高一数列与不等式测试题
数列与不等式复习题
数列与不等式复习题(一)1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a nn D .()43)1(1--=-n a n n2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( )A .49B .50C .51D .523、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01312>+-x x 的解集是 ( )A .}2131|{>-<x x x 或B .}2131|{<<-x xC .}21|{>x xD .}31|{->x x5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5B.4C. 3D. 2 6.数列 ,1614,813,412,211前n 项的和为( ) A .2212nn n ++B .12212+++-nn nC .2212nn n ++-D . 22121nn n -+-+7.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n -9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a .10.若方程x x a a 22220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是__________________.11.设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为 (用数字作答). 12.已知实数a ,b ,c 成等差数列,和为15,且a +1,b +1,c +4成等比数列,求a ,b ,c .13.已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式.14. 数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a ++++ 的值.数列与不等式复习题(一)答案9.12n - 10.11,0,122⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭11.-1 12.解:由题意,得215 (1)2(2)(1)(4)(1)(3)a b c a c b a c b ⎧++=⎪+=⎨⎪++=+⎩………………由(1)(2)两式,解得5b =将10c a =-代入(3),整理得213220a a -+=,解得 2a =或11a =故2a =,5,8b c ==或11,5,1a b c ===- 经验算,上述两组数符合题意。
高一数学基本不等式试题
高一数学基本不等式试题1.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.2.当时,函数的最小值为 .【答案】6【解析】由于,所以函数【考点】基本不等式的应用.3.已知,,则的最小值为.【答案】4【解析】,由基本不等式得【考点】基本不等式的应用.4.设二次函数的值域为[0,+∞),则的最大值是()A.B.2C.D.【答案】C【解析】由二次函数特点可知,在定义域R上其值域为,则,且,即. 欲求的最大值,利用前面关系,建立,由,故选C.【考点】(1)二次函数性质;(2)函数最值;(3)基本不等式.5.已知,则x + y的最小值为.【答案】【解析】,,由,可得,当且仅当时等号成立,故,故答案为.【考点】对数的性质运算;均值不等式的应用.6.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.7.若,则的最小值是( )A.B.1C.2D.4【答案】C【解析】.【考点】基本不等式.8.已知等比数列,,则其前三项和的取值范围是()A.B.C.D.【答案】D【解析】由已知得,当公比时,;当公比时,,.【考点】利用基本不等式求最值。
9.(1)阅读理解:①对于任意正实数,只有当时,等号成立.②结论:在(均为正实数)中,若为定值,则,只有当时,有最小值.(2)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)①若,只有当__________时,有最小值__________.②若,只有当__________时,有最小值__________.(3)探索应用:学校要建一个面积为392的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值。
【答案】(2)①1 ,2:②3,10(3)游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【解析】(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理运用所给结论,可求面积的最值.(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理.当且仅当即取“=”.此时所以游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【考点】基本不等式在最值问题中的应用;进行简单的合情推理10.在分别是角A、B、C的对边,若,则的周长的取值范围是()A. B. C. D.【答案】C【解析】∵,∴,化简后可得:,∴,又∵,∴,即周长的范围为.【考点】1、余弦定理;2、基本不等式.11.若两个正实数x,y满足+=1,并且2x+y>m恒成立,则实数m的取值范围是.【答案】【解析】因为且,所以,当且仅当即时取。
数列与不等式30大题(有答案)
S1 S2
Sn
第 1页(共 23页)
10. 在等比数列 an 和等差数列 bn 中,a1 = b1 > 0,a3 = b3 > 0,a1 ≠ a3,试比较 a5 和 b5 的大 小.
11. 设数列 an 的前 n 项和为 Sn,且 a1 = 1,an+1 = 1 + Sn n ∈ ∗ .
(1) 求数列 an 的通项公式;
∗ 成立,
18. 已知常数 p 满足 0 < p < 1,数列 xn 满足 x1 = p + 1p,xn+1 = xn2 − 2.
(1) 求 x2,x3,x4;
(2) 猜想 xn 的通项公式(不用给出证明); (3) 求证:xn+1 > xn 对 n ∈ ∗ 成立.
19. 设 b > 0 ,数列
an
大值.
7. 已知 an 是正整数组成的数列,a1 = 1 ,且点( an,an+1 )( n ∈ ∗ )在函数 y = x2 + 1 的图象上;
(1) 求数列 an 的通项公式;
(2) 若数列 bn 满足 b1 = 1,bn+1 = bn + 2an ,求证:bn ⋅ bn+2 < bn2+1
8. x,y ∈
∈
+ 都成立
的最大正整数 k 的值.
6. 已知数列 an 是等比数列,首项 a1 = 1,公比 q > 0,其前 n 项和为 Sn,且 S1 + a1,S3 + a3,
S2 + a2 成等差数列.
(1) 求数列 an 的通项公式;
(2) 若数列
bn
满足 an+1 =
数列_不等式_向量综合测试题
数列向量不等式测试卷 一.选择题1.不等式11<-x 的解为( )A.0<x<2 B -1<x<1 C x<0或x>2 D x<22.已知c b a ,,满足a b c <<且ac<0,则下列选项中不一定成立的是( ) A.ac ab < B 0>-ca b Ccacb22>Dacc a -<03.在ABC ∆中,若B a b sin 2=,则A=( )A o o 6030或B o o 6045或C 120o或60oD 30o或150o4.已知,0)(,2,122=⋅-==a b a b a 则b a 与的夹角为( )A.30oB.45oC.60oD.90o5.在等差数列{}n a 中,8,3a a 是方程 0532=--x x 的两根,则S 10= A.15 B.30 C.50 D15+29126.已知各项均为正数的等比数列{}n a 中,5321=a a a ,10987=a a a ,则654a a a =A.24B.7C.6D.257.等差数列{}n a 中,,14,1531=+=a a a 其前n 项和100=n s ,则n 的值为 A.8 B.10 C .12 D.148.等比数列{}n a 满足:,4,23221=+=+a a a a 则=+65a a ( ) A.64 B.32 C.16 D 189.已知ABC ∆中,oC 90=∠,)1,(k B A = ,)3,2(=C A ,则k 的值为( ) A.5 B.-5 C.23 D.23-10.有两个等差数列{}n a 和{}n b ,若)(7642121+∈++=+⋅⋅⋅+++⋅⋅⋅++N n n n b b b a a a nn ,则=+++++++131176314963b b b b b a a a a ( )A.75152 B.914 C.512 D.23二.填空题11.已知关于x 的不等式2232>+-x ax 的解集为{}21><x x x 或,则实数___=a 。
数列与不等式结合典型题
数列与不等式结合典型题1.已知数列}{n a 中,),3,2,1(0 =>n a n ,其前n 项和为n S ,满足*,)1(N n a p S p n n ∈-=-,10≠>p p 且. 数列}{n b 满足.log 1n p n a b -=(Ⅰ)求数列}{n a 、}{n b 的通项n n b a 与; (Ⅱ)若n nn n T a b c p ,,21==记为数列}{n c 的前n 项和,求证:.40<<n T2.已知定义在(-1,1)上的函数)1,1(,,1)21()(-∈=y x f x f 且对满足时,有).1()()(xyyx f y f x f --=-(I )判断)1,1()(-在x f 的奇偶性,并证明之; (II )令)}({,12,21211n nn n x f x x x x 求数列+==+的通项公式; (III )设T n 为数列})(1{n x f 的前n 项和,问是否存在正整数m ,使得对任意的34,-<∈*m T N n n 有成立?若存在,求出m 的最小值;若不存在,则说明理由.3.(本小题满分14分)设函数)0()(22>-+=a a x x x f(Ⅰ)求)()(1x f x f -的反函数及定义域;(Ⅱ)若数列}{,),(,3}{111n n n n n n n b aa aa b a f a a a a 求设满足+-===-+的通项公式;(Ⅲ)S n 表示{b n }的前n 项和,试比较S n 与87的大小. 4.(本小题满分14分)已知数列.)11(2,2:}{211n n n a na a a +==+满足 (1)求数列}{n a 的通项公式;(2)设n n C Bn An b 2)(2⋅++=,试推断是否存在常数A ,B ,C ,使对一切*∈N n 都有n n n b b a -=+1成立?说明你的理由;(3)求证:.2)22(2221+⋅+-≥+++n n n n a a a5. 设函数f (x )=22-ax x (a ∈N*), 又存在非零自然数m, 使得f (m )= m , f (– m )< –m1成立.(1) 求函数f (x )的表达式;(2) 设{a n }是各项非零的数列, 若)...(41)1(21n n a a a a f +++=对任意n ∈N*成立, 求数 列{a n }的一个通项公式;(3) 在(2)的条件下, 数列{a n }是否惟一确定? 请给出判断, 并予以证明6. 已知函数)3(1)(b ax f x-=的图象过点A (1,2)和B (2,5). (1)求函数)(x f 的反函数)(1x f -的解析式;(2)记*)(,3)(1N n a n f n ∈=-,试推断是否存在正数k ,使得12)11()11)(11(21+≥+++n k a a a n对一切*N n ∈均成立?若存在,求出k 的最大值;若不存在,说明理由.