mg解析:选C.小球沿光滑轨道内侧运动到D点抛出,说明小球在N、C、M点的速度均不为零,对N点,F N-Eq=m R vN2,F N必大于Eq,A、B均错误;在C点:F C=m R vC2,无法比较F C与mg的大小,D错误;在M点,F M+Eq=m R vM2,当v M=时,F M=0,C正确.5.如图9-3-15所示,abcd是一个正方形盒子.cd边的中点有一个小孔e.盒子中有沿ad方向的匀强电场.一个质量为m带电量为q 的粒子从a 处的小孔沿ab 方向以初速度v 0射入盒内,并恰好从e 处的小孔射出.(忽略粒子重力)求:(1)该带电粒子从e 孔射出的速度大小.(2)该过程中电场力对该带电粒子做的功.(3)若正方形的边长为l ,试求该电场的场强.解析:(1)设粒子在e 孔的竖直速度为v y .则水平方向:l /2=v 0t竖直方向:l =v y 2·t得:v y =4v 0,v e =v 02+v y 2=17v 0.(2)由动能定理得:W 电=12m v e 2-12m v 02=8m v 02.(3)由W 电=Eq ·l 和W 电=8m v 02得:E =8m v 02ql .答案:(1)17v 0 (2)8m v 02 (3)8m v 02ql1.如图9-3-22所示,有一带电粒子(不计重力)紧贴A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿轨迹①从两板中间飞出;当偏转电压为U 2时,带电粒子沿轨迹②落到B 板正中间;设带电粒子两次射入电场的水平速度相同,则电压U 1、U 2之比为( )A .1∶1B .1∶2C .1∶4D .1∶8解析:选D.设板长为L ,板间距离为d ,水平初速度为v 0;带电粒子的质量为m ,电荷量为q ;两次运动的时间分别为t 1和t 2.第一次射入时:L =v 0t 1,d 2=12·qU 1md t 12,联立两式解得:U 1=md 2v 02qL 2.第二次射入时:L 2=v 0t 2,d =12·qU 2md t 22,联立两式解得:U 2=8md 2v 02qL 2.所以U1∶U 2=1∶8,故D 正确.2.如图9-3-23所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,则下列结论正确的是( )A .板间电场强度大小为mg /qB .板间电场强度大小为2mg /qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间解析:选BC10.如图9-3-25所示,真空室中速度v 0=1.6×107 m/s 的电子束,连续地沿两水平金属板中心线OO ′射入,已知极板长l =4 cm ,板间距离d =1 cm ,板右端距离荧光屏PQ 为L =18 cm.电子电荷量q =1.6×10-19 C ,质量m =0.91×10-30 kg.若在电极ab 上加u =2202sin100πt V 的交变电压,在荧光屏的竖直坐标轴y 上能观测到多长的线段?(设极板间的电场是均匀的、两板外无电场、荧光屏足够大)解析:因为经过偏转电场的时间为t =l v 0=2.5×10-9 s, 而T =2πω=0.02 s ≫t . 故可以认为进入偏转电场的电子均在当时所加电压形成的匀强电场中运动纵向位移d 2=12at 2,a =Eq m =U m q dm ,所以电子能够打在荧光屏上最大竖直偏转电压:U m =md 2qt 2=md 2v 02q l 2=91 V .当U =91 V 时,E =U m d ,y =12at 2因为v y =at =qU m dm t =4×106 m/s ,tan θ=v y v 0=0.25 偏转量y =d 2+L tan θ=5 cm.y 轴上的观测量为2y =10 cm.答案:10 cm11.(2010年徐州模拟)质量为m ,带+q 电荷量的小球以水平初速度v 0进入竖直向上的匀强电场中,如图9-3-26甲所图9-3-25示.