2013北京市海淀区高三年级第二学期期末练习数学(理科).doc

合集下载

2013北京海淀区高三一模数学(理)试题答案

2013北京海淀区高三一模数学(理)试题答案

海淀区高三年级第二学期期中练习数 学 (理) 参考答案及评分标准2013.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为2()2cos )f x x x =--22= 2(3sin cos cos )x x x x -+-22(12sin )x x =-+………………2分 2= 12sin x x -+cos2x x =………………4分 π= 2sin(2)6x +………………6分所以πππ2π()2sin(2)2sin 4463f =⋅+==7分 9.0 10.14 11.24512.3, 13.491a <≤ 14.2,(21,2), Z k k k -∈所以 ()f x 的周期为2π2π= π||2T ω==………………9分 (II )当ππ[,]63x ∈-时,π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当π6x =-时,函数取得最小值π()16f -=-………………11分 当π6x =时,函数取得最大值π()26f =………………13分 16.解:(I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………1分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯=………………3分(II) 求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………7分(Ⅲ)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20………………8分2621015(16)45C P C ξ===, 116221012(17)45C C P C ξ===11262222101013(18)45C C C P C C ξ==+=, 11222104(19)45C C P C ξ=== 222101(20)45C P C ξ===所以ξ的分布列为………………11分所以1512134186161718192045454545455E ξ=⨯+⨯+⨯+⨯+⨯= 所以ξ的数学期望为865………………13分 17.证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PAAC A =,所以BD ⊥平面PAC ………………3分又PC ⊂平面PAC ,所以BD PC ⊥………………4分(Ⅱ)在正三角形ABC中,BM =5分在ACD ∆中,因为M 为AC 中点,DM AC ⊥,所以AD CD =120CDA ∠=,所以DM =,所以:3:1BM MD =………………6分 在等腰直角三角形PAB 中,4PA AB ==,PB =所以:3:1BN NP =,::BN NP BM MD =,所以//MN PD ………………8分 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以//MN 平面PDC ………………9分 (Ⅲ)因为90BAD BAC CAD ∠=∠+∠=,所以AB AD ⊥,分别以,AB AD AP , 为x 轴, y 轴, z 轴建立如图的空间直角坐标系,所以(4,0,0),(0,0,4)B C D P由(Ⅱ)可知,(4,DB =为平面PAC 的法向量………………10分4)PC =-,(4,0,4)PB =-设平面PBC 的一个法向量为(,,)n x y z =,yx则00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即240440x z x z ⎧+-=⎪⎨-=⎪⎩,令3,z =则平面PBC 的一个法向量为(3,3,3)n =………………12分 设二面角A PC B --的大小为θ, 则7cos 7n DB n DBθ⋅==⋅ 所以二面角A PC B --余弦值为7………………14分 18. 解:(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++………………2分 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++=………………3分 当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:………………5分所以()f x 的单调递增区间为1(0,)2,1+∞(,)单调递减区间为1(,1)2………………6分(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==………………7分因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-………………9分 当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)lne+e (21)e 1f a a =-+=,解得1e 2a =-………………11分 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增 所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)lne+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a<=<矛盾………………12分 当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾综上所述,12a e =-或2a =-. ………………13分 19.