卷二一、选择题:(每小题5分,共50分)1、数列95,74,53,32,1的一个通项公式n a 是( ) A 、12+n n B 、12-n n C 、32-n n D 、32+n n2、已知等比数列{}n a 的公比为正数,且24282a a a =,11=a 则=2a ( )A 、2B 、2C 、22D 、213、已知等差数列{}n a 前n 项和为n S 且0>n a 已知02564=-+a a a 则=9S ( )A 、17B 、18C 、19D 、204、已知)1,0(,21∈a a ,记21a a M =,121-+=a a N 则M 与N 的大小关系( ) A 、M<N B 、M>N C 、M=N D 、不确定5、若011<<b a ,则下列不等式:bc a c c b c a b a ab b a 22)4(,)3(,)2(,)1(<+>+><+中正确的是( )A 、(1)(2)B 、(2)(3)C 、(1)(3)D 、(3)(4)6、不等式1213≥--x x 的解集是 ( ) A 、⎭⎬⎫⎩⎨⎧≤≤243x x B 、⎭⎬⎫⎩⎨⎧<≤243x x C 、⎭⎬⎫⎩⎨⎧≤>432x x x 或 D 、{}2<x x7、设n S 是等差数列{}n a 的前n 项和,若59355,9a Sa S ==则( )A 、 1B 、 1-C 、 2D 、 128、在的条件下,,00>>b a 三个①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a b a a b +≥+22,其中正确的个数是( )A 、0B 、1C 、2D 、39、目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A 、3,12min max ==z zB 、,12max =z z 无最小值C 、z z ,3min =无最大值D 、z 既无最大值,也无最小值10、在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A 、11<<-aB 、20<<aC 、2321<<-a D 、2123<<-a 二、填空题:(每小题5分,共25分)11、等比数列{}n a 公比,0>q 已知n n n a a a a 6,1122=+=++,则{}n a 的前4项和=4S ___________12、等比数列{}n a 的前n 项和n S ,又2132S S S +=,则公比=q ___________ 13、若0>x ,0>y 且12=+y x ,则xy 的最大值为___________14、实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是_____________15、关于x 的不等式211(1)0(0)x a x a a a a-++++<>的解集为 三、解答题:16、(本小题满分12分)等比数列{}n a 中,已知16,241==a a ,(1)求数列{}n a 的通项公式;(2)若53,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S .17、(本小题满分12分)已知数列{}n a 的前n 项和248n S n n =-(1) 求数列{}n a 的通项公式 ; (2) 求n S 的最大或最小值.18、(本小题满分12分)已知向量)sin ,2(cos θθn n a n =,),)(sin 2,1(*N n n b n ∈=θ若n n a C =·n n b 2+,(1)求数列{}n C 的通项公式; (2)求数列{}n C 的前n 项和n S .19、(本小题满分12分)在数列{}n a 中,n n n a a a 22,111+==+(1)设12-=n nn a b ,证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S .20、(本小题满分13分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以 46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?21、(本小题满分14分)已知数列{}n a 满足:1112,2--==n n a a a , ,4,3,2=n ,(1) 求证:数列⎭⎬⎫⎩⎨⎧-11n a 为等差数列; (2) 求数列{}n a 的通项公式; (3)令∑=+=ni i i n a a T 11,求证:43+<n T n.答案卷一1.解:(I )1=n 时,.10.0)1()1(1111=⇒>=-⇒-=-a p a p a p a p 由 1分 当,)1(2n n a p S p n -=-≥ ①,)1(11++-=-n n a p S p ②由②-①,有,)1(11++-=-n n n a a a p 2分从而,.111pa a a pa n n n n =⇒=++∴数列}{n a 是以1为首项,p1为公比的等比数列.∴1)1(-=n n pa .∴.)1(1)1(log 1log 11n n pa b n p n p n =--=-=-=-(II )当21=p 时,.21-==n n n n n a b c 1分 ∵.0.0>∴>n n T c 12102232221-++++=n n n T , ③ n n n nn T 221222121121+-+++=∴- . ④由③-④,得n n n nT 221212121211210-++++=-.22222122211)21(11n n n n nn n n +-=--=---=-.2241-+-=∴n n nT 1分.40.4,0221<<∴<∴>+∴-n n n T T n1分2.解:(I )令0)0(,0===f y x 得。
专题2.4 提高复习之数列与不等式相结合问题-备战期末考试2015-2016学年高一下学期数学期
1.已知数列{n a }满足:11a =,2210,1n n n a a a +>-= ()*n N ∈,那么使n a <3成立的n 的最大值为( ) A .2 B .3 C .8 D .9 【答案】C 【解析】试题分析:由题知{}2n a 是等差数,221(1)1n a a n n =+-⨯=,3n a <,29n a ∴<,9n ∴<,则n 的最大值为8.故选C.2.已知数列{}n a 的前n 项和n n S n 92-=,第k 项满足1310<<k a ,则=k ( ) A .9 B .10 C .11 D .12 【答案】C 【解析】试题分析:由数列{}n a 的前n 项和n n S n 92-=,可求得通项公式210n a n =-,所以1021013k <-<,解得1011.5k <<,因为*k N ∈,所以11k =,故选C.3.已知数列{}n a 满足134()n n a a n N +++=∈且19a =,其前n 项和为n S ,则满足1|6|125n S n --<的最小正整数n 为( )A. 6B.7C.8D.9 【答案】B4.已知数列{}n a 满足712,83,8n n a n n a a n -⎧⎛⎫-+>⎪ ⎪=⎝⎭⎨⎪≤⎩,若对于任意n N *∈都有1n n a a +>,则实数a 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D5.已知数列{}n a 的通项公式为327n a n =-,记数列S n 的前n 项和为,则使S 0n ≤成立的n 的最大值为( ) A .4 B .5 C .6 D .8 【答案】C 【解析】 试题分析:123433333,1,3,32175227237247a a a a ==-==-==-==⨯-⨯-⨯-⨯-,531257a ==⨯-6332675a ==⨯-,7332777a ==⨯-,…,所以使0n S ≤成立的n 的最大值为6,故选C.6.已知数列{}n a 是递增数列,且对任意*n N ∈都有2n a n bn =+成立,则实数b 的取值范围是( ) A .7(,)2-+∞ B .(0,)+∞ C .(2,)-+∞ D .(3,)-+∞ 【答案】D 【解析】试题分析:因为*n N ∈,{}n a 递增,所以322b -<,3b >-.故选D . 7.若,a ∈N *,且数列{a n }是递增数列,则a 的值是( )A .4或5B .3或4C .3或2D .1或2 【答案】A8.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B 【解析】试题分析:由95S S =,得()67897820a a a a a a +++=+=, 由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.9.已知数列{}n a 的前n 项和为n S ,满足515S =-,3172d <<,则当n S 取得最小值时n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】试题分析:由等差数列求和公式得251551522d d S a ⎛⎫=⨯+-⨯=- ⎪⎝⎭ ,整理得132a d =--,故22215323222222n d d d d d d S n a n n d n n n ⎛⎫⎛⎫⎛⎫=+-=+---=+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴35=2n d +,因为3172d <<,n Z ∈,故=9n 时取得最小值. 10.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确命题的个数是( )A .5B .4C .3D .1 【答案】C11.在数列}{n a 中,12a =,11(1)(1)220()n n n n a a a a n N *++--+-=∈,若5150n a <,则n 的最小值为__________. 【答案】100 【解析】试题分析:令1n n a b -=,则∵11(1)(1)220()n n n n a a a a n N *++--+-=∈,∴11220n n n n b b b b +++-=,∴11112n n b b +-=,∵12a =,∴111b =,∴1111(1)22n n n b +=+-=,∴21n b n =+,∴211n a n -=+,∴211n a n =++,∵5150n a <,∴2511150n +<+,∴99n >,∴n 的最小值为100.所以答案应填:100. 12.数列{}n a 满足141,1211=+=+n n a a a ,记2232221n n a a a a S +⋅⋅⋅+++=,若3012m S S n n ≤-+对任意*∈N n 恒成立,则正整数m 的最小值为_______. 【答案】10 【解析】 试题分析:由1n a +=,得221114n n a a +-=,可知数列21n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为4的等差数列,所以()2111443nn n a =+-⨯=-,则2143n a n =-,22212n nS a a a =+++,考查()()222212*********418589n n n n n n n S S S S a a a n n n ++++++---=--=--+++,又1111082858289n n n n ⎛⎫⎛⎫-+->⎪ ⎪++++⎝⎭⎝⎭,即()()212311*********n n n n S S S S n n n +++---=-->+++,则可知数列{}21n n S S +-是一个递减数列,所以数列{}21n n S S +-的最大项为22313211149545S S a a -=+=+=,又3012m S S n n ≤-+对任意*∈N n 恒成立,所以144530m ≤,即283m ≥,所以m 的最小值是10.13.记数列{a n }的前n 项和为S n ,若不等式222122n n S a ma n+≥对任意等差数列{a n }及任意正整数n 都成立,则实数m 的最大值为____________. 【答案】11014.已知n S 为数列}{n a 的前n 项和,1=1a ,2=(1)n n S n a +,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为_______.【答案】1(2,1][,1)2-- 【解析】试题分析:由2(1)n n S n a =+得,当2n ≥时有112n n S na --=,所以11222(1)n n n n n a S S n a na --=-=+-,即1(1)n n n a na --=,11n n a na n -=-,又11a =,所以121211n n nn n n a a a a a n a a a a ---=⋅⋅⋅==,所以2220n n a ta t --≤等价于2220n tn t --≤,设22()2f n n tn t =--,由于2(0)20f t =-≤,所以由题意有2222(1)120(2)2220f t t f t t ⎧=--<⎪⎨=--≥⎪⎩,解之得21t -<≤-或112t ≤<,所以应填1(2,1][,1)2--. 15.已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若23n nS S N ≤-≤M 对n *∈N 恒成立,则M -N 的最小值为 . 【答案】251216.已知数列{}n a 通项为98.5n n a n -=-,若n a ≤M 恒成立,则M 的最小值为 .【答案】2 【解析】试题分析:根据题意可知M 的最小值为数列的最小项,因为90.518.58.5n n a n n -==---,可知当8n =时取得最小值,而82a =,所以M 的最小值为2.17.已知数列{}n a 的前n 项和为n T ,且点(,)n n T 在函数23122y x x =-上,且423log 0n n a b ++=(n N *∈).(I )求{}n b 的通项公式;(II )数列{}n c 满足n n n c a b =⋅,求数列{}n c 的前n 项和n S ;(III )记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,设21n n nd b B =⋅,证明:1212n d d d +++<.【答案】(I )n n b 41=;(II )nn n S ⎪⎭⎫⎝⎛+-=4132332;(III )证明见解析.试题解析:(I )由点()n T n ,在函数x x y 21232-=上,得:n n T n 21232-= (ⅰ)当1=n 时,1212311=-==T a . (ⅱ)当2≥n 时,231-=-=-n T T a n n n ,∴23-=n a n . 