今测得小球进入电场后在竖直方向上的高度y与水平方向的位移s之间的关系如图乙所示.根据题给已知量及图乙给出的信息,求:(1)匀强电场的场强大小;(2)小球从进入匀强电场到上升到h高度的过程中,电场力做了多少功?(3)小球在h高度处的动能多大?解析:(1)对小球研究知受两个力:重力(竖直向下)及电场力(竖直向上).设经过t秒小球水平位移为l,则由题中乙图知:l=v0·t①h=12at2②由①②得a=2h v02l2,对小球而言:F合=ma,F合=qE-mg,E=mg+maq=mgl2+2mh v02ql2.(2)电场力做功为W=qEh=mgh+2h2m v02l2.(3)根据动能定理,E k=qEh-mgh+m v022=m v02(12+2h2l2).。
高二物理:带电粒子在电场中的偏转
高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单 1. 正交分解法222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 2. 推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。
②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
方法三、 qEy =ΔE K 3. 功能关系法(1)动能定理:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y=Ud y ,指初、末位置间的电势差. (2)势能定理:电势能的变化量ΔE P =-qU y =-qEy 4. 电偏转中的比较与比值问题5.考虑重力的电偏转6.与电容器的两类基本问题有关的电偏转二、选择题1. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、2202ql mv dB 、2202qd mv l C 、qd lmv 0 D 、v dlv q 02. 如图所示,在真空中带电粒子P 1和P 2先后以相同的初速度从O 点射入匀强电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 第一章静电场一3第3节电容器与电容、带电粒子在电场中的运动【考纲知识梳理】一. 电容器1.构成:2.充放电:3.电容器带的电荷量: 4.电容器的电压:(1)额定电压:(2)击穿电压:二. 电容1 .定义:2 .定义式:3 .电容的单位:4 .物理意义:三. 平行板电容器1.平行板电容器的电容的决定式:1 ;S SC -4 k d d2.平行板电容器两板间的电场:可认为是匀强电场,E=U/d★电容器两类动态变化的分析四. 带电粒子在电场中的运动1. 带电粒子的加速:2. 带电粒子在匀强电场中的偏转:★带电粒子在电场中运动时重力的处理★先加速再偏转规律★示波管⑴构造:电子枪、偏转电极,荧光屏(如图6 —4-4)⑵工作原理如果在偏转电极XX 0和YY 0之间都没有加电压,则电子枪射出的电子沿直线打在荧光屏中央,在屏上产生一个亮点YY,上所加的是待显示的信号电压U,在屏上产生的竖直偏移y /与U成正比. XX/上所加的机内锯齿形电压,叫扫描电压.当扫描电压和信号电压的周期相同时,荧光屏上将出现一个稳定的波形.五。
静电平衡状态下的导体⑴处于静电平衡下的导体,内部合场强处处为零.⑵处于静电平衡下的导体,表面附近任何一点的场强方向与该点的表面垂直.⑶处于静电平衡下的导体是个等势体,它的表面是个等势面. ⑷静电平衡时导体内部没有电荷,电荷只分布于导体的外表面.导体表面,越尖的位置,电荷密度越大,凹陷部分几乎没有电荷.六。
尖端放电七。
