高一数学上册第一单元测试题
高一数学必修1第一单元测试题及答案

高一年级数学学科第一单元质量检测试题参赛试卷学校:宝鸡石油中学 命题人:张新会一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{0,1}的子集有 A.1个 B. 2个 C. 3个 D. 4个2.已知集合2{|10}M x x =-=,则下列式子正确的是A.{1}M -∈B.1 M ⊂ C . 1 M ∈- D. 1 M ∉-3.已知集合M={},0a N={}1,2且M {2}N =,那么=N MA .{},0,1,2aB .{}1,0,1,2C .{}2,0,1,2D .{}0,1,24.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误的是A .()ABC ⊂ B .()A B C ⊂ C .()A C B ⊂D .()A C B ⊂5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A =A .{x =1,y =2}B .{(1,2)}C .{1,2}D .(1,2)6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ={1,3,5}的所有集合B 的个数是 A. 1 B. 4 C. 5 D. 87.设{012},{}B A x x B ==⊆,,则A 与B 的关系是A .AB ⊆ B .B A ⊆C .A ∈BD .B ∈A 8.31{|},{|},2m A n Z B m Z A B n +=∈=∈=则 A .B B .A C .φ D .Z9.已知全集I={0,1,2}则满足(){2}I A B =的集合A 、B 共有A .5组B .7组C .9组D .11组10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 的不同值的个数是 A .0 B. 1 C. 2 D. 311.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =A .空集B .{|0}m m <C .{|40}m m -<< D.{|40}m m -<≤12. 非空集合M 、P 的差集{,}M P x x M x P -=∈∉且,则()M M P --=A .PB .M ∩PC .M ∪PD .M二、填空题:本大题共6小题,每小题5分,共30分.13.已知{}2|2,A y y x x ==+∈R ,则 R A = .【答案】{|2}x x < 14.数集2{2,}a a a +,则a 不可取值的集合为 . 【答案】{0,1}15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有 个元素.【答案】2016.满足2{1,3,}{1,1}a a a ⊇-+的元素a 构成集合 .【答案】{-1,2}17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =,则A = . 【答案】}2{}1{=-=A A 或18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }的集合P 有 个.【答案】4三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.19.(15分)若集合2{|210}A x ax x =++=中有且仅有一个元素,求a 的取值.解:当0a =时,方程为210x +=,12x =-只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,所以440a ∆=-=,解得1a =故a 的取值为0或120.(本小题满分15分)已知集合A={-1,1},B={x | x ∈A},C={y | y ⊆A}(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间的关系.解:(1)∵A={-1,1} ∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}(2)A = B ∈C21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<.(1)求AB 及()R A B ;(2)若()A BC =∅,求实数a 的取值范围. 解:(1)AB ={}|35x x <≤ ∵ A B ={}|28x x << ∴()R A B ={}|28x x x ≤≥或(2)若()A B C =∅,则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩得312a -<≤或6a ≥ ∴实数a 的取值范围为{3|12a a -<≤或6a ≥} 22. (本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,{14710}B =,,,且M A φ=,M B M =,试求p q 、的值.解:M B M =,M B ∴⊂,2240p q ->时,方程20x px q ++=有两个不等的根,且这两个根都在集合B 中, M A φ=,∴ 1,7不是M 的元素,∴4,10是方程20x px q ++=的两个根故14,40p q =-=【试题命制意图分析】考查基本内容:①集合的基本内容包括集合有关概念,集合的三种运算和集合语言和思想的初步应用。
高中数学必修1第一单元试卷及答案