(本小题满分14分) 解:(I )设椭圆的焦距为2c ,ABG H因为a =,c a =1c =,所以1b =. 所以椭圆C :2212x y +=………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩ 所以22(12)20k x +-= ,则120x x +=,122212x x k =-+………………6分所以AB ==7分 点M0)到直线l的距离d =则GH =9分显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾,所以要使AG BH =,只要AB GH =所以222228(1)24()121k k r k k +=-++22424222424222(1)2(331)2(1)112231231k k k k k r k k k k k k +++=+==+++++++………………11分 当0k =时,r =12分当0k ≠时,242112(1)2(1)31322r k k =+<+=++ 又显然24212(1)2132r k k =+>++,<r ≤<14分20.解:(Ⅰ)因为x ∆+=3(,y x y ∆∆∆为非零整数)故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点0P 的相关点有8个………………2分 又因为22()()5x y ∆+∆=,即221010()()5x x y y -+-=所以这些可能值对应的点在以0P4分 (Ⅱ)依题意(,)n n n P x y 与000(,)P x y 重合则1-12211000()()...()()n n n n n x x x x x x x x x x x --=-+-++-+-+=,1-12211000()()...()()n n n n n y y y y y y y y y y y --=-+-++-+-+=即1-122110()+()+...+()+()=0n n n n x x x x x x x x ------,1-122110()+()+...+()+()=0n n n n y y y y y y y y ------两式相加得1112-121010[()+()]+[()+()]+...+[()+()]=0n n n n n n n n x x y y x x y y x x y y -----------(*)因为11,3(1,2,3,...,)Z i i i i i i x y x x y y i n --∈-+-==, 故11()+()(=1,2,3,...,)i i i i x x y y i n ----为奇数,于是(*)的左边就是n 个奇数的和,因为奇数个奇数的和还是奇数, 所以n 一定为偶数………………8分(Ⅲ)令11,,i i i i i i x x x y y y --∆=-∆=-(1,2,3,...,)i n =, 依题意11210()()...()100n n n n y y y y y y ----+-++-=, 因为0nii T x===∑012n x x x x ++++112121(1)(1)(1)n x x x x x x =++∆++∆+∆+++∆+∆++∆121(1)n n n x n x x =++∆+-∆++∆………………10分因为有3i i x y ∆∆=+,且i i x y ∆∆,为非零整数, 所以当2i x ∆=的个数越多,则T 的值越大,而且在123,,,..,n x x x x ∆∆∆∆这个序列中,数字2的位置越靠前,则相应的T 的值越大而当i y ∆取值为1或1-的次数最多时,i x ∆取2的次数才能最多,T 的值才能最大. 当100n =时,令所有的i y ∆都为1,i x ∆都取2, 则1012(12100)10201T =++++=.当100n >时,若*2(50,)n k k k =>∈N ,此时,i y ∆可取50k +个1,50k -个1-,此时i x ∆可都取2,()S n 达到最大 此时T =212((1)1)21n n n n n +++-++=++.若*21(50,)n k k k =+≥∈N ,令2n y ∆=,其余的i y ∆中有49k -个1-,49k +个1. 相应的,对于i x ∆,有1n x ∆=,其余的都为2, 则212((1)1)12T n n n n n =+++-++-=+当50100n ≤<时,令1,2100,2,2100,i i y i n y n i n ∆=≤-∆=-<≤ 则相应的取2,2100,1,2100,i i x i n y n i n ∆=≤-∆=-<≤ 则T =1n ++2((1)(101))n n n +-+-((100)(99)1)n n +-+-+2205100982n n +-=综上,22220510098, 50100,2(1), 100+2, 100n n n T n n n n n ⎧+-≤<⎪⎪⎪=+≥⎨⎪≥⎪⎪⎩且为偶数,且为奇数.………………13分。