静电屏蔽一、电容器问题1、(2011 •阜阳模拟)如图所示,在平行板电容器正中有一个带电微粒.S闭合时,该微粒恰好能保持静止.在以下两种情况下:①保持S闭合,②充电后将S断开.下列说法能实现使该带电微粒向上运动打到上极板的是()A. ①情况下,可以通过上移极板M实现B. ①情况下,可以通过上移极板N实现C. ②情况下,可以通过上移极板M实现D. ②情况下,可以通过上移极板N实现2、如图6—3—1的电路中,电容器的两极板始终和电源相连,若将两极板间的距离增大,电路中将出现的情况是()有电流流动,方向从a顺时针流向b 有电流流动,方向从b逆时针流向a图6-4-4无电流流动无法判断3、平行板电容器保持与直流电源两极连接,充电完毕后,两极板间的电压是U,充电荷量为Q,两极板间场强为E,电容为C,如果电容器充电完毕后与电源断开.将两板间距离减小,引起变化情况是().Q变大.C变大C. E不变D・U变小4、平行板电容器两板间有匀强电场,其中有一个带电液滴处于静止,如图 6 —3—2.当发生下列哪些变化时,液滴将向上运动?()A.将电容器的下极板稍稍下移;r ' ------ 1——B.将电容器的上极板稍稍下移;m* qC.将S断开,并把电容器的下极板稍稍向左水平移动;D.将S断开,并把电容器的上极板稍稍下移。
图6—3—25、如图6—3—3示,电路可将声音信号转化为电信号,该电路中右侧固定不动的金属板b与能在声波驱动下沿水平方向振动的镀有金属层的振动膜a构成一个电容器,a、b通过导线与恒定电源两极相接•若声源S做简谐运动,则()a振动过程中,a、b.板间的电场强度不变B. a振动过程中,a、b板所带电量不变屛齐'C. a振动过程中,灵敏电流计中始终有方向不变的电流,么二 FD.a向右运动时,a、b两板所构成的电容器的电容变大,电源给电容,:充电.6、(2011 •扬州模拟)下列关于实验中使用静电计的说法中正确的有()图6 —3—3A. 使用静电计的目的是观察电容器电压的变化情况B. 使用静电计的目的是测量电容器电量的变化情况C. 静电计可以用电压表替代D. 静电计可以用电流表替代7、(2011 •会昌模拟)水平放置的平行板电容器与一电池相连.在电容器的两板间有一带正电的质点处于静止状态.现将电容器两板间的距离增大,则()A. 电容变大,质点向上运动B. 电容变大,质点向下运动C. 电容变小,质点保持静止D. 电容变小,质点向下运动8、对于水平放置的平行板电容器,下列说法正确的是()A .将两极板的间距加大,电容将增大B •将两极板平行错开,使正对面积减小,电容将减小C.在下板的内表面上放置一面积和极板相等、厚度小于极板间距的陶瓷板,电容将增大D •在下板的内表面上放置一面积和极板相等、厚度小于极板间距的铝板,电容将增大9、传感器是一种采集信息的重要器件•如图 6 —3—9为测定压力的电容式传感器,A为固定电极,B为可动电极,组成一个电容大小可变的电容器•可动电极两端固定,当待测压力施加在可动电极上时,可动电极发生形变,从而改变了电容器的电容•现将此电容式传感器与零刻度在中央的灵敏电流计和电源串联成闭合电路,已知电流从电流计正接线柱流人时指针向右偏转•则待测压力增大的时()A •电容器的电容将减小B .灵敏电流计指针在正中央零刻度处特测压力图6 —3—9C .灵敏电流计指针向左偏转D •灵敏电流计指针向右偏转,之后又回到中央10、如图6 —3 —10是测定液面高度h的传感器•在导线芯的外面涂上一层绝缘物质,放入导电液体中,在计算机上就可以知道h的变化情况,并实现自动控制,下列说法中正确的是()A .液面高度h变大,电容变大B .液面高度h变小,电容变大C.金属芯线和导电液体构成电容器的两个电极D .金属芯线的两侧构成电容器的两电极11、如图6—3—11,有的计算机键盘的每一个键下面都连一小块金属片与该金属片隔有一定空气隙的是另一块小的固定金属片,这两片金属片组成一个小电容器,该电容器的电容C可用公式C= e-计算,式中常数d£= -- =9 X10-12F m-1, S表示金属片的正对面积,d表示两金属片间4pk的距离•当键被按下时,此小电容器的电容发生变化,与之相连的电子线路就能检测出是哪个键被按下了,从而给出相应的信号•设每个金属的正对面积为50mm2,键未按下时两金属片的距离为0.6mm,如果电容变化了0. 