高中数学必修1第一单元试卷及答案高一年级数学第一单元质量检测试题参赛试卷一。
填空题(每题5分:共50分)1.集合A= {x|-1≤x≤2}:B={x|x<1}:则A∩(CRB)=()A。
{x|x>1}B。
{x|x≥1}C。
{x|1<x≤2}D。
{x|1≤x≤2}2.集合P={x∈Z|≤x<3},M={x∈R|x²≤9}:则P∩M=()A。
{1,2}B。
{0,1,2}C。
{x|0≤x<3}D。
{x|0≤x≤3}3.若集合A={x|-2<x<1}:B={x|<x<2}:则集合AB=()A。
{x|-1<x<1}B。
{x|-2<x<1}C。
{x|-2<x<2}D。
{x|<x<1}4.已知集合M={1,2,3}:N={2,3,4}:则()A。
M⊆NB。
N⊆MC。
MN={2,3}D。
MN={1,4}5.A={x|x≤1,x∈R}:B={y|y=x²,x∈R}:则A∩B=()A。
{x|-1≤x≤1}B。
{x|x≥0}C。
{x|≤x≤1}D。
∅6.已知A、B均为集合U={1,3,5,7,9}的子集:且A∩B={3}:B∩A={9}:则A=()A。
{1,3}B。
{3,7,9}C。
{3,5,9}D。
{3,9}7.A={x|x≤2,x∈R}:B={x|x≤4,x∈Z}:则A∩B=() A。
(0,2)B。
[0,2]C。
{0,2}D。
{0,1,2}8.已知全集U=R:集合M={x||x-1|≤2}:则CU(M)=() A。
X-1<X<3B。
X-1≤X≤3C。
X3D。
X≤X-1或X≥39.已知全集U=R:集合A={x|x²-2x>0}:则CU(A)=() A。
{x|x≤2}B。
{x|0<x<2}C。
{x|x2}D。
{x|x≤0或x≥2}10.若集合A={-1,1}:B={x|mx=1}:且A∪B=A:则m的值为()A。
新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
必修一数学第一章测试题及答案

必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。
答案:42. 函数y=x³-6x的导数为______。
答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。
答案:x=-14. 函数y=x³-3x的单调递减区间为______。
高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。
答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。
答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。
高中数学必修一第一章单元测试卷及答案2套

高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
高中数学必修一 第一章测试题(含答案)

必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
高中数学必修一第一章测试题

高中数学必修一第一章测试题一、选择题(每题3分,共15分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {2, 3}C. {1, 2, 3}D. {3, 4}3. 若a > 0,b < 0,且|a| > |b|,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0,也可能小于0D. 无法确定4. 函数f(x) = x^2 - 2x + 1的最小值是:A. 0B. 1C. -1D. 25. 已知等差数列的首项a1=3,公差d=2,求第5项a5。
A. 13B. 11C. 9D. 7二、填空题(每题2分,共10分)6. 集合{1, 2, 3}的补集(相对于自然数集N)是______。
7. 已知集合M={x | x > 0},N={x | x < 5},求M∩N的元素范围是______。
8. 若函数f(x) = 3x - 5的图象与x轴相交于点A,求点A的坐标是______。
9. 等差数列的前n项和公式是______。
10. 若方程x^2 + 6x + 9 = 0有实数根,则实数根的个数是______。
三、解答题(共75分)11. 已知集合P={x | x^2 - 1 = 0},求P的所有子集,并计算这些子集的个数。
(10分)12. 证明:对于任意实数x,x^3 - 3x + 2 ≥ 0。
(15分)13. 已知函数f(x) = 2x^3 - 3x^2 + 1,求导数f'(x),并讨论f(x)的单调性。
(20分)14. 解不等式:|x - 1| + |x - 3| < 2。
(15分)15. 已知等差数列的前n项和S_n = 20n,求该数列的首项a1和公差d。
(15分)请注意,这些测试题仅供练习使用,具体题目的难度和范围应根据实际教学大纲和学生的学习进度来确定。
高一数学必修一第一单元测试试卷