数学_2013年北京市海淀区高考数学二模试卷(理科)(含答案)

数学_2013年北京市海淀区高考数学二模试卷(理科)(含答案)

2013年北京市海淀区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合A ={x|(x −1)(x +2)≤0},B ={x|x <0},则A ∪B =( ) A (−∞, 0] B (−∞, 1] C [1, 2] D [1, +∞)2. 已知数列{a n }是公比为q 的等比数列,且a 1⋅a 3=4,a 4=8,则a 1+q 的值为( ) A 3 B 2 C 3或−2 D 3或−33. 如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( )Ama nB nam Cma 2nDna 2m4. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A 180B 120C 276D 3005. 在四边形ABCD 中,“∃λ∈R ,使得AB →=λDC →,AD →=λBC →”是“四边形ABCD 为平行四边形”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件6. 用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( ) A 32 B 36 C 42 D 487. 双曲线C 的左右焦点分别为F 1,F 2,且F 2恰为抛物线y 2=4x 的焦点,设双曲线C 与该抛物线的一个交点为A ,若△AF 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为( ) A √2 B 1+√2 C 1+√3 D 2+√38. 若数列{a n }满足:存在正整数T ,对于任意正整数n 都有a n+T =a n 成立,则称数列{a n }为周期数列,周期为T .已知数列{a n }满足a 1=m(m >0),a n+1={a n −1,a n >1,1an,0<a n ≤1,则下列结论中错误的是( )A 若a 3=4,则m 可以取3个不同的值B 若m =√2,则数列{a n }是周期为3的数列 C ∀T ∈N ∗且T ≥2,存在m >1,使得{a n }是周期为T 的数列 D ∃m ∈Q 且m ≥2,使得数列{a n }是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9. 在极坐标系中,极点到直线ρcosθ=2的距离为________.10. 已知a =ln 12,b =sin 12,c =2−12,则a ,b ,c 按照从大到小排列为________.11. 直线l 1过点(−2, 0)且倾斜角为30∘,直线l 2过点(2, 0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为________.12. 在△ABC 中,∠A =30∘,∠B =45∘,a =√2,则b =________;S △ABC =________. 13. 正方体ABCD −A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →⋅AP →的取值范围是________.14. 在平面直角坐标系中,动点P(x, y)到两条坐标轴的距离之和等于它到点(1, 1)的距离,记点P 的轨迹为曲线为W . (I)给出下列三个结论: ①曲线W 关于原点对称;②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是________;(II)曲线W 上的点到原点距离的最小值为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. 已知函数f(x)=1−√2sin(x−π4).(1)求函数f(x)的定义域; (2)求函数f(x)的单调增区间.16. 福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(1)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (2)为了能够筹得资金资助福利事业,求p 的取值范围.17. 如图1,在直角梯形ABCD 中,∠ABC =∠DAB =90∘,∠CAB =30∘,BC =2,AD =4.把△DAC 沿对角线AC 折起到△PAC 的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,PB 的中点.(1)求证:平面EFH // 平面PBC ;(2)求直线HE与平面PHB所成角的正弦值;(3)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.18. 已知函数f(x)=e x,A(a, 0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).(1)当a=0时,求函数S(t)的单调区间;(2)当a>2时,若∃t0∈[0, 2],使得S(t0)≥e,求a的取值范围.19. 已知椭圆M:x2a2+y2b2=1(a>b>0)的四个顶点恰好是一边长为2,一内角为60∘的菱形的四个顶点.(1)求椭圆M的方程;(2)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,−12),求△AOB(O为原点)面积的最大值.20. 设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数(2)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;表2(3)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.2013年北京市海淀区高考数学二模试卷(理科)答案1. B2. D3. C4. B5. C6. A7. B8. D9. 210. c>b>a11. (1,√3)12. 2,√3+1213. [0, 1]14. ②③,2−√215. 解:(1)∵ sin(x−π4)≠0,∴ x−π4≠kπ,k∈Z,则函数的定义域为{x|x≠kπ+π4, k∈Z};(2)∵ f(x)=1−cos 2x−sin2xsinx−cosx =1+(cosx+sinx)=1+sinx+cosx=1+√2sin(x+π4),又∵ y=sinx的单调递增区间为(2kπ−π2, 2kπ+π2),k∈Z,令2kπ−π2<x+π4<2kπ+π2,解得:2kπ−3π4<x<2kπ+π4,又注意到x≠kπ+π4,则f(x)的单调递增区间为(2kπ−3π4, 2kπ+π4),k∈Z.16. 