25PF,电子线路恰能检测出必要的信号,则键至少需要被按下多少毫米?12、一平行板电容器充电后与电源断开,负极板接地•在两极板间有一正电荷(电量很小)固定在P 点,如图6一3—12,以E表示两板间的场强,U表示电容器两板间的电压,E P表示正电荷在P点的电势能•若保持负极板不动,将正极板移到「一―15、(2011 •天津理综• T5)板间距为d的平行板电容器所带电荷量为Q时,两极板间电势差为U1,板间场强为E1.现将电容器所带电荷量变为2Q,板间距变为,其他条图中虚线所示位置,则( .U变小,E不变 .U变小,E P不变)B . E变大,E p变大D . U不变,E p不变13、如图6—3—7,让平行板电容器带电后,静电计的指针偏转一定角度板的带电量,那么静电计指针的偏转角度在下列情景中一定变大的是(A .减小两极板间的距离.B .在两极板间插入电介质C.增大两极板间的距离,同时在两极板间插入电介质D .增大两极板间的距离,同时抽出两极板间插入的电介质14、一个电容器充电后电量是Q,两板间电压U,若向电容器再充进厶Q=4X10-6C的电量时,它的板间电压又升高△ U=2V,由此可知该电容器的电容是多少法拉?图6 —3—10图6 —3—12,若不改变两极件不变, A. U 2 C. U 2 这时两极板间电势差=U 1, E 2 = E i B = U i ,E 2=2E i D . U2,板间场强为E2,下列说法正确的是(U^2U 1,E^4E 1 U^2U 1,E^2E 1 16、 (09 •海南物理• 5) 一平行板电容器两极板间距为 d 、极板面积为S ,电容为;°S/d , 其中;。
是常量。
对此电容器充电后断开电源。
当增加两板间距时,电容器极板间( ) A .电场强度不变,电势差变大 B .电场强度不变,电势差不变 C .电场强度减小,电势差不变 D .电场强度较小,电势差减小 17、 ( 09 •福建• 15)如图所示,平行板电容器与电动势为 的直流电源(内阻不计)连接,下极板接地。
一带电油滴位于 电容器中的 P 点且恰好处于平衡状态。
现将平行板电容器的 上极板竖直向上移动一小段距离( ) A. 带点油滴将沿竖直方向向上运动 B. P 点的电势将降低 C. 带点油滴的电势能将减少 D. 若电容器的电容减小,则极板带电量将增大 18、 在6-3- 14中,图1是某同学设计的电容式速度 传感器原理图,其中上板为固定极板, 下板为待测物体, 在两极板间电压恒定的条件下, 极板上所带电量 Q 将随 待测物体的上下运动而变化,若 Q 随时间t 的变化关系 为Q=—L (a 、b 为大于零的常数),其图象如题图 2t +a所示,那么图3、图4中反映极板间场强大小 E 和物体 速率v 随t 变化的图线可能是( )A .①和③B .①和④C .②和③D .②和④ 19、 (2010 •重庆• 1 7)某电容式话筒的原理示意图如题 所示,E 为电源,R 为电阻,薄片 P 和Q 为两金属基板。
话筒说话时,P 振动而Q 可视为不动。
在P 、Q 间距增大过程中, A . B .C .D . 20、固定极振 待测时一 图1 图4 图 6-3-14 P 、Q 购车的电容器的电容增大 P 上电荷量保持不变 M 点的电势比N 点的低 M 点的电势比N 点的高 (2010 •北京• 18)用控制变量法,可以研究影 响平行板电容器电容的因素(如图)。
设两极板正对 面积为S ,极板间的距离为 d,静电计指针偏角为0。