又∵0log 324=++n n b a , ∴n n n b 414==- (II )∵()nn n n n b a c ⎪⎭⎫⎝⎛-=⋅=4123且n n c c c c S +++=321,∴()nn n S ⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=4123417414411321 ……①()1432412341741441141+⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=n n n S …②由①-②得:()132412341414134143+⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n n n S()141412341141116134143+-⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-+=n n n n S整理得:nn n S ⎪⎭⎫⎝⎛+-=4132332.18.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <; (3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(1)12n a n =;(2)证明见解析;(3)29≥λ. 【解析】试题分析:(1)本小题是已知n S 与n a 的关系求通项公式的题型,方法是先由11a S =,求出1a ,然后利用当2n ≥时,1n n n a S S -=-得到n a 与1n a -的关系,再求通项;(2)由已知得1n n b b n --=,已知前后项的差,因此可用累加法求得通项,即由121321()()()n n n b b b b b b b b -=+-+-++-得(1)2n n n b +=,从而用裂项求和法求出1{}nb 的前n 项和n T ,并证得题设结论;(3)不等式2(4)1n λn n ≤++恒成立,可变形为2(1)(4)n λn n ≥++,为此只要求得2(1)(4)nn n ++的最大值即可,这可由基本不等式得到结论.试题解析:(1)1n =时,211111122a a a a =+∴= 21112211211121222n n n n n n nn n n n S a a a a a a a S a a+++--⎧=+⎪⎪⇒=-+-⎨⎪=+⎪⎩ 111()()02n n n n a a a a --⇒+--= 1102n n n a a a ->∴-=∴{}n a 是以12为首项,12为公差的等差数列 12n a n ∴=(3)由2(4)1n λn n ≤++得224(1)(4)5n n n n n λ≥=++++, 当且仅当2n =时,245n n++有最大值29,29λ∴≥19.已知正项数列{}n a 的前n 项和为n S ,且()()241n n S a n N *=+∈.(1)求数列{}n a 的通项公式; (2)设n T 为数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,证明:()213n T n N *≤<∈. 【答案】(1)21n a n =-;(2)证明见解析. 【解析】试题分析:(1)已知()241n n S a =+,要求通项公式,可再写一式2n ≥时,()21141n n S a --=+,利用1n n n a S S -=-,把两式相减可得n a 的递推关系,本题可得{}n a 是等差数列,易得通项;(2)要证明题设不等式,必须求得和n T ,由于12211(21)(21)2121n n a a n n n n +==--+-+,即可用裂项相消法求得和n T 1121n =-+,注意到*n N ∈,不等式易得证. 试题解析:(1)1n =时,11a =;2n ≥时,()21141n n S a --=+,又()241n n S a =+,两式相减得()()1120n n n n a a a a --+--=,{}10,2,n n n n a a a a ->∴-=为是以1位首项,2为公差的等差数列,即21n a n =-.20.已知数列{}n a 的前n 项和为n S ,点,n S n n⎛⎫⎪⎝⎭在直线11122y x =+上. (1)求数列{}n a 的通项公式;[来 (2)设()()13211211n n n b a a +=--,求数列{}n b 的前n 项和为n T ,并求使不等式20n kT >对一切*n N ∈都成立的最大正整数k 的值.【答案】(1)5n a n =+;(2)max 19k =. 【解析】试题分析:(1)由题意,得11122n S n n =+,化为211122n S n n =+,利用递推关系即可得出;(2)利用“裂项求和”可得Tn ,再利用数列的单调性、不等式的性质即可得出. 试题解析:(1)由题意,得11122n S n n =+,即211122n S n n =+故当2n ≥时,()()2211111111152222n n n a S S n n n n n -⎛⎫⎡⎤=-=+--+-=+ ⎪⎢⎥⎝⎭⎣⎦ 当n=1时,11615a S ===+, 所以5n a n =+.。
高一数学不等式测试题
高一数学不等式测试题1. 不等式的基本性质题目:请证明对于任意实数a、b、c,不等式\( a < b \) 时,\( a + c < b + c \) 成立。
2. 解一元一次不等式题目:解不等式 \( 5x - 3 > 2x + 7 \)。
3. 解绝对值不等式题目:解绝对值不等式 \( |x - 4| < 3 \)。
4. 解二次不等式题目:解不等式 \( x^2 - 4x + 3 > 0 \)。
5. 不等式与函数题目:已知函数 \( f(x) = x^2 - 2x + 1 \),求函数值大于0的x的取值范围。
6. 不等式组的解集题目:解不等式组 \( \begin{cases} x + 2 > 0 \\ 3x - 7 < 0 \end{cases} \)。
7. 不等式的变换题目:将不等式 \( x^2 - 4x + 4 \geq 0 \) 转化为标准形式,并找出其解集。
8. 不等式的应用题目:一个矩形的长为 \( 2x + 3 \),宽为 \( x - 1 \),当x取何值时,矩形的面积最大?9. 不等式与数列题目:若数列 \( \{a_n\} \) 满足 \( a_1 = 1 \) 且 \( a_{n+1} \leq 2a_n \) 对所有正整数 n 成立,证明数列 \( \{a_n\} \) 是递增的。
10. 不等式的证明题目:证明对于所有正实数 \( x \) 和 \( y \),不等式\( \sqrt{xy} \leq \frac{x + y}{2} \) 成立。
11. 不等式与几何题目:在三角形ABC中,如果 \( a + b > c \),证明三角形ABC 是锐角三角形。
12. 不等式的综合应用题目:若 \( x, y \) 为正实数,且 \( x^2 + y^2 = 1 \),求\( x^2y + xy^2 \) 的最大值。
13. 不等式的解法题目:解不等式 \( \frac{2x}{x^2 - 1} < 1 \)。
高一数学不等式试题
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
数列与不等式12种题型
数列与不等式12种题型方法题型1 数列基本量运算例题1 记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 【解析】由题知41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,选A练习1.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .2【解析】设正数的等比数列{a n }公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩,得11,2a q =⎧⎨=⎩,2314a a q ∴==选C练习2. 记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q = 又0q ≠,所以3,q =所以55151(13)(1)12131133a q S q --===--题型2 数列性质运用例题2 设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =->D .当104,10b a =->【解析】对于B ,令214x λ-+=0,得λ12= 取112a =,∴2111022n a a ==,,<∴当b 14=时,a 10<10,故B 错误 对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1取a 1=2,∴a 2=2,…,a n =2<10,∴当b =﹣2时,a 10<10,故C 错误 对于D ,令x 2﹣λ﹣4=0,得λ=取1a =,∴2a =…,n a =10 ∴当b =﹣4时,a 10<10,故D 错误对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>, a n +1﹣a n >0,{a n }递增当n ≥4时,1n n a a +=a n 12na +>11322+=,∴104a a >(32)6,∴a 1072964>>10 故A 正确,选A练习1.在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A .66 B .132 C .-66D .-132【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=- 又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,选D练习2. 记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【解析】因213a a =,所以113a d a +=,即12a d =所以105S S =11111091010024542552a d a a a d ⨯+==⨯+ 题型3 数列求和法的运用例题3 数列{}n a 中,12a =,且112(2)n n n n n a a n a a --+=+≥-,则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2019项和为( )A .40362019B .20191010C .40372019D .40392020【解析】∵1122n n n n n a a n a a ()--+=+≥-,∴()22112n n n n a a a a n ----=﹣, 整理得:()()22111n n a a n ----=, ∴()()()2211112n a a n n ---=+-++,又12a =,∴()()2112n n n a +-=,可得:()()212112111n n n n n a ⎛⎫==- ⎪++⎝⎭-.则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2019项和为:111111201921212232019202020201010⎛⎫⎛⎫-+-++-=-= ⎪ ⎪⎝⎭⎝⎭,选B 练习1. 设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+= 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-练习2.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯= 题型4 数列应用题例题4 《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“哀”得100,60,36,21.6个单位,递减的比例为40%,今共有粮(0)m m >石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m 的值分别为( ) A .20% 369B .80% 369C .40% 360D .60% 365【解析】设“衰分比”为a ,甲衰分得b 石,由题意得23(1)80(1)(1)16480164b a b a b a b m ⎧-=⎪-+-=⎨⎪++=⎩解得125b =,20%a =,369m =,选A题型5 数列的项和互化例题5 设数列{}n a 的前n 项和为n S ,已知1212a a ==,,且2123n n n a S S ++=-+,记 22122log log n n n b a a -=+,则数列(){}21nn b -⋅的前10项和为______. 【解析】∵1212a a ==,,且2123n n n a S S ++=-+,∴32332a =-+=, ∵2123n n n a S S ++=-+,∴2n ≥时,1123n n n a S S +-=-+, 两式相减可得,()()21112n n n n n n S a a S S S ++-+-=---,(2n ≥) 即2n ≥时,2112n n n n a a a a +++-=-即22n n a a +=,∵312a a =,∴数列{}n a 的奇数项和偶数项分别成等比数列,公比均为2,12222n n n a -=⨯=,1121122n n n a ---=⨯=∴22122121n n n b log a log a n n n -=+=-+=-,则数列()()()221211nnn b n -⋅-=-,则(){}21nn b -⋅前10项和()()()22222231751917S =-+-++-()2412202836=⨯++++200=题型6 数列与不等式例题6 设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n C n *=∈N证明:12+.n C C C n *++<∈N【解析】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩,则数列{}n a 的通项公式为22n a n =- . 