解:(1)设至少一张中奖为事件A,则P(A)=1−0.52=0.75…(2)设福彩中心卖出一张彩票可能获得的资金为ξ,则ξ可以取5,0,−45,−145…故ξ的分布列为所以ξ的期望为Eξ=5×50%+0×(50%−2%−p)+(−45)×2%+(−145)×p=2.5−90%−145p…所以当1.6−145p>0时,即p<8725…所以当0<p<8725时,福彩中心可以获取资金资助福利事业…17. 解:(1)∵ 点P在平面ABC上的正投影H恰好落在线段AC上,所以PH⊥平面ABC,所以PH⊥AC,∵ 在直角梯形ABCD中,∠ABC=∠DAB=90∘,∠CAB=30∘,BC=2,AD=4,∴ AC=4,∠CAB=60∘,∴ △ADC是等边三角形,故H是AC的中点,∴ HE // PC同理可证EF // PB,又HE∩EF=E,CP∩PB=P,∴ 平面EFH // 平面PBC;(2)在平面ABC内过H作AC的垂线,如图建立空间直角坐标系,则A(0, −2, 0),P(0, 0, 2√3),B(√3, 1, 0)因为E(0, −1, √3),HE →=(0, −1, √3),设平面PHB 的法向量n →=(x, y, z), ∵ HB →=(√3, 1, 0),HP →=(0, 0, 2√3),∴ {HP →⋅n →=0˙,即{√3x +y =0z =0,令x =√3,则y =−3, ∴ n →=(√3, −3, 0)…8分 cos <n →,HE →>=|n →|⋅|HE →|˙=32×2√3=√34∴ 直线HE 与平面PHB 所成角的正弦值为√34 (3)存在,事实上记点E 为M 即可因为在直角三角形PHA 中,EH =PE =EA =12PA =2在直角△PHB 中,PB =4,EF =12PB =2,所以点E 到P ,H ,A ,F 四点的距离相等 18. 解:(1) 因为S(t)=12|t −a|e t ,其中t ≠a…当a =0,S(t)=12|t|e t ,其中t ≠0当t >0时,S(t)=12te t ,S′(t)=12(t +1)e t ,所以S ′(t)>0,所以S(t)在(0, +∞)上递增,… 当t <0时,S(t)=−12te t ,S′(t)=−12(t +1)e t ,令S′(t)=−12(t +1)e t >0,解得t <−1,所以S(t)在(−∞, −1)上递增令S′(t)=−12(t +1)e t <0,解得t >−1,所以S(t)在(−1, 0)上递减 …综上,S(t)的单调递增区间为(0, +∞),(−∞, −1),S(t)的单调递增区间为(−1, 0) (2)因为S(t)=12|t −a|e t ,其中t ≠a 当a >2,t ∈[0, 2]时,S(t)=12(a −t)e t因为∃t 0∈[0, 2],使得S(t 0)≥e ,所以S(t)在[0, 2]上的最大值一定大于等于e , S′(t)=−12[t −(a −1)]e t ,令S ′(t)=0,得t =a −1…当a −1≥2时,即a ≥3时S′(t)=−12[t −(a −1)]e t >0对t ∈(0, 2)成立,S(t)单调递增,所以当t =2时,S(t)取得最大值S(2)=12(a −2)e 2令12(a −2)e 2≥e ,解得 a ≥2e +2, 所以a ≥3…当a −1<2时,即a <3时S′(t)=−12[t −(a −1)]e t >0对t ∈(0, a −1)成立,S(t)单调递增,S′(t)=−12[t −(a −1)]e t <0对t ∈(a −1, 2)成立,S(t)单调递减, 所以当t =a −1时,S(t)取得最大值S(a −1)=12e a−1,令S(a −1)=12e a−1≥e ,解得a ≥ln2+2,所以ln2+2≤a <3… 综上所述,ln2+2≤a… 19. 解:(1)因为椭圆x 2a2+y 2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60∘的菱形的四个顶点,∴ a =√3,b =1,椭圆M 的方程为:x 23+y 2=1...4分(2)设A(x 1, y 1),B(x 2, y 2),因为AB 的垂直平分线经过点(0, −12),显然直线AB 有斜率, 当直线AB 的斜率为0时,AB 的垂直平分线为y 轴,则x 1=−x 2,y 1=y 2, 所以S △AOB=12|2x 1||y 1|=|x 1||y 1|=|x 1|⋅√1−x 123=√x 12(1−x 123)=√13x 12(3−x 12),∵ √x 12(3−x 12)≤x 12+(3−x 12)2=32,∴ S △AOB ≤√32,当且仅不当|x 1|=√62时,S △AOB 取得最大值为√32...7分 当直线AB 的斜率不为0时,则设AB 的方程为y =kx +t , 所以{y =kx +tx 23+y 2=1,代入得到(3k 2+1)x 2+6ktx +3t 2−3=0, 当△=4(9k 2+3−3t 2)>0,即3k 2+1>t 2①,方程有两个不同的实数解; 又x 1+x 2=−6kt3k 2+1,x 1+x 22=−3kt3k 2+1...8分所以y 1+y 22=t 3k 2+1,又y 1+y 22+12x 1+x 22−0=−1k ,化简得到3k 2+1=4t②代入①,得到0<t <4,…10分 又原点到直线的距离为d =√k 2+1,|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√4(9k 2+3−3t 2)3k 2+1,所以S △AOB =12|AB||d|=2√k 2+1√1+k 2⋅√4(9k 2+3−3t 2)3k 2+1,化简得:S △AOB =14√3(4t −t 2)...12分∵ 0<t <4,所以当t =2时,即k =±√73时,S △AOB 取得最大值为√32. 综上,S △AOB 取得最大值为√32...14分法3:改变第1列得:改变第4列得:(写出一种即可) …(2) 每一列所有数之和分别为2,0,−2,0,每一行所有数之和分别为−1,1;则第一行之和为2a −1,第二行之和为5−2a ,{2a −1≥05−2a ≥0,解得a =1,a =2.… ②如果操作第一行则每一列之和分别为2−2a ,2−2a ,2a −2,2a 解得a =1 … 综上a =1 …(3) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和) 由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中mn 个数之和增加,且增加的幅度大于等于1−(−1)=2, 但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于∑∑|nj=1m i=1a ij |, 可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …。