高一数学必修一第一单元测试试卷一、选择题(每题4分,共20分)。
1.以下哪个加减乘除组合正确()。
A.3-2+4×2B.3+2×4-2C.3+2-2÷4D.3-2÷4+2。
2.下列函数中,关于x的最高次幂为2的函数为()。
A.y=3xB.y=x^3C.y=2x+1D.y=x^2+1。
3.下列各数中,属于实数范围的是()。
A.√2B.-∞C.-1/2D.9i。
4.直线3x-2y+3=0和直线2x-3y+4=0的位置关系是()。
A.平行B.重合C.相交D.垂直。
二、填空题(每题4分,共16分)。
5.(3的2次方)÷(-6的3次方)的结果是________________。
6.已知向量a=(2,-3),b=(1,2),两向量的夹角为________________。
7. 直线ax+by+c=0的斜率为________________。
8. 已知函数y=ax^2+bx+c,其中a=2,b=-3,c=6,x=-2时,y的值为________________。
三、解答题(每题6分,共36分)。
9.(5-x)^2=49,求x的值。
解:设(5-x)^2=49,函数两边同时平方根,得:5-x=±7,所以x=5±7。
即:x=12;x=-2。
10.已知直线3x+2y+4=0,求该直线斜率及与直线4x+3y-2=0的位置关系。
解:设直线3x+2y+4=0。
斜率:m1=2/3。
设直线4x+3y-2=0。
斜率:m2=-3/4。
由斜率的乘积等于-1可知,两直线垂直。
高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。
高一数学上第一单元单元测试题(含答案)

高一数学上第一单元单元测试题姓名:_______________班级:_______________考号:_______________一、选择题(每空5 分,共60 分)1、设全集,则()ABCD2、已知集合只有一个元素,则的值为()C 或或3、在R上定义运算⊙: ⊙,则满足⊙<0的实数的取值范围为( )A. (0,2)B. (-1,2)C.D. (-2,1) .s4、集合P={x|x2=1},Q={x|mx=1},若Q P,则m等于()A.1B.-1 C.1或-1 D.0,1或-15、设集合A=,则为( )A. B. C.D.6、已知集合()A. B. C.D.7、设集合,,则(A )(B) (C) (D)8、设集合,,则(A )(B)(C) (D)9、已知集合,则为()A.B.C.D .10、全集集合等于A.{1} B.{2} C.{4} D.{1,2,4}11、将函数的图象F 向右平移个单位长度得到图象F′,若F ′的一条对称轴是直线则的一个可能取值是()A.B. C. D.12、已知集合则()A. B. C . D .二、填空题(每空4分,共16 分)13、如果集合中只有一个元素,则a的值是14、满足条件{0,1}∪A={0,1}的所有集合A的个数是个15、集合的非空真子集有___________个。
16、已知集合A=,B=,则A与B的关系是三、计算题(17-21题每题12分,22题14分)17、已知集合A的元素全为实数,且满足:若(1)若a=2,求出A中其它所有元素;(2)0是不是集合A中的元素?请你设计一个实数,再求出A中的所有元素?(3)根据(1)、(2),你能得出什么结论.18、已知集合(1)求(2)若求a的取值范围.19、已知集合,,(1)求(A)∩B;(2)若,求的取值范围。
20、已知集合(1)若,求a的取值范围;(2)若,求a的取值范围。
21、已知集合,求实数m的取值范围.22、已知集合,集合.(Ⅰ)若,求;(Ⅱ)若A B,求实数的取值范围.参考答案一、选择题1、D2、D3、D4、 D5、C6、A7、C8、C9、C 10、B 11、A ,,12、C 提示:,,二、填空题13、0或1 14、4 15、6 16、三、计算题17、解:(1)由,则得……4分(2)0为是A的元素,若,而当不存在,故0不是A的元素,取 a=3,可得(3)猜想:①A中没有元素-1,0,1;②A中有4个,且每两个互为负倒数.①由上题知:0,1 A.若-1A,则无解,故②设又由集合元素的互异性相知,A中最多只有4个元素且,则无实数解.同理,中有4个元素.18、解:(1)(2)如图,a>319、解:∵,∴A=∴(A)∩B=(2)∵,∴又,解得。
高一数学上册第一章