其前n 项和()()02212n n n S nn +-⨯==-,则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列, 即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 据此有:()()()()()()()()2222121112121n n n n n n n n n b b n n n n n n b n n b b ++++=-++++++-+,故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+.(2)结合(1)中的通项公式可得:()()112221211nn n a n C n n b n n n n nn n -==<=<=--+++-,则()()()12210221212n C C C n n n +++<-+-++--=.练习1. 已知等差数列{}n a 满足636a a =+,且31a -是241,a a -的等比中项. (1)求数列{}n a 的通项公式; (2)设()11n n n b n a a *+=∈N ,数列{}n b 的前项和为n T ,求使1n T <成立的最大正整数n 的值 【解析】()I 设等差数列{}n a 的公差d6336a a d -==,即2d =,3313a a ∴-=+,2111a a -=+,416a a =+31a -是21a -,4a 的等比中项,()()232411a a a ∴-=-⋅,即()()()2111+3=16a a a ++,解得13a =,∴数列{}n a 的通项公式为21n a n =+(II )由()I 得()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 1212n n T b b b ∴=++⋅⋅⋅+=11111135572123n n ⎛⎫-+-+⋅⋅⋅+- ⎪++⎝⎭()1112323323n n n ⎛⎫=-= ⎪++⎝⎭由()13237n n <+,得9n <,∴使得1n T <成立的最大正整数n 的值为8题型7 与函数有关的不等式比较大小 例题7 设x 、y 、z 为正数,且,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【解析】令,则,,∴,则,,则,选D练习1. 已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,选A . 题型8 与函数导数有关的构造 例题8 设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【解析】构造新函数()()f x g x x =,()()()2'xf x f x g x x-=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃,选A 题型9 均值不等式的应用例题9 若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.【解析】 ()()2222211122x ty t y x y x yxy y ++-+++=≥++()01t <<12=,即15t =时()2212x y x y +++5=练习1.已知正实数a ,b 满足a +b =1,则222124a b a b+++的最小值为_______. 【解析】因为1a b +=,且,a b 都是正实数.所以2221241414222a b a b a b a b a b ++⎛⎫+=+++=++ ⎪⎝⎭()14144421277211b a b a a b a b a b a b a b ⎛⎫⎛⎫=++⨯=+++=++≥+⋅= ⎪ ⎪⎝⎭⎝⎭当且仅当12,33a b ==时,等号成立,所以222124a b a b+++的最小值为11 题型10 数形结合求最值例题10 已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .【解析】22,222463{1034,22x y y xz x y x y x y y x+-≥-=+-+--=--<-由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故,所以15z =,故该目标函数的最大值为15.练习1.已知,x y R ∈,若24x y +=,则224x y +的最小值为__________;若2244x y +=,则x y +的最大值为__________.【解析】根据题意,x ,y ∈R +,且x +2y =4,则有4=x +2y ≥22xy ,变形可得2xy 4≤,(当且仅当x =2y 2=时等号成立),x 2+4y 2=(x +2y )2﹣4xy =16﹣4xy ,又由4xy 8≤,则有x 2+4y 28≥,即x 2+4y 2的最小值为8; 若2244x y +=,由柯西不等式得(224x y +)(1+14)()2x y ≥+,(当且仅当x =4y 455=时等号成立)所以()2x y +≤454⨯,即x y +的最大值为5 题型11 与导数有关的不等式证明 例题11 已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:.【解析】(1)的定义域为,.(i )若,则,当且仅当,时,所以在单调递减.(ii )若,令得,或.当时,;当时,.所以在单调递减,在单调递增. (2)由(1)知,存在两个极值点当且仅当. 由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.练习1. 已知函数()f x =x ﹣1﹣alnx . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n ()(1)(﹤m ,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f aln ⎛⎫⎪⎝⎭,所以不满足题意;②若>0a ,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a=1时,()0f x ≥.故a=1(2)由(1)知当()1,+x ∈∞时,1>0x ln x --,令1=1+2nx 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222n n n ln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 练习2. 已知函数有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:.【解析】(Ⅰ).(Ⅰ)设,则,只有一个零点.(Ⅱ)设,则当时,;当时,.所以在单调递减,在单调递增.又,,取满足且,则故存在两个零点.(Ⅲ)设,由得或.若,则,故当时,,因此在单调递增.又当时,所以不存在两个零点.若,则,故当时,;当时,.因此在单调递减,在单调递增.又时,,所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,在单调递减,所以等价于,即.由于,而,所以. 设,则.所以当时,,而,故当时,. 从而,故.练习3设函数()1ln x xbe f x ae x x-=+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2. (1)求,a b ;(2)证明()1f x >【解析】(1)函数()f x 的定义域为()0,+∞()112'ln x x x x a b b f x ae x e e e x x x--=+-+,由题意可得()12f =, ()'1f e =.故1a =, 2b = (2)证明:由(1)知, ()12ln x x f x e x e x -=+,从而()1f x >等价于2ln xx x xe e ->-设函数()ln g x x x =,则()'1ln g x x =+,所以当10,x e ⎛⎫∈ ⎪⎝⎭, ()'0g x <当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0g x >,故()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 1,e ⎛⎫+∞ ⎪⎝⎭上单调递增从而()g x 在()0,+∞上的最小值为11g e e⎛⎫=-⎪⎝⎭设函数()2xh x xe e-=-,则()()'1xh x e x -=- 所以当()0,1x ∈时, ()'0h x >;当()1,x ∈+∞时, ()'0h x < 故()h x 在()0,1上单调递增,在()1,+∞上单调递减 从而()h x 在()0,+∞上的最大值为()11h e=-综上,当0x >时, ()()g x h x >,即()1f x >函数导数不等式求参数例题12 已知函数(1)若,证明:当时,;当时,(2)若是的极大值点,求【解析】(1)当时,,.设函数,则当时,;当时,.故当时,,且仅当时,从而,且仅当时,,所以在单调递增又,故当时,;当时,(2)(i)若由(1)知,当时,,这与是的极大值点矛盾. (ii)若,设函数.由于当时,,故与符号相同又,故是的极大值点当且仅当是的极大值点如果,则当,且时,,故不是的极大值点如果,则存在根,故当,且时,所以不是的极大值点如果,则.则当时,;当时,所以是的极大值点,从而是的极大值点综上,。
数列与不等式综合习题
数列与不等式的题型分类。
解题策略题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立⇔f(x)min≥M;f(x)≤M恒成立⇔f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得。
【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>错误!+错误!+…+错误!恒成立的正整数n的取值范围.【分析】利用条件中两项间的关系,寻求数列首项a1与公比q之间的关系,再利用等比数列前n项公式和及所得的关系化简不等式,进而通过估算求得正整数n的取值范围。
【解】由题意得:(a1q16)2=a1q23,∴a1q9=1.由等比数列的性质知:数列{错误!}是以错误!为首项,以错误!为公比的等比数列,要使不等式成立,则须错误!>错误!,把a错误!=q-18代入上式并整理,得q-18(q n-1)>q(1-错误!),q n>q19,∵q>1,∴n>19,故所求正整数n的取值范围是n≥20.【点评】本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果。
本题解答体现了转化思想、方程思想及估算思想的应用。
【例2】(08·全国Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(Ⅰ)设b n=S n-3n,求数列{b n}的通项公式;(Ⅱ)若a n+1≥a n,n∈N*,求a的取值范围.【分析】第(Ⅰ)小题利用S n与a n的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n转化为关于n与a的关系,再利用a≤f(n)恒成立等价于a≤f(n)min求解.【解】(Ⅰ)依题意,S n+1-S n=a n+1=S n+3n,即S n+1=2S n+3n,由此得S n+1-3 n+1=2(S n-3n).因此,所求通项公式为b n=S n-3n=(a-3)2 n-1,n∈N*, ①(Ⅱ)由①知S n=3n+(a-3)2 n-1,n∈N*,于是,当n≥2时,a n=S n-S n-1=3n+(a-3)2 n-1-3n-1-(a-3)2 n-2=2×3n-1+(a-3)2 n-2,a n+1-a n=4×3 n-1+(a-3)2 n-2=2 n-2·[12·(错误!)n-2+a-3],当n≥2时,a n+1≥a n,即2 n-2·[12·(错误!)n-2+a-3]≥0,12·(错误!)n-2+a-3≥0,∴a≥-9,综上,所求的a的取值范围是[-9,+∞].【点评】一般地,如果求条件与前n项和相关的数列的通项公式,则可考虑S n与a n 的关系求解。
高一数学基本不等式试题答案及解析
高一数学基本不等式试题答案及解析1.若实数、分别满足,,则的值为 .【答案】.【解析】由题意实数、分别满足,知,、可以看成是一元二次方程的两个实数根,然后再根据韦达定理可得:,. 由这两个式子可知实数、均为负数,所以化简原式即可得到:.【考点】一元二次方程根与系数之间的关系.2.已知都是正实数,函数的图象过(0,1)点,则的最小值是()A.B.C.D.【答案】【解析】由于函数的图象过(0,1)点,,代入得.【考点】基本不等式的应用.3.正数、满足,那么的最小值等于___________.【答案】.【解析】由基本不等式,可知,又∵,∴,又∵,,∴可解得,当且仅当时,“=”成立,∴的最小值为.【考点】基本不等式求最值.4.若,则函数有()A.最小值1B.最大值1C.最大值D.最小值【答案】C【解析】因为,所以=,即最大值.故答案为:C.【考点】基本不等式.5.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】【解析】根据选项可知,所以此时不等式左边两项都是正数.根据基本不等式有,因为恒成立,所以,消掉,解得.所以.【考点】不等式恒成立;基本不等式.6.若正数,满足,则的最小值是()A.B.C.5D.6【答案】C【解析】由已知得,所以时等号成立)。