【解析版】北京市海淀区2013届高三二模数学理试题

【解析版】北京市海淀区2013届高三二模数学理试题

2013年北京市海淀区高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.2.(5分)(2013•海淀区二模)已知数列{a n}是公比为q的等比数列,且a1•a3=4,a4=8,则3.(5分)(2013•海淀区二模)如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为()B=×4.(5分)(2013•海淀区二模)某空间几何体的三视图如图所示,则该几何体的表面积为()××5.(5分)(2013•海淀区二模)在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”是“四6.(5分)(2013•海淀区二模)用数字1,2,3,4,5组成没有重复数字的五位数,且5不22×7.(5分)(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x 的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,B由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以e==1+8.(5分)(2013•海淀区二模)若数列{a n}满足:存在正整数T,对于任意正整数n都有a n+T=a n 成立,则称数列{a n}为周期数列,周期为T.已知数列{a n}满足a1=m(m>0),则下列结论中错误的是(),因为,,,,所以;所以可知当二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•海淀区二模)在极坐标系中,极点到直线ρcosθ=2的距离为2.10.(5分)(2013•海淀区二模)已知,,,则a,b,c按照从大到小排列为c>b>a.a=ln<b=sin≈<,=>,11.(5分)(2013•海淀区二模)直线l1过点(﹣2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为.x3y+2﹣x+y=012.(5分)(2013•海淀区二模)在△ABC中,∠A=30°,∠B=45°,,则b=2;S△ABC=.=2=absinC==13.(5分)(2013•海淀区二模)正方体ABCD﹣A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则的取值范围是[0,1].建立空间直角坐标系,求出有关点的坐标可得、、的坐标,再由,可得所在的直线为轴,以轴,以=上运动,∴λ•=++=14.(5分)(2013•海淀区二模)在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线为W.(Ⅰ)给出下列三个结论:①曲线W关于原点对称;②曲线W关于直线y=x对称;③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于;其中,所有正确结论的序号是②③;(Ⅱ)曲线W上的点到原点距离的最小值为.;=;三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•海淀区二模)已知函数.(Ⅰ)求函数f(x)的定义域;(Ⅱ)求函数f(x)的单调增区间.)﹣≠,﹣=1+sinx+cosx=1+sin x+,﹣<+<,+﹣)16.(13分)(2013•海淀区二模)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.时,即时,福彩中心可以获取资金资助福利事业17.(14分)(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.(Ⅰ)求证:平面EFH∥平面PBC;(Ⅱ)求直线HE与平面PHB所成角的正弦值;(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.的法向量,由可赋值,可求得(<,EH=PE=EA=PA=2EF=2,,,的法向量=,,),即,则=,﹣,=所成角的正弦值为EH=PE=EA=EF=PB=218.(13分)(2013•海淀区二模)已知函数f(x)=e x,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).(Ⅰ)当a=0时,求函数S(t)的单调区间;(Ⅱ)当a>2时,若∃t0∈[0,2],使得S(t0)≥e,求a的取值范围.先求,因为,其中,时,,,时,,,,其中时,,令时,解得对)单调递增,对)取得最大值19.(14分)(2013•海淀区二模)已知椭圆的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(Ⅰ)求椭圆M的方程;(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点,求△AOB(O为原点)面积的最大值.a=(Ⅰ)因为椭圆=1,的方程为:,﹣)|2x=≤=,当且仅不当时,取得最大值为所以=所以,又,化简得到d=,=|AB||d|=…±取得最大值为.取得最大值为20.(13分)(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);(Ⅱ)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与a的所有可能值;(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.数之和必然小于等于个数之和必然小于等于。