实验中,极板所带电荷量不变,若 A.保持S 不变,增大 大d,则0变小 C.保持d 不变,减小 小S,则0不变 d,则0变大B.保持S 不变,增 S,则0变小D.保持d 不变,减 眩IS圏T18图对着.一艷缰址AK * I O、静电屏蔽类1如图6- 2-4,接地的金属球 金属球上感应电荷的电场在球心A 的半径为R ,—点电荷的电量 O 处的场强等于:( )在电场中仍沿水平方向并恰好从 (1) 液滴的质量; (2) 液滴飞出时的速度.2、如图 6-2- 5,潜CO D.将一不带电的空腔导体 一 A 的顶部与一外 壳接地的静电计相连,又将另一个带正电的导体 B 向A 移 动,最后B 与A 接触,此过程中( ) A • B 与A 靠近时验电器指针不张开,接触时张角变大 B • B 与A 靠近时,验电器指针张开,且张角不断变大 C . B 与A 靠近过程中空腔 A 内场强不断变大 图 6-3-4D . B 与A 靠近过程中感应电荷在空腔 A 内的场强不断变大 3、如图6-3-6,当带正电的绝缘空腔导体 A 的内部通过导线与验电器的小球 B 连接时,验电器的指针是否带电? 4、如图6- 3- 13,在左边的绝缘支架上插上顶针 (其顶端是尖的) 在顶针上装上金属风针,如给风针附近的圆形金属板接上正高压 极,风针接负高压极,风针尖端放电会使其旋转起来,下列问题中错误的是( )A .风针尖端附近的等势面和电场线分布较密B •风针附近的空气在强电场下发生电离C .空气中的阳离子会向风针的尖端运动,D •交换金属板与风针所带电荷电性,风针的尖端会有正电荷射出5、如图6 — 3-8,绝缘导体A 带正电,导体B 不带电,由于静电 感应,使导体 B 的M 端带上负电,而 N 端则带等量的正电荷. ⑴用导线连接 M 、N ,导线中有无电流流过?⑵若将 M 、N 分别用导线与大地相连,导线中有无电流流 过?方向如何? 三、带电粒子加速类 1如图所示,板长L=4 cm 的平行板电容器, 板与水平线夹角a =37 °,两板所加电压为 板间距离d=3 cm, U=100 V ,有一带 负电液滴,带电荷量为 q=3x 10-10 C,以v 0=1 m/s 的水平速度自图 6-3-5A 板边缘水平进入电场,Q ,到球心距离为r ,该B 板边缘水平飞出,取 g=10 m/s 2.求:) Q 乙) _0A B C D 2、下列粒子从初速度为零的状态经过加速电压为 U 的电场之后,哪种粒子的速度最大?() A a 粒子 B 氚核 C 质子 D 钠离子N a q 点处的电场强度是 8如图6- 3- 15,由A 、B 两平行金属板构成的电容器放置在真空中,电容为C ,原来Q 板的速率变为 平行金属板中央有 ―• •—图 6-4- 5 如图6-4-5,在P 板附近有电荷由静止开始向 Q 板运动, 到达Q 板的速率与板间距离和加速电压两个因素有关 若电荷的电压U 、与电量q 均变为原来的2倍,则到达 则以下解释正确的是:( 3、 A. B. 原来的4倍 C. 两板间距离越大,加速的时间越长,加速度越小 D. 到达Q 板的速率与板间距离无关4、 (2010 •泰州模拟)如图所示,水平放置的平行板电容器与一直流电源相 连,在两板中央有一带电液滴处于静止状态 •现通过瞬间平移和 缓慢平移两种方法将 A 板移到图中虚线位置.下列关于带电液 滴运动的说法中正确的是 () A. 上述两种方法中,液滴都向 B. 采用瞬间平移的方法,液滴运动到 C. 采用缓慢平移的方法,液滴运动到 D. 采用缓慢平移的方法,液滴运动到 B 板做匀加速直线运动 B 板经历的时间短 B 板时速度大 B 板过程中电场力做功多5、 (2011年黑龙江适应性测试)如图甲所示, 一个静止的电子(不计重力),两板间距离 足够大•当两板间加上如图乙所示的交变 电压后,在下图中,反映电子速度 V 、位 移x 和加速度a 三个物理量随时间t 的变 化规律可能正确的是( ) 6、 (2011年北京西城抽测)如图所示,足够 长的两平行金属板正对竖直放置,它们通 过导线与电源 E 、定值电阻R 、开关S 相 连•闭合开关后,一个带电的液滴从两板 上端的中点处无初速度释放,最终液滴落 在某一金属板上•下列说法中正确的是 ( A •液滴在两板间运动的轨迹是一条抛物线 B .电源电动势越大,液滴在板间运动的加速度越大 C .