【考点】基本不等式在求最值中的应用,注意一正二定三相等7.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.8.若正数x,y满足,则的最小值是_____.【答案】5【解析】把化简得:,∴.【考点】基本不等式.9.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】A【解析】∵,两边同除,得,要使不等式恒成立,则,,∴,∴k的最小值是1.【考点】基本不等式.10.若两个正实数x,y满足+=1,并且2x+y>m恒成立,则实数m的取值范围是.【答案】【解析】因为且,所以,当且仅当即时取。
高一数学不等式的性质试题
高一数学不等式的性质试题1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.已知且,则下列不等式恒成立的是()A.B.C.D.【答案】C【解析】由题知,值不确定,,由于所以对,其它三项不一定对.【考点】判断不等式的大小关系.3.若,则下列不等式成立的是()A.B.C.D.【答案】D.【解析】由条件可知:A:∵,∴A错误;B:,∴B错误;C:,∴C错误;D:,∴D正确.【考点】作差法证明不等式.4.下列不等式正确的是A.若,则B.若,则C.若,则D.若,则【答案】B【解析】A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B. 若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.【考点】不等式的性质.5.已知a,b为非零实数,且a<b,则下列命题一定成立的是()A.B.C.D.【解析】A.中,例如当时不成立;B.中,例如时不成立;D.中,例如时不成立;C.中,不等式两边同乘以非零正实数,不等号方向不变,得到,所以C正确【考点】不等式的简单性质6.如果a<b<0,那么( ).A.a-b>0B.ac<bc C.>D.a2<b2【答案】C【解析】根据题意,由于a<b<0,则a-b<0 故错误,对于c=0时则不等式ac<bc不成立,对于>符合倒数性质可知,成立,对于a2<b2,a=-3,b=-2不成立,故答案为C.【考点】不等式的性质点评:主要是考查了不等式的性质的运用,属于基础题。
7.设x > 0, y > 0,, , a 与b的大小关系()A.a >b B.a <b C.a b D.a b【答案】B【解析】由x>0,y>0,结合不等式的性质可得,解:∵x>0,y>0,∴x+y+1>1+x>0,1+x+y>1+y>0,则可知,,那么可知,故可知得到a <b,选B.【考点】不等式的性质点评:本题主要考查了不等式的性质的简单应用,解题的关键是熟练应用基本性质8.已知实数满足,,则的取值范围是.【答案】【解析】将代入,并化简,构造关于的一元二次方程:,该方程有解,则,解得【考点】不等式的运用点评:主要是考查了构造方程的思想,借助于判别式得到范围,属于中档题。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
高考模拟热点交汇试题汇编之数列与不等式(30题)
高考模拟热点交汇试题汇编之数列与不等式(30题) 高考模拟热点交汇试题汇编之数列与不等式(30题)01,,a,数列满足, fxxx()ln1,,,a,,,,1n11*; 数列满足, .求证: bbnb,,,,(1)nN,afa,b,,,, 已知函数11nn,nn,1n22(?)01;,,,aa nn,12an(?)a,; 1n,22(?)若a,,ban,,!则当n?2时,. 1nn2*: (?)先用数学归纳法证明01,,a,. nN,n(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即01,,a.则当n=k+1时, k1x 因为0<x<1时,,fx()10,,,,,所以f(x)在(0,1)上是增函数. xx,,11又f(x)在a,,,1ln21a上连续,所以f(0)<f()<f(1),即0<. 0,1,,k,1k故当n=k+1时,结论也成立. 即01,,a对于一切正整数都成立.————4分 n 又由01,,aaa,, 得,从而. aaaaaa,,,,,,,,,ln1ln(1)0,,nnn,1nnnnnn,1 综上可知01.,,,aa————6分 nn,122xx (?)构造函数g(x)=,,,ln(1)xx-f(x)= , 0<x<1, 222x 由,gx()0,,,知g(x)在(0,1)上增函数. 1,x又g(x)在上连续,所以g(x)>g(0)=0. 0,1,,22aann 因为,faa01,,a,.,所以,即>0,从而————10分 ga,0,,1,,nnn,n22b11n,1n,1b,0,所以, , bbnb,,,,(1),n11nn,b222n(?) 因为 bbb1nn,12 所以,,,,, ————? , ————12分bbn!n1nbbb2nn,,1212aaaaaaaaaannn,131nn,212 由(?)na,,知:,, 所以=,, , 1n,aaaaa22222n121n,12 因为a,01.,,,aa, n?2, 1nn,12n2a2,aaaa111n,112 所以 a<<=————? . ————14分 ,,an1n1,nn222222由?? 两式可知: ban,,!.————16分 nn已知,为锐角,且tan,,2,1,,12函数,数列{a}的首项. f(x),xtan2,,x,sin(2,,)a,,a,f(a)n1n,1n42 ? 求函数f(x)的表达式;? 求证:a,a; n,1n111*1,,,?,,2(n,2,n,N)? 求证: 1,a1,a1,a12n2tan,2(2,1):?, 又?为锐角 tan2,,,1,221,tan,1,(2,1),,2 ?f(x),x,x2,, ?sin(2,,),1 4412 ? a,a,aa,a,?a ?a, ?都大于0 ,1nnn23n122 ?a,0a,a ? n,n1n11111 ? ,,,, 2aa(1,a)a1,aa,an,nnnn1nn111?,, 1,aaannn,1111111111,,?,,,,,,?,, aaaaaaaaa1,1,1,12n1223nn,1111 ? 2,,,, aaa1n,1n,11133322?n,2a,a, , 又? a,(),,a,(),,1n,1n23224441 ?a,a,11,2,,2 ? n,13an,1111 ?1,,,?,,2 aaa1,1,1,12n,(本小题满分14分)已知数列满足 aaanN,,,,1,21a,,,,11nn,n(?)求数列的通项公式; a,,nb,1b,1bb,1b,13nn12(?)若数列444?4,(a,1)满足,证明:是等差数列;ba,,,,nnn1112,(?)证明:,,,,,nN ,,aaa3,231n(1)?a,2a,1?a,1,2(a,1),……………………2分 n,1nn,1n故数列{a,1}是首项为2,公比为2的等比数列。
高一数学不等式试题
高一数学不等式试题1.(2014•重庆)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【答案】D【解析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.点评:本题考查了对数的运算法则、基本不等式的性质,属于中档题.2.(2014•榆林模拟)已知各项均为正数的等比数列{an }满足a7=a6+2a5,若存在两项am,an使得的最小值为()A.B.C.D.【答案】A【解析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解:由各项均为正数的等比数列{an }满足 a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.3.(2014•咸阳二模)若正实数a,b满足a+b=1,则()A.有最大值4B.ab有最小值C.有最大值D.a2+b2有最小值【答案】C【解析】由于==2+≥4,故A不正确.由基本不等式可得a+b=1≥2,可得ab≤,故B不正确.由于=1+2≤2,故≤,故 C 正确.由a2+b2 =(a+b)2﹣2ab≥1﹣=,故D不正确.解:∵正实数a ,b 满足a+b=1, ∴==2+≥2+2=4,故有最小值4,故A 不正确.由基本不等式可得 a+b=1≥2,∴ab≤,故ab 有最大值,故B 不正确. 由于=a+b+2=1+2≤2,∴≤,故有最大值为,故C 正确.∵a 2+b 2 =(a+b )2﹣2ab=1﹣2ab≥1﹣=,故a 2+b 2有最小值,故D 不正确.故选:C .点评:本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.4. (2014•鹤城区二模)已知a ,b 为正实数,函数y=2ae x +b 的图象经过点(O ,1),则的最小值为( ) A .3+2B .3﹣2C .4D .2【答案】A【解析】将点(O ,1)的坐标代入y=2ae x +b ,得到a ,b 的关系式,再应用基本不等式即可. 解:∵函数y=2ae x +b 的图象经过点(O ,1), ∴1=2a•e 0+b ,即2a+b=1(a >0,b >0). ∴=()•1=()•(2a+b )=(2+1++)≥3+2(当且仅当b=a=﹣1时取到“=”). 故选A .点评:本题考查基本不等式,将点(O ,1)的坐标代入y=2ae x +b ,得到a ,b 的关系式是关键,属于基础题.5. (2014•郑州模拟)已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =16a 12,则+的最小值为( ) A .B .C .D .不存在【答案】A【解析】应先从等比数列入手,利用通项公式求出公比q ,然后代入到a m a n =16a 12中,可得到关于m ,n 的关系式,再利用基本不等式的知识解决问题. 解:设正项等比数列{a n }的公比为q ,易知q≠1,由a 7=a 6+2a 5得,解得q=﹣1(舍),或q=2,因为a m a n =16a 12,所以,所以m+n=6,(m >0,n >0),所以≥,当且仅当m+n=6,即m=2,n=4时等号成立.故选A点评:对等比数列的考查一定要突出基本量思想,常规思路一般利用同项、求和公式,利用首项,公比表示已知,进一步推出我们需要的隐含条件或结论;基本不等式要重视其适用条件的判断,这里容易在取“=”时出错.6. (2014•南昌模拟)若正数x ,y 满足x 2+3xy ﹣1=0,则x+y 的最小值是( ) A .B .C .D .【解析】先根据题中等式将y用x表示出来,然后将x+y中的y消去,然后利用基本不等式可求出最值,注意等号成立的条件.解:∵正数x,y满足x2+3xy﹣1=0,∴3xy=1﹣x2,则y=,∴x+y=x+=+≥2=当且仅当=即x=时取等号,故x+y的最小值是.故选:B.点评:本题主要考查了消元法的应用,以及基本不等式的应用,同时考查了分析问题的能力和运算求解的能力,属于中档题.7.若x<1,则y=的最大值.【答案】﹣1【解析】变形利用基本不等式的性质即可得出.解:∵x<1,∴y===2x+=+3=﹣1.当且仅当x=0时取等号.故答案为﹣1.点评:熟练掌握基本不等式的性质是解题的关键.8.若实数x,y,z满足x+2y+3z=a(a为常数),则x2+y2+z2的最小值为.【答案】【解析】利用题中条件:“x+2y+3z=a”构造柯西不等式:(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=a2这个条件进行计算即可.解:∵(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=a2,…(5分)∴(x2+y2+z2)≥,当且仅当时取等号,…(8分)则x2+y2+z2的最小值为.…(10分)故答案为:.点评:本题考查用综合法证明不等式,关键是利用:(x2+y2+z2)(12+22+32)≥(x+2y+3z)29.设x>3,则x= 时,的最小值是.【答案】3+2,.【解析】根据x+=(x﹣3)++3,注意x﹣3与的积为定值,利用基本不等式求出它的最小值及相应的x的值即可.解:∵x>3,∴x+=( x﹣3)++3≥2 +3=,当且仅当( x﹣3)=即x=3+2时,等号成立,故答案为:3+2,.点评:本题考查基本不等式的应用,注意检验等号成立的条件,式子的变形使得x﹣3与的积为定值是解题的关键.10.已知二次函数f(x)=ax2﹣4x+c+1的值域是[1,+∞),则+的最小值是.【解析】由已知可得a>0且,然后利用基本不等式即可求解最值解:∵f(x)=ax2﹣4x+c+1的值域是[1,+∞),∴a>0且即ac=4∴c>0∴=3当且仅当且ac=4,则a=时取等号∴的最小值为3故答案为:3点评:本题主要考查了二次函数的性质的应用,基本不等式求解函数的最值等知识的综合应用.。
高考数学数列和不等式知识点与典型例题
高考数学数列和不等式知识点与典型例题数 列对数列相关的问题要有特殊到一般(归纳)的意识和一般到特殊的意识(演绎)。
31.()()⎩⎨⎧≥-=-2111n S S n S a n nn ,注意一定要验证1a 是否包含在n a 中,从而考虑要不要分段。
提醒:处理数列问题一定不要忘了数列下标的取值范围。