2013年北京市-海淀区高三二模数学(理科)考试试题和答案

2013年北京市-海淀区高三二模数学(理科)考试试题和答案

2013年北京市海淀区高三年级二摸试题数 学(理科)2013. 5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{|(1)(2)0}A x x x =-+≤,{|0}B x x =<,则A B =A.(,0]-∞B.(,1]-∞C.[1,2]D.[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为A.3B.2C.3或2-D.3或3-3.如图,在边长为a 的正方形内有不规则图形W .若撒在图形W 内和正方形内的豆子数分别为,m n ,则图形W 面积的估计值为A.manB.na mC.2ma nD.2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为A.180B.240C.276D.3005.在四边形ABCD 中,“∃∈R l ,使得AD BC =l ,AD BC =l ”是“四边形ABCD 为平行四边形”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个 位和万位,则这样的五位数个数为 A.32B.36C.42D.48俯视图7.双曲线C 的左右焦点分别为1F ,2F ,且2F 恰好为抛物线24y x =的焦点,设双曲线C 与 该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心 率为B.1C.1+D.2+8.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足1(0)a m m =>,11,1,1,0 1.n n n n na a a a a +->=<⎧⎪⎨⎪⎩≤则下列结论中错误..的是 A.若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列C.T *∀∈N 且2T ≥,存在1m >,使得{}n a 是周期为T 的数列 D.m ∃∈Q 且2m ≥,使得数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9.在极坐标系中,极点到直线cos 2ρθ=的距离为 .10.已知1ln 2a =,1sin 2b =,122c -=,则a ,b ,c 按照从大到小...排列为 . 11.直线1l 过点(2-,0)且倾斜角为30︒,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为 .12.在ABC ∆中,30A ∠︒=,45B ∠︒=,a =则b = ;ABC S ∆= . 13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是 .14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线为W . (Ⅰ)给出下列三个结论:①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是 ;(Ⅱ)曲线W 上的点到原点距离的最小值为 .图 2图 1B H CF PEADCBA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数cos2()1)4x f x x =-π-.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一 种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50 %; (2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获 得150元奖金的概率为p ,获得50元奖金的概率为2 %.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (Ⅱ)为了能够筹得资金资助福利事业,求p 的取值范围.17.(本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=︒,30CAB ∠=︒,2BC =, 4AD =.把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面 ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,PB 的中 点.(Ⅰ)求证:平面EFH ∥平面PBC ;(Ⅱ)求直线HE 与平面PHB 所成角的正弦值;(Ⅲ)在棱PA 上是否存在一点M ,使得M 到P ,H ,A ,F 四点的距离相等?请说明理 由.18.(本小题满分13分)已知函数()e xf x =,(,0)A a 为一定点,直线(0)x t t =≠分别与函数()f x 的图象 和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (Ⅰ)当0a =时,求函数()S t 的单调区间;(Ⅱ)当2a >时,若0[0,2]t ∃∈,使得0()e S t ≥,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)y x M a b a b+=>>的四个顶点恰好是一边长为2,一内角为60︒ 的菱形的四个顶点. (Ⅰ)求椭圆M 的方程;(Ⅱ)直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求(AOB O ∆为原点)面积的最大值.20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之 和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表A 如表1所示,若经过两次“操作”,使得 到的数表每行的各数之和与每列的各数之和均为非负 实数,请写出每次“操作”后所得的数表(写出一种 方法即可);(Ⅱ)数表A 如表2所示,若必须经过两次“操作”, 才可使得到的数表每行的各数之和与每列的各数之和 均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作” 以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数? 请说明理由.a 2-a 2a -2-a 1-a 2a 2-12-aa 表 2表 11312-7-212013海淀区高三年级二摸试题数 学 (理科)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x + (8)分又sin y x=的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+ 解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF E CP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z =因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以(3,3,0)n =- …………………8分cos ,||||22n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面P H 所成角的正弦值为…………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====,…………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分 综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2tS t t a =---,令'(S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , 所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以l a +≤…………………12分综上所述,ln22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M 的方程为2213x y += …………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-≤=,所以AOB S ∆≤1||x =AOB S ∆………………7分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到3(4A OBS tt ∆…………………12分因为04t <<,所以当2t =时,即k =AOB S ∆ 综上,A O ∆面积的最大值为…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行,22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求综上:0a =-…………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