高一数学第一章集合与常用逻辑用语单元检测试卷一、单选题(共10题)1.已知集合B={0,2,4,6,8},C={1,2,4,8},若A⊆B,A⊆C,则集合A中的元素最多有()A.5个B.4个C.3个D.2个2.已知集合A={x|x<2或x≥4},B={x|x<a}.若(CUA)∩B≠∅,则a的取值范围为()A.a>2B.a≥2C.a≥4D.a>43.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},则集合B中的元素个数为()A.9B.6C.4D.34.设全集U=R,集合A={x|x(x-2)<0},B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是()A.a≥0B.a>0C.a≥2D.a>25.集合A={x|x2-a≤0},B={x|x<2},若A∩B=A,则实数a的取值范围是()A.a≤4B.a<4C.0≤a≤4D.0<a<46.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.{x|1<x<2},B.{x|0<x<1},C.{x|-1<x<0},D.{x|1<x<2},7.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}8.已知全集为R,集合A={y|y=x2},B={x|x2-6x+8≤0},则A∩(C R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2,或x>4}D.{x|x<2,或x>4}9.命题:∀x∈N,x3>x2的否定是()A.∀x∈N,x3≤x2B.∃x∈N,x3>x2C.∃x∈N,x3<x2D.∃x∈N,x3≤x210.命题:“有些实数的绝对值是正数”,它的否定()A.∀x∈R,|x|>0B.∃x∈R,|x|>0C.∀∈R,|x|≤0D.∃x∈R,|x|≤0二、填空题(共5题;)11.空集是任何集合的________.12.已知M={y|y=x+1},N={x|x2+y2=1},则M∩N=______.13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.14.设全集U={1,2,3,4,5},集合A={x|x2-5x+a=0},B={x|x2+bx+12=0}已知(C U A)U B={1,3,4,5},则a=________,b=________15.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁UB)={2,4},则B=________三、解答题(共5题)16.已知集合A={x|x2-4x+3<0},B={x|x>2}.(1)分别求A∩B,(C R B)∪A;(2)已知集合C={x|2a-1<x<a+1},若C⊆A,求实数a的取值范围.17.求证:关于x的一元二次不等式ax2-ax+1>0对于一切实数x都成立的充要条件是:0<a<4.18.设命题p:实数x满足(x-a)(x-3a)<0,其中a>0,命题q:实数x满足(x-2)(x-3)≤0.(1)若a=1,且p和q为真命题,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围19.已知函数f(x)=x2-2x+5.是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由20.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.若A∩B≠∅,求实数m的取值范围答案:一:1C,2A,3D,4C,5B,6A,7B,8C,9D,10C二:11___子集_,12{-1,1},131_,14a=6,b=-7,15{5,6,7,9,8}三:16(1)A ={x|x 2-4x+3<0}={x|1<x <3}∴A ∩B={x|2<x <3},(C R B)∪A={x|x <3}(2)由C ⊆A 可得集合C 有两种情形当C=∅时,有2a-1≥a+1,解得a ≥2当C ≠∅时,使C ⊆A 则有⎪⎩⎪⎨⎧≤+-≤+-31a 1a 211a 1a 2<解得:1≤a <2综上,实数a 的取值范围为a ≥1.17.(1)充分性:若0<a<4,对函数y =ax2-ax +1,其中Δ=a2-4a =a(a -4)<0且a>0,∴ax2-ax +1>0对x ∈R 恒成立.(2)必要性:若ax2-ax +1>0对于一切实数x 都成立,由二次函数的性质有a >0且Δ=a2-4a <0,解得0<a <4.由(1)(2)知,命题得证.18(1)当a =1,不等式化为(x -1)(x -3)<0,∴1<x<3;由(x-2)(x-3)≤0得2≤x ≤3.∵p 与q 为真命题,∴2≤x<3.(2)∵¬p 是¬q 的充分不必要条件,则¬p ⊆¬q∴q 是p 的充分不必要条件,又q :2≤x ≤3,p :a<x<3a ,∴1<a <2.19不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时m>-4. 20m<0。
高中数学必修一第一章单元测试及答案汇编