32.{}n a 等差d a a n n =-⇔-1(常数)()*∈≥+=⇔-+N n n a a a n n n ,2211 Bn An S b an a n n +=⇔+=⇔2;{}n a 等比()⎩⎨⎧≠∈≥⋅=⇔+-.0,,2112n n n n a N n n a a a q a a n n =⇔-1(定值)()01≠a 1-⋅⇔n n q an n q m m s ⋅-=⇔33.常见性质:等差数列中:()();;11d m n a a d n a a m n n -+=-+=若,q p n m +=+则q p n m a a a a +=+;()()()d n n na d n n na n a a s n n n --+=-+=+=2121211; 等比数列中:m n m n n n q a a q a a --==;11;若q p n m +=+,则q p n m a a a a ⋅=⋅;当1,1na S q n ==;当()qq a a q q a S q n nn --=--=≠111,111。
34.求和常法:公式、分组、裂项相消、错位相减法、倒序相加当,关键是要找准通项结构。
差数列求和一定要确定首项、末项和项数。
你还记得常用裂项形式吗?【例】数列()⎭⎬⎫⎩⎨⎧+11n n 的n 项和为________________。
【答案】111+-n 【例】数列⎭⎬⎫⎩⎨⎧++n n 11的n 项和为______________。
【答案】11-+n【例】求和:12321-++++=n n nx x x S【答案】()()⎪⎪⎩⎪⎪⎨⎧≠----=+=1,1111,212x xnx x x x n n S n n n 提醒:求和最后一步一定要检验哦!(通常检验3,2,1=n )35.求通项常法:(1)公式法(即等差等比数列通项)(2)先猜后证。
数列与不等式压轴大题练习题和详细分析解答(2)
数列与不等式压轴大题练习题和详细分析解答(2)1.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈=;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m=则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>; (III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.2.已知数列{}n a 中,12112,4,23(2)n n n a a a a a n +-==+=≥. (1)求证:数列{}1n n a a +-是等比数列; (2)求数列{}n a 的通项公式;(3)设12122311,...n n n n n n a a a b a S b b b b b b +=-=+++,若对任意*n N ∈,有2823n m S m ≥-恒成立,求实数m 的取值范围.3.用[]x 表示一个小于或等于x 的最大整数.如:[]22=,[]4.14=,[]3.14-=-. 已知实数列0a 、1a 、对于所有非负整数i 满足[][]()1i i i i a a a a +⋅=-,其中0a 是任意一个非零实数.(Ⅰ)若0 2.6a =-,写出1a 、2a 、3a ; (Ⅱ)若00a >,求数列[]{}i a 的最小值;(Ⅲ)证明:存在非负整数k ,使得当i k ≥时,2i i a a +=.4.已知函数()1sin ()x f x e a x a R =--∈(1)当x ∈[0,π]时,f (x )≥0恒成立,求实数a 的取值范围;(参考数据:sin 1≈0.84) (2)当a =1时,数列{a n }满足:0<a n <1,1n a +=f (a n ),求证:{a n }是递减数列.5.设无穷数列{}n a 的每一项均为正数,对于给定的正整数k ,n n n k b a a +=⋅(*n N ∈),若{}n b 是等比数列,则称{}n a 为()B k 数列.(1)求证:若{}n a 是无穷等比数列,则{}n a 是()B k 数列; (2)请你写出一个不是等比数列的(1)B 数列的通项公式;(3)设{}n a 为(1)B 数列,且满足2213a a a =⋅,请用数学归纳法证明:{}n a 是等比数列.6.Fibonacci 数列又称黄金分割数列,因为当n 趋向于无穷大时,其相邻两项中的前项与后0618≈..已知Fibonacci 数列的递推关系式为121213n n n a a a a a n --==⎧⎨=+≥⎩,. (1)证明:Fibonacci 数列中任意相邻三项不可能成等比数列;(2)Fibonacci 数列{a n }的偶数项依次构成一个新数列,记为{b n },证明:{b n +1-H 2·b n }为等比数列.7.如果存在常数k 使得无穷数列{}n a 满足mn m n a ka a =恒成立,则称为()P k 数列. (1)若数列{}n a 是()1P 数列,61a =,123a =,求3a ; (2)若等差数列{}n b 是()2P 数列,求数列{}n b 的通项公式;(3)是否存在()P k 数列{}n c ,使得2020c ,2021c ,2022c ,…是等比数列?若存在,请求出所有满足条件的数列{}n c ;若不存在,请说明理由.8.对于数列{}n x ,若存在*N m ∈,使得2m k k x x -=对任意*121N ()k m k ≤≤-∈都成立,则称数列{}n x 为“m -折叠数列”.(1)若1*2020(20,)21N n n a C n n -=≤∈,()2*20191Nn b n n n =--∈,判断数列{}na ,{}nb 是否是“m -折叠数列”,如果是,指出m 的值;如果不是,请说明理由;(2)若*(N )n n x q n =∈,求所有的实数q ,使得数列{}n x 是3-折叠数列;(3)给定常数*N p ∈,是否存在数列{},n x 使得对所有*N m ∈,{}n x 都是pm -折叠数列,且{}n x 的各项中恰有1p +个不同的值,证明你的结论.数列与不等式压轴练习题和详细分析解答(2)1.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈=;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m=则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>; (III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值. 【答案】(I )不存在,理由见解析;(II )详见解析;(III )33. 【解析】 【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值. 【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<<,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立. (III )1i j m ∀≤<≤,都有1j j i j a a b b m --=-,因为*i b N ∈,12m b b b >>>,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++-()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤. 由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33. 【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.2.已知数列{}n a 中,12112,4,23(2)n n n a a a a a n +-==+=≥. (1)求证:数列{}1n n a a +-是等比数列; (2)求数列{}n a 的通项公式;(3)设12122311,...n n n n n n a a a b a S b b b b b b +=-=+++,若对任意*n N ∈,有2823n m S m ≥-恒成立,求实数m 的取值范围.【答案】(1)证明见解析;(2)2nn a =;(3)1[,1]4-. 【解析】分析:第一问将1123(2)n n n a a a n +-+=≥,变形为11212(),2n n n n a a a a a a +--=--=,利用等比数列的定义即可证明;第二问根据第一问的结论可以得出12nn n a a +-=,之后应用累加法求得n a ,一定不要忘记对首项的验证;第三问对相应的项进行裂项,之后求和,再利用数列的单调性,不等式的解法即可得出结果. 详解:(1)证明:()11232n n n a a a n +-+=≥,()()1122n n n n a a a a n +-∴-=-≥.2120a a -=≠, ()102n n a a n -∴-≠≥, ()1122n nn n a a n a a +--∴=≥-.∴数列{}1n n a a +-是首项、公比均为2的等比数列.(2){}1n n a a +-是等比数列,首项为2,通项12n n n a a +-=,故()()()121321n n n a a a a a a a a -=+-+-++-12122222n n -=++++=,当1n =时,112a =符合上式,∴数列{}n a 的通项公式为2n n a = .(3)解:2,121nnn n n a b a ==-=-,()()11121121212121n n n n n n n n a b b +++∴==----- 12231111111212121212121n n n S +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭故11121n n S +=--,又因为{S n }单调递增,所以S n 的最小值为S 1=23,228233m m ≥-成立,由已知,有2431m m -≤,解得114m -≤≤,所以m 的取值范围为1,14⎡⎤-⎢⎥⎣⎦. 点睛:该题属于数列的综合题,该题考查了等比数列的证明方法-------死咬定义,等比数列的通项公式,累加法求通项公式,裂项相消法求和,解不等式问题,在求解的过程中,要时刻注意细节问题,尤其是利用累加法求通项的时候一定不要忘记对首项的验证.3.用[]x 表示一个小于或等于x 的最大整数.如:[]22=,[]4.14=,[]3.14-=-. 已知实数列0a 、1a 、对于所有非负整数i 满足[][]()1i i i i a a a a +⋅=-,其中0a 是任意一个非零实数.(Ⅰ)若0 2.6a =-,写出1a 、2a 、3a ; (Ⅱ)若00a >,求数列[]{}i a 的最小值;(Ⅲ)证明:存在非负整数k ,使得当i k ≥时,2i i a a +=.【答案】(Ⅰ)1 1.2a =-,2 1.6a =-,30.8a =-;(Ⅱ)最小值为0;(Ⅲ)见解析. 【解析】 【分析】(Ⅰ)由0 2.6a =-,代入可得[][]()1000 1.2a a a a =-=-⋅,同理可得:2a 、3a ;(Ⅱ)由00a >,可得[]00a ≥,[][]()10000a a a a =-≥,设[]0i a ≥,1i ≥,可得10i a +≥,因此[]0i a ≥,0i ∀≥. 又因[]01i i a a ≤-<,可得[][]1i i a a +≤,0i ∀≥. 假设0i ∀≥,都有[]0i a >成立,可得:[][]11i i a a +≤-,0i ∀≥,利用累加求和方法可得[][]0n a a n ≤-,1n ∀≥,则当[]0n a ≥时,[]0n a ≤,得出矛盾,[]0k a =,从而可得出[]{}i a 的最小值; (Ⅲ)当00a >时,由(Ⅱ)知,存在k ∈N ,[]0k a =,可得10k a +=,[]10k a +=,由此得出0i a =,i k ∀≥,成立.;若0i a <,0i ∀≥,推导出数列[]{}i a 单调不减.由[]i a 是负整数,可知存在整数m 和负整数c ,使得当i m ≥时,[]i a c =.所以,当i m ≥时,()1i i a c a c +=-,转化为22111i i c c a c a c c +⎛⎫-=- ⎪--⎝⎭,令21i i c b a c =--,即1i i b cb +=,i m ≥.经过讨论:当0m b =时,得证.当0m b ≠时,0i b ≠,i m ≥,i mi m b c b -=,i m ≥,当i m≥时,[]i a c =,则[),1i a c c ∈+,则{}i b 有界,进而证明结论. 【详解】 (Ⅰ)0 2.6a =-,[][]()()10003 2.63 1.2a a a a ∴=-=-⨯--⋅+=,同理可得:2 1.6a =-,30.8a =-;(Ⅱ)因00a >,则[]00a ≥,所以[][]()10000a a a a =-≥, 设[]0i a ≥,1i ≥,则[][]()10i i i i a a a a +=-≥,所以[]0i a ≥,0i ∀≥. 又因[]01i i a a ≤-<,则[][]()[]1i i i i i a a a a a +=-≤,则[][]1i i a a +≤,0i ∀≥. 