电源电动势越大,液滴在板间运动的时间越短 D •定值电阻的阻值越大,液滴在板间运动的时间越长 7、 如图所示,平行板电容器的电容为 C ,带电荷量为Q ,两极板间距1 离为d ,今在距两极板的中点 尹处放一电荷q ,则( ) q 所受电场力的大小为 晋& ,,lr SL A --- -------- q 所受电场力的大小为k 4^ 4Q q 点处的电场强度是 k d2AQ ----- ■ ——w 0一尿不带电•电容器的A板接地,并且中心有一个小孔,通过这个小孔向电容器中射入电子,射入的方向垂直于极板,射入的速度为v0,如果电子的发射是一个一个单独进行的,即第一个电子到达B板后再发射第二个电子,并且所有到达板的电子都留在B 板上•随着电子的射入,两极板间的电势差逐渐增加,直至达到一个稳定值,已知电子的质量为m,电荷量为q,电子所受的重力忽略不计,两板的距离为l •⑴当板上聚集了n个射来的电子时,两板间电场的场强E多大?⑵最多能有多少个电子到达B板?⑶到达B板的第一个电子和最后一个电子在两板间运动的时间相差多少?9、在平行金属板间加上如图所示的电压,能使处于板中央原来静止的电子做往复运动的电压是(;A B C D10、如图6-4 —12,水平放置的平行板电容器两极板间距为d,带负电的微粒质量为m、带电量为q,它从上极板的边缘以初速度v0射入,沿直线从下极板N 的边缘射出,则().微粒的加速度不为零•微粒的电势能增加了mgdc.两极板的电势差为mgdqD. M板的电势低于N板的电势11、如图6-4 —15,带电液滴P在平行金属板a、b之间的匀强电场中处于静止状态•现设法使P保持静止,而使a、b两板分别以各自中点O、O■为轴转过一个相同的二角,然后释放P,则P在电场中的运动情况是()A•曲线运动B .匀速直线运动C •水平向右的匀加速直线运动D •斜向右上方的匀加速直线运动12、静止在太空的飞行器上有一种装置,它利用电场加速带电粒子,形成向外发射的粒子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器的质量为M,发射的是2价氧离子,发射功率为P,加速电压为U , 每个氧离子的质量为m,单位电荷的电量为e,不计发射氧离子后飞行器质量的变化,求:⑴射出的氧离子速度⑵每秒钟射出的氧离子数M图6-4- 12图6 —4—1513、电子所带电荷量最早是由美国科学家密立根通过油滴实验测出的 •油滴实验的原理如图6- 4- 18,两块水平放置的平行金属板与电源连接,上、下板分别带正、负电荷,油滴从喷雾器喷出后,由于摩擦而带电,油谪进入上板中央小孔后落到匀强电场中,通过 显微镜可以观察到油滴的运动情况,两金属板问的距离为 d.忽略空气对油滴的浮力和阻力•⑴调节两金属板问的电势差 u ,当u=Uo 时,使得某个油滴恰好做匀 速运动,设油滴的质量为 m ,.该油滴所带电荷量 q 为多少? ⑵若油滴进入电场时的速度可以忽略,当两金属板问的电势差为 u=U 时,观察到某个质量为 m 带电的油滴进入电场后做匀加速运动, 经过时间t 运动到下极板,求此油滴所带电荷量 Q.14、如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时 间变化的规律如图乙所示,电子原来静止在左极板小孔处,不计电子的重力,下列说法 正确的是( )A .从t = 0时刻释放电子,电子始终向右运动, 直 到打到右极板上B .从t = 0时刻释放电子,电子可能在两极间振动C .从t = T/4时刻释放电子,电子可能在两板间振 动,也可能打到右极板上D .从t = 3T/8时刻释放电子,电子必将打到左极板上16、如图所示,一光滑斜面的直角点 A 处固定一带电荷量为+ q 、质量为m 的绝缘小球, 另一同样小球置于斜面顶点 B 处,已知斜面长为 L ,现把上部小球从 B 点由静止自由释 放,球能沿斜面从 B 点运动到斜面底端 C 处,求:(1) 小球从B 处开始运动到斜面中点 D 处时的速度;(2) 小球运动到斜面底端 C 处时,球对斜面的压力是多大?15、(2011 •安徽高考• T20)如图(a )所示,两平行正对的金属板所示的交变电压,一重力可忽略不计的带正 电粒子被固定在两板的正中间 P 处。