高一数学试题一、选择题(本大题共12小题,每小题5分,共60分,每题有且只有一个选项是正确的,请把答案涂在答题卡上)1.设集合}4,2,1{=A ,}6,2{=B ,则A B =( )A . {}2B .{}6,4,2,1C .{}1,2,4D .{}6,22.已知集合{}{}13,25A x x B x x A B =-≤<=<≤=,则( )A . ( 2, 3 )B . [-1,5]C .(-1,5)D .(-1,5]3.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B =U (C ( )A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D . ∅4.下列各组表示同一函数的是( ) A .B .C .D .5.函数y = )1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞6.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y7.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.8.函数x xx f -=1)(的图像关于( ) A .y 轴对称 B .直线y x =对称C .坐标原点对称D .直线y x =-对称9.下列表述正确的是( )1()1()y x x R y x x N =-∈=-∈与2242+⋅-=-=x x y x y 与1111y xv=+=+与u 22x x y x y ==与A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅10.函数x xx y +=的图象是( )11.设,,若则的取值范围是( )AB 2a >C 3a >D 12.已知函数()f x 是R 上的增函数,()0,1A -,()3,1B 是其图像上的两点,那么()1f x <的解集是( ) A .()3,0-B .()0,3C .(][),13,-∞-+∞ D .(][),01,-∞+∞二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡上)13.已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f =_______________. 14.已知,,且A∩B=B ,则的值为___________.15.定义在R 上的奇函数()f x ,当0x >时, ()2f x =;则函数()f x 的值域是________. 16.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,则不等式f (1)+f (x -2)>1的解集是___________________.三、解答题(本大题共70分,解答应写出必要分文字说明、演算步骤或证明过程)17.(本小题满分10分)求下列函数的定义域:32<<=x x A a x x B <=B A ⊆a 2≥a 3≥a 2{1,2,}A x ={1,}B x =x(1)()f x = (2)542)(--=x x x f18.(本小题满分12分)已知全集{1,2,3,4,5,6,7,8}U =,2{|320}A x x x =-+=,{|15,}B x x x Z =≤≤∈,{|29,}C x x x Z =<<∈.(1)求()A B C ; (2)求()()U U C B C C .19.(本小题满分12分) 设函数()21x f x x +=- . (1)求f (x )的值域;(2)求()f x 在区间[]35,上的最值.20. (本小题满分12分) ,,,求的取值范围。
高一数学第一章试题及答案