2013年高三数学二模理科试卷B版(海淀区附答案)

2013年高三数学二模理科试卷B版(海淀区附答案)

2013年高三数学二模理科试卷B版(海淀区附答案)海淀区高三年级第二学期期末练习数学(理科)2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合,,则A.B.C.D.2.已知数列是公比为的等比数列,且,,则的值为A.B.C.或D.或3.如图,在边长为的正方形内有不规则图形.向正方形内随机撒豆子,若撒在图形内和正方形内的豆子数分别为,则图形面积的估计值为A.B.C.D.4.某空间几何体的三视图如右图所示,则该几何体的表面积为A.B.C.D.5.在四边形中,“,使得”是“四边形为平行四边形”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A.B.C.D.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为A.B.C.D.8.若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足,则下列结论中错误的是A.若,则可以取3个不同的值B.若,则数列是周期为的数列C.且,存在,是周期为的数列D.且,数列是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线的距离为_______.10.已知,则按照从大到小排列为______.11.直线过点且倾斜角为,直线过点且与直线垂直,则直线与直线的交点坐标为____.12.在中,,则13.正方体的棱长为,若动点在线段上运动,则的取值范围是______________.14.在平面直角坐标系中,动点到两条坐标轴的距离之和等于它到点的距离,记点的轨迹为曲线.(I)给出下列三个结论:①曲线关于原点对称;②曲线关于直线对称;③曲线与轴非负半轴,轴非负半轴围成的封闭图形的面积小于;其中,所有正确结论的序号是_____;(Ⅱ)曲线上的点到原点距离的最小值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数.(Ⅰ)求函数的定义域;(Ⅱ)求函数的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为,获得50元奖金的概率为.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(II)为了能够筹得资金资助福利事业,求的取值范围.17.(本小题满分14分)如图1,在直角梯形中,,,,.把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.(I)求证:平面平面;(II)求直线与平面所成角的正弦值;(III)在棱上是否存在一点,使得到点四点的距离相等?请说明理由. 18.(本小题满分13分)已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为. (I)当时,求函数的单调区间;(II)当时,若,使得,求实数的取值范围.19.(本小题满分14分)已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点. (I)求椭圆的方程;(II)直线与椭圆交于,两点,且线段的垂直平分线经过点,求(为原点)面积的最大值.20.(本小题满分13分)123101设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ)数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;(Ⅲ)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.海淀区高三年级第二学期期末练习数学(理科)参考答案及评分标准2013.5一、选择题(本大题共8小题,每小题5分,共40分)题号12345678答案BDCBCABD9.210.11.12