假设0i ∀≥,都有[]0i a >成立,则[][]()[]1i i i i i a a a a a +=-<, 则[][]1i i a a +<,0i ∀≥,即[][]11i i a a +≤-,0i ∀≥, 则[][]0n a a n ≤-,1n ∀≥,则当[]0n a ≥时,[]0n a ≤, 这与假设矛盾,所以[]0i a >,0i ∀≥不成立, 即存在k ∈N ,[]0k a =,从而[]{}i a 的最小值为0; (Ⅲ)当00a >时,由(Ⅱ)知,存在k ∈N ,[]0k a =, 所以10k a +=,所以[]10k a +=,所以0i a =,i k ∀≥,成立.当00a <时,若存在k ∈N ,0k a =,则0i a =,i k ∀≥,得证; 若0i a <,0i ∀≥,则[]1i a ≤-,则[][]()[]1i i i i i a a a a a +=->, 则[][]1i i a a +≥,0i ∀≥,所以数列[]{}i a 单调不减.由于[]i a 是负整数,所以存在整数m 和负整数c ,使得当i m ≥时,[]i a c =.所以,当i m ≥时,()1i i a c a c +=-,则22111i i c c a c a c c +⎛⎫-=- ⎪--⎝⎭,令21i i c b a c =--, 即1i i b cb +=,i m ≥.当0m b =时,则0i b =,i m ≥,则21i c a c =-,i m ≥,得证.当0m b ≠时,0i b ≠,i m ≥,i mi m b c b -=,i m ≥,因当i m ≥时,[]i a c =,则[),1i a c c ∈+),则{}i b 有界,所以1c ≤,所以负整数1c =-.()()()11111222i m i m i m m a b a i m --⎛⎫∴=-+-=-+-+≥ ⎪⎝⎭,则,,2,4,1,1,3,m i m a i m m m a a i m m =++⎧=⎨--=++⎩令k m =,满足当i k ≥时,2i i a a +=.综上,存在非负整数k ,使得当i k ≥时,2i i a a +=. 【点睛】本题考查了数列的递推关系、取整函数[]x 的性质及其应用、反证法、分类讨论思想的应用,考查分析问题和解决问题的能力、推理论证能力,属于难题. 4.已知函数()1sin ()x f x e a x a R =--∈(1)当x ∈[0,π]时,f (x )≥0恒成立,求实数a 的取值范围;(参考数据:sin 1≈0.84) (2)当a =1时,数列{a n }满足:0<a n <1,1n a +=f (a n ),求证:{a n }是递减数列. 【答案】(1)(,1]-∞;(2)证明见解析.【解析】 【分析】求导()cos '=-xf x e a x ,()sin ''=+xf x e a x ,分0a ≤,01a <≤,1a >三种情况讨论求解.(2)要证{a n }是递减数列.即证()10+-=-<n n n n a a f a a ,由a =1,构造函数()()1sin =-=---x g x f x x e x x ,用导数法证明()0<g x 即可.【详解】因为()1sin ()xf x e a x a R =--∈,所以()cos '=-xf x e a x , 设()(),()sin xh x f x h x e a x +=''=,当0a ≤时,即0a -≥时,因为[]0,,sin 0π∈≥x x , 所以sin 0-≥a x ,而10x e -≥,所以1sin 0--≥x e a x 即f (x )≥0恒成立,当01a <≤时,()sin 0x h x e a x '=≥+, 所以()f x '在[0,π]上递增,而(0)10'=-≥f a , 所以()(0)0f x f ''≥=,所以()f x 在[0,π]上递增, 即()(0)0f x f ≥=成立,当1a >时,()sin 0xh x e a x '=≥+, 所以()f x '在[0,π]上递增,而2(0)10,()02ππ''=-<=>f a f e ,所以存在[]00,x π∈,有()00f x '=, 当00x x <<时,()0f x '<,()f x 递减, 当0x x π<<时,()0f x '>,()f x 递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x ,而0()(0)0f x f <=,不成立 综上:实数a 的取值范围(,1]-∞.(2)因为a =1,所以()()1sin ,0,1=--∈xf x e x x ,令()()1sin =-=---xg x f x x e x x ,所以()cos 1'=--xg x e x ,设()()u x g x ='所以0n (i )s xu x e x +'=≥, 所以()g x '在()0,1上递增,而(0)10,(1)cos110''=-<=-->g g e , 所以存在()10,1x ∈,()10f x '=, 当10x x <<时,()0g x '<,()g x 递减, 当11x x <<时,()0g x '>,()g x 递增,而(0)0,(1)1sin1120.840==---≈--<g g e e , 所以()0<g x ,即当()0,1x ∈时,()f x x <,而()10+-=-<n n n n a a f a a ,1n n a a +<, 所以{a n }是递减数列. 【点睛】本题主要考查导数与不等式恒成立问题以及零点存在定理,还考查分类讨论,转化化归的思想和运算求解的能力,属于难题.5.设无穷数列{}n a 的每一项均为正数,对于给定的正整数k ,n n n k b a a +=⋅(*n N ∈),若{}n b 是等比数列,则称{}n a 为()B k 数列.(1)求证:若{}n a 是无穷等比数列,则{}n a 是()B k 数列; (2)请你写出一个不是等比数列的(1)B 数列的通项公式;(3)设{}n a 为(1)B 数列,且满足2213a a a =⋅,请用数学归纳法证明:{}n a 是等比数列.【答案】(1)证明见解析.(2)1112,21,2k n k a q n k a a qn k --⎧=-=⎨=⎩(2221a a q ≠).(答案不唯一).(3)证明见解析 【解析】 【分析】 (1)通过证明210n nb q b +=>,证得数列{}n b 是等比数列,由此证得{}n a 为()B k 数列. (2)根据满足1n n n b a a +=⋅的数列{}n b 是等比数列,但无穷数列{}n a 不是等比数列,举出相应的例子.(3)首先根据已知条件得到22n na q a +=,再利用数学归纳法证明212nn n a a a ++=⋅(或者利用数学归纳法证明1n n na c q a +==),由此证得{}n a 是等比数列. 【详解】(1)设{}n a 是公比为q 的等比数列,对于给定的正整数k ,n n n k b a a +=⋅(*n ∈N ), ∴111n n n k b a a ++++=⋅,21110n n n kn n n kb a a q b a a +++++⋅==>⋅, 又1110k b a a +=⋅>,∴{}n b 是等比数列, ∴{}n a 为()B k 数列.(2)1112,21,2k n k a q n k a a qn k --⎧=-=⎨=⎩(2221a a q ≠).(答案不唯一) 简洁的例子如:1,212,2n n k a n k=-⎧=⎨=⎩(*k ∈N ).(3)∵{}n a 为(1)B 数列,∴{}n b 是等比数列,其中1n n n b a a +=⋅(*n ∈N ),∴11221n n n n n n n nb a a a b a a a +++++⋅==⋅(*n ∈N ),∴2{}n n a a +(*n ∈N )是常数列,设常数为2q ,即22n na q a +=(*n ∈N ), 以下用数学归纳法证明(法一)212n n n a a a ++=⋅(*n ∈N ),①由已知2213a a a =⋅可得:当1n =时命题成立;②假设1n k =-(*n ∈N ,2k ≥)时命题成立,即,211k k k a a a -+=⋅,当n k =时,∵2{}n na a +(*n ∈N )是常数列, ∴211k k k k a a a a ++-=(*n ∈N ,2k ≥), ∴221211k k k k k k a a a a a a +++-⋅=⋅=, 等式也成立.根据①和②可以断定,212n n n a a a ++=⋅对任何*n ∈N 都成立,即{}n a 是等比数列.令1n n na c a +=,以下用数学归纳法证明(法二)n c q =(*n ∈N ), ①∵2213a a a =⋅,∴3221a a a a =,∴223211()a a q a a ==,∴21a q a =,即1c q =, ∴当1n =时命题成立, 假设n k =(*k ∈N ,1k)时命题成立,即k c q =(1k ka q a +=); ②当1n k =+时,22211112k k k k k k k a a a ac q q a a a a +++++==⋅=⋅=, 等式也成立;根据①和②可以断定,n c q =对任何*n ∈N 都成立,即{}n a 是等比数列. 【点睛】本小题主要考查等比数列的证明,考查数学归纳法证明数列问题,属于难题.6.Fibonacci 数列又称黄金分割数列,因为当n 趋向于无穷大时,其相邻两项中的前项与后0618≈..已知Fibonacci 数列的递推关系式为121213nn n a a a a a n --==⎧⎨=+≥⎩,. (1)证明:Fibonacci 数列中任意相邻三项不可能成等比数列;(2)Fibonacci 数列{a n }的偶数项依次构成一个新数列,记为{b n },证明:{b n +1-H 2·b n }为等比数列.【答案】(1)详见解析;(2)详见解析. 【解析】 【分析】(1)利用反证法,假设存在n a ,1n a +,2n a +三项成等比数列,则21+2n n n a a a +=,进而由已知关系证得1n n a a +=是无理数,这与其递推公式中反应的为有理数矛盾,得证; (2)由题表示2n n b a =,进而由已知n a 的递推关系表示出n b 的递推公式,再构造等比数列{}1n n b mb +-,进而由一一对应关系计算出对应参量,最后由等比数列定义得证.【详解】(1)证明:(反证法)假设存在n a ,1n a +,2n a +三项成等比数列,则21+2n n n a a a +=, 所以()21+1n n n n aa a a +=+,所以21110n n n n a aa a ++⎛⎫+-= ⎪⎝⎭,解得1n n a a +=,由条件可知Fibonacci 数列的所有项均大于0,所以1n n a a +=, 又Fibonacci 数列的所有项均为整数(由递推公式),所以1nn a a +应该为有理数,这与1n n a a +=(无理数)矛盾(其相邻两项中的前项与后项的比值越来越接近黄金分割数,而不是恰好相等), 所以假设不成立,故原命题成立.(2)证明:由条件得2n n b a =,21222n n n a a a ++=-,所以()224232222212222222212233n n n n n n n n n n n n n b a a a a a a a a a a b b ++++++++++==+=+=+-=-=-, 即213n n n b b b ++=-,设()()21121n n n n n n n b mb n b mb b m n b mnb +++++-=-⇒=+-,则332132m m n mn n ⎧=⎪+=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩或3232m n ⎧=⎪⎪⎨+⎪=⎪⎩所以211n n n n b b +++⎫-=⎪⎪⎝⎭或211n n n n b b +++⎫=⎪⎪⎝⎭所以)22211n n n n b H b b H b +++-⋅=-⋅,所以21{}n n b H b +-⋅. 【点睛】本题考查数列中的新定义问题的证明,涉及反证法的考查,还考查了构造等比数列,属于难题.7.如果存在常数k 使得无穷数列{}n a 满足mn m n a ka a =恒成立,则称为()P k 数列. (1)若数列{}n a 是()1P 数列,61a =,123a =,求3a ; (2)若等差数列{}n b 是()2P 数列,求数列{}n b 的通项公式;(3)是否存在()P k 数列{}n c ,使得2020c ,2021c ,2022c ,…是等比数列?若存在,请求出所有满足条件的数列{}n c ;若不存在,请说明理由. 【答案】(1)313a =;(2)0n b =或12n b =或2n n b =;(3)存在;满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=. 【解析】 【分析】(1)根据()P k 数列的定义,得623a a a =,1226a a a =,可求3a ;(2)根据()P k 数列的定义,得2mn m n b b b =,分10b =和10b ≠两种情况讨论.当10b =,0n b =.当10b ≠时,由{}n b 是等差数列,对,m n 赋值,求出1b 和公差d ,即求n b ;(3)假设存在满足条件的()P k 数列{}n c ,设等比数列2020c ,2021c ,2022c ,…的公比为q .则有2020202020202020c kc c ⋅=,2020202120202021c kc c ⋅=,可得q =1,故当2020n ≥时,1n c k=.当12020n <<时,不妨设2020i n ≥,i N *∈且i 为奇数, 由()()1122221i i i i i ii n n n n n n n n n n n c c kc c kc c k c c k c -----⨯⨯==⨯=⨯=⨯==,可得1n c k=. 