高一数学第一章试题及答案【高一数学第一章试题及答案】一、选择题1. 在直线上,如果两点A、B的坐标分别是(2, 3)和(6, 9),则点A到点B的距离是:A. 4B. 5C. 6D. 7解析:根据坐标公式,设点A(x1,y1)、点B(x2,y2),则点A到点B 的距离为√((x2-x1)²+(y2-y1)²)。
代入数值计算:√((6-2)²+(9-3)²) =√(16+36) = √52,即点A到点B的距离是√52,约等于7.211。
选D。
2. 已知函数 f(x) = x²-4x+3,那么 f(-1) 的值等于:A. 8B. 6C. 4D. 2解析:将x = -1代入函数f(x)中计算:f(-1) = (-1)²-4(-1)+3 = 1+4+3 = 8。
选A。
3. 若两个圆的半径分别为3cm和4cm,则它们的外切圆的半径为:A. 7B. 5C. 3.5D. 2.5解析:两个圆的外切圆半径等于两个圆半径之和。
即 3 + 4 = 7。
选A。
二、填空题1. 若直线l的斜率为2/3,过点(4, 5),则直线l的方程为y =___________。
解析:直线的斜率为2/3,表示直线上任意两点的纵坐标变化量与横坐标变化量的比值为2/3。
过点(4, 5)的直线方程为 y - 5 = (2/3)(x - 4),整理得 y = (2/3)x + 14/3。
填写答案为 (2/3)x + 14/3。
2. 设集合A={1, 2, 3},集合B={2, 3, 4},则 A∪B = ________。
解析:集合的并运算指的是将两个集合中所有不重复的元素放在一起。
集合A={1, 2, 3},集合B={2, 3, 4},则 A∪B = {1, 2, 3, 4}。
填写答案为 {1, 2, 3, 4}。
三、解答题1. 解方程 3(x+2) + 2(2x-1) = 4(3x-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学上册第一单元
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.若集合M=x|x
2 ,N=2
|30x x x ,则M N= ( )
A . 3
B .0
C .0,2
D .0,3 2.图中阴影部分所表示的集合是( )
A.B ∩[
U (A ∪C)]
B.(A ∪B) ∪(B ∪C)
C.(A ∪C)∩(U B)
D.[
U (A ∩C)]∪B
3.下列各组函数中,表示同一函数的是
( )
A .1,x
y y
x
B .21
1,1y x x y
x
C . |x|
x x
|x|
y
,y
D . 2||,()y
x y
x
4.f(x )=x 2+2(a-1)x+2在区间,4上递减,则a 的取值范围是 ( ) A .
3,
B .
,3 C .
,5 D .3,
5.设函数91
2
y
x x
的定义域为
( )
A .{x |12x
,x 且} B .{x | x <2,且x ≠-2}
C .{x |x ≠2}
D .{x |x <-1, 且x ≠-2} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车距离A 地的距离x 表示为时间t (小时)的函数表达式是 ( )
A .x =60t
B .x =60t +50t
C .x =600251505035t,(t .)t,(t
.)
D .x =600
2515025
35150503535
65t,(t .),(.t
.)(t
.),(.t .)
7.已知g (x )=1-2x, ,f [g (x )]=2
210x (x )x
,则f (2
1
)等于
( )
A .1
B .3
C .15
D .30
8.函数y=2
91
1
x x
是( )
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .非奇非偶数 9.定义在R 上的偶函数)(x f ,满足1f (x )f (x ),且在区间[1,0]上递增,则( ) A .322f ()
f ()f () B .232f ()f ()f ()
C .322f ()f ()f ()
D .223f ()f ()f ()
10.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点, 那么|f (x +1)|1的解集的补集是 ( )
A .( -1,2)
B . (1,4)
C .
,14,
D .
,12,
二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.设集合A={32x
x },B={x 2121k x k },且A B ,则实数k 的取值范围
是 . 12.f(x)=
2
1020
x ,x
x,x
若f (x )=10,则x= .
13.若函数 f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是 . 14.函数)(x f 在R 上为奇函数,且10f (x )
x ,x ,则当0x ,
f (x )
.
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,全集U={x |-5≤x ≤3},
A={x |-5≤x <-1},B={x |-1≤x <1},求U A ,
U B ,(U A)∩(U B),(U A)∪(U B),
U (A ∩B),U (A ∪B),并指出其中相等的集合.
16.(12分)求函数
21
35
1
x
y,x,
x
的最值。
17.(12分)已知f(x)=
3
3
33
22
x x
x x
(,1)
(1,)
x
x
,求f[f(0)]的值.
18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x,求此框架围成的面积y与x的函数式y=f (x),并写出它的定义域.
19.(14分)已知函数)(x f ,)(x g 同时满足:g(x y )g(x )g(y )f (x )f (y );
11f ()
,00f (),11f (),求)2(),1(),0(g g g 的值.
20.(14分)指出函数1f (x )x
x
在,1,1,0上的单调性,并证明之.
参考答案(5)
一、BACBA DCBA D 二、11.{1
12
k
k
}; 12.-3 ;13.[0,+); 14.1y x ;
三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ; C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).
16. 解:可证得
21
1
x y
x 在35x ,是增函数,
当x=3时,y 取最小值
14; 当x =5时,y 取最大值3
2。
17.解: ∵ 0
(-
1,)
, ∴f (0)=32,又 32>1, ∴ f (32)=(32)3+(32)-3=2+
21=25,即f [f (0)]=2
5
. 18.解:AB=2x , CD =x ,于是AD=
122
x
x
, 因此,y =2x ·
122
x
x
+2
2
x ,
即y =-
2
42
x lx .
由
20
120
2
x x
x
,得0<x <
12
,
函数的定义域为(0,
12
).
19.解:令x y 得:220f (x )
g (y )
g(). 再令0x ,即得001g()
,. 若00g()
,
令
1
x y
时
,
得
10
f ()不
合
题
意
,
故
01
g();
0111111g()g()g()g()f ()f (),即21
11g (),所以10g()
;那么
10101010
g()g()g()g()f ()f (),
21111111g()
g[()]
g()g()f ()f ()
20.解:任取x 1,x 2
1, 且x 1<x 2
2
121
2121
2
1
12
11()
()11
x x x x f x f x x x x x x x 由x 1<x 2
-1知x 1x 2>1, ∴12
11
0x x , 即21f (x )
f (x )
∴f(x)在
1,上是增函数;当1x 1< x 2<0时,有0< x 1x 2<1,得12
11
0x x
∴12f (x )
f (x )∴f(x)在
10,上是减函数.
再利用奇偶性,给出
1,0单调性,证明略.。