即满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=. 【详解】(1)由数列{}n a 是()1P 数列,得6231a a a ==,12263a a a ==,可得313a =; (2)由{}n b 是()2P 数列知2mn m n b b b =恒成立,取m =1得12n n b b b =恒成立, 当10b =,0n b =时满足题意,此时0n b =,当10b ≠时,由2112b b =可得112b =,取m =n =2得2422b b =, 设公差为d ,则21132()22d d +=+解得0d =或者12d =,综上,0n b =或12n b =或2n n b =,经检验均合题意. (3)假设存在满足条件的()P k 数列{}n c ,不妨设该等比数列2020c ,2021c ,2022c ,…的公比为q , 则有2020202020202020202020202020202020202020,c kc c c q kc c ⋅-⋅=∴⋅=⋅,可得2020202020202020qkc ⋅-=①2020202120202020202120202021202020202020,c kc c c q kc c q ⋅-⋅=∴⋅=⋅⋅,可得2020202120212020qkc ⋅-=②综上①②可得q =1,故202020202020c c ⋅=,代入2020202020202020c kc c ⋅=得20201c k=, 则当2020n ≥时,1n c k =, 又20201202011,c kc c c k=⋅∴=, 当12020n <<时,不妨设2020i n ≥,i N *∈且i 为奇数, 由()()1122221i i i i i ii n n n n n n n n n n n c c kc c kc c k c c k c -----⨯⨯==⨯=⨯=⨯==,而1i n c k =,11()i i n k c k -∴=,1()()ii n c k ∴=,1n c k∴=. 综上,满足条件的()P k 数列{}n c 有无穷多个,其通项公式为1n c k=. 【点睛】本题考查创新型题目,考查等差数列和等比数列的通项公式,考查学生的逻辑推理能力和计算能力,属于难题.8.对于数列{}n x ,若存在*N m ∈,使得2m k k x x -=对任意*121N ()k m k ≤≤-∈都成立,则称数列{}n x 为“m -折叠数列”.(1)若1*2020(20,)21N n n a C n n -=≤∈,()2*20191Nn b n n n =--∈,判断数列{}na ,{}nb 是否是“m -折叠数列”,如果是,指出m 的值;如果不是,请说明理由;(2)若*(N )n n x q n =∈,求所有的实数q ,使得数列{}n x 是3-折叠数列;(3)给定常数*N p ∈,是否存在数列{},n x 使得对所有*N m ∈,{}n x 都是pm -折叠数列,且{}n x 的各项中恰有1p +个不同的值,证明你的结论.【答案】(1){}n a 是“m -折叠数列”,{}n b 不是“m -折叠数列”,理由见解析;(2)0q =或1q =或1q =-;(3)存在,证明见解析.【解析】 【分析】(1)由给的定义进行求解;(2)根据题中所给定义,列方程讨论q 的取值可得出结果;(3)只需列举出例子即可证明,结合定义,数列{}n x 的图象有无数条对称轴,可联想三角函数求解. 【详解】解:(1)若数列{}n a 为“m -折叠数列”,则2m k k a a -=, 所以21120202020m k k C C ---=,所以2112020m k k --+-=,得1011m =, 所以{}n a 为“m -折叠数列”,1011m =; 若数列{}n b 是“m -折叠数列,则2m k k b b -=, 所以2201922m k k -+=,得20192m =*N ∉, 所以数列{}n b 不是“m -折叠数列;(2)要使通项公式为*(N )n n x q n =∈的数列{}n x 是3-折叠数列,只需6kk qq -=, 当0q =时,0n x =,显然成立, 当0q ≠时,由6kk qq -=,得621k q -=,2(3)1k q -=,({}1,2,3,4,5k ∈),所以1q =或1q =-, 综上0q =,1q =或1q =-;(3)对给定的*N p ∈,{}n x 都是pm -折叠数列,故n x 有多条对称轴,其中x pm =都是数列{}n x 的对称轴,设cos n x x pπ=,由x m pππ=(*N m ∈)得对称轴为x pm =,且nx 的周期为2p ,满足给定常数*N p ∈,使得对所有*N m ∈,{}n x 都是pm -折叠数列,n x 是周期函数,周期为2p ,在(1,2]p 这个周期内,x p =为对称轴,故(1,2]n x p ∈对应函数值的个数与[,2]n x p p ∈对应的函数值个数相等,即[,2]n x p p ∈时,[,2]n x pπππ∈所以{}n x 在[,2]n x p p ∈上单调递增,因为*N p ∈,所以n x 各项中共有1p +个不同的值,综上,给定常数*N p ∈,存在数列{}n x ,使得对所有*N m ∈,{}n x 都是pm -折叠数列,且{}n x 的各项中恰有1p +个不同的值 【点睛】此题考查了数列,三角函数等知识,用到了分类讨论思想,函数思想,属于难题.。
高一下册数学《不等式》试卷
第9周:《不等式》小测试卷命题:时间:_______ 高一____班 姓名____________一.选择题(满分6⨯6分,每小题给出的四个选项中,有且只有一项是符合题目要求的)1、设a ,b ,c ∈R ,且a>b ,则 ( )A .ac>bc B.1a <1bC .a 2>b 2D .a 3>b 3 2、已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A .(2,3) B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 3、已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)4、已知x ,y 满足不等式组⎩⎪⎨⎪⎧ y≥x,x +y≤2,x≥a,且z =2x +y 的最大值是最小值的3倍,则a的值为 ( )A .0 B.13 C.23 D .15、下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是 ( ) A .0 B .1 C .2 D .36、若正数x ,y 满足x +3y-5xy=0,则3x +4y 的最小值是 ( ) A.245 B.285 C .5 D .6二. 填空题(本题满分4⨯6分)7、ABC ∆的内角C B A ,,的对边长分别为c b a ,,,若b c a =-22,且C A C A sin cos 2cos sin =,则=b __________.8、已知O 是坐标原点,点A(-1,1),若点M(x ,y)为平面区域⎩⎪⎨⎪⎧ x +y≥2,x≤1,y≤2上的一个动点,则OM OA ⋅的取值范围是________. 9、若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n(n∈N *),则a 12+a 23+…+a n n +1=__________.10、实系数一元二次方程022=++b ax x 有两个根,一个根在区间)1,0(内,另一个根在区间)2,1(内,则12--a b 的取值范围为 . 三.解答题(本题满分40分) 11、(本题满分20分)设函数f (x )=mx 2﹣mx ﹣6+m .(1)若对于x ∈[1,3],f (x )<0恒成立,求实数m 的取值范围;(2)若对于m ∈[﹣2,2],f (x )<0恒成立,求实数x 的取值范围.12、(本题满分20分)已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24f x x ax =-+(1a ≥),2()1x g x x =+. (1)求函数()y f x =的最小值()m a ;(2)若对任意1x 、2[0,2]x ∈,21()()f x g x >恒成立,求a 的取值范围.四、选做题(20分) 设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数列与不等式测试题
一、选择题(12个小题,每题5分,共60分) 1)已知集合{
}{
}
55.022
<
<-=>-=x x B x x x A 则
A 、R
B A =⋃ B 、φ=⋂B A
C 、A B ⊆
D 、B A ⊆ 2)三个正数a 、b 、c 成等比数列,则c b a lg ,lg ,lg 是 ( ) A 、等比数列 B 、既是等差又是等比数列
C 、等差数列
D 、既不是等差又不是等比数列 3)一元二次不等式ax 2
+bx +2>0的解集是(-
21,3
1
),则a +b 的值是( ) A 、 10 B 、 -10 C 、 14 D 、 -14 4)下列各函数中,最小值为2的是 ( ) A 、x x y 1+= B 、x x y sin 1
sin += ∈x (0,2
π) C 、=
y 2
322++x x D 、12
-+
=
x
x y 5)在等比数列{}n a 中,n S 表示前n 项和,若1223+=S a 1234+=S a 则公比=q A 、1 B 、-1 C 、-3 D 、3
6)若02522
>-+-x x ,则221442
-++-x x x 等于( )
A .54-x
B .3-
C .3
D .x 45-
7)设a >1>b >-1,则下列不等式中恒成立的是 ( )
A .
b
a 11< B .
b a 1
1> C .a >b 2 D .a 2>2b
8)若数列{}n a 的前n 项和3
1
32+=n n a S 则{}n a 的通项公式=n a ( )
A 、
12--n )( B 、1
2-n C 、 1
2
--n D 、
n
)(2- 9)不等式
x
x --21
3≥1的解集是 ( ) A 、{x|
43≤x ≤2} B 、{x|4
3
≤x <2}
C 、{x|x >2或x ≤
4
3
} D 、{x|x <2} 10)函数)11
1
(log 2
1+++
=x x y ()1>x 的最大值是 ( ) A 、-2 B 、2 C 、-3 D 、3
11)已知函数)0(2
≠++=a c bx ax y 的图象经过点(-1,3)和(1,1)两点,若0<c <1, 则a 的取值范围是 ( )
A 、(1,3)
B 、 (1,2)
C 、[2,3)
D 、[1,3]
12)函数a ax x f 21)(-+=在区间()1,1-上存在一个零点,则实数a 的取值范围是( ) A 、 ⎪⎭⎫ ⎝⎛1,31 B 、⎥⎦⎤⎢⎣⎡1,31 C 、⎪⎭⎫⎢⎣⎡1,31 D 、⎥⎦
⎤ ⎝⎛1,31
二、填空题(4个小题,每题5分,共20分) 13)设x 、y ∈R +
且
y
x 9
1+=1,则y x +的最小值为________. 14)在函数x
y 1
=
的图象上,求使y x 11+取最小值的点的坐标为________.
15)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),
(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 16)已知在数列{}n a 中)3(12≥+=--n a a a n n n ===n b a a ,2,1211
+n n
a a ,则数列{}n
b 的前四项依次是____ 、____ 、____ 、____ 、 三、解答题(6个小题, 70分)
17))(本小题满分10分)解下列不等式
(Ⅰ)1232
+≤-x x (Ⅱ)
02
515
2≤+-x x
18))(本小题满分12分)求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩
⎪
⎨⎧-≥≤+≤.1,1,y y x x y
19) (本小题满分12分)在等差数列}{n a 中,21=a ,12321=++a a a 。
(Ⅰ) 求数列}{n a 的通项公式;
(Ⅱ)令n n n a b 3⋅=,求数列}{n b 的前n 项和n S 20)(本小题满分12分)
已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (Ⅰ)求{a n }的通项公式;
(Ⅱ)求数列⎭
⎬⎫⎩⎨⎧+-12121
n n a a 的前n 项和
21) (本小题满分12分)若函数)34(log 2
++=kx kx y a 的定义域是R,求k 的取值范围.
22)(本小题满分12分)关于x 的实系数方程022=+-b ax x 的一根在区间[]1,0上,另一
根在区间[]2,1上,求b a 32+的最大值。
答案
选择题1)A 2) 15)(5,7)
18)解:(1)设数列}{n a 的公差为d ∵,12321=++a a a ∴3122=a ∴42=a ∴d=221=-a a ∴n a n 2=
(2)∴n n n b 32⋅= ∴n n n S 3236343232⋅+⋅⋅⋅+⨯+⨯+⨯=……① ∴132323)1(234323+⋅+⋅-+⋅⋅⋅+⨯+⨯=n n n n n S ………② ① -②得:1
3
2
3
2323232322+⋅-⨯+⋅⋅⋅+⨯+⨯+⨯=-n n
n n S =n n n 322
)
13(32⋅--⋅
∴2
3
3)12(1+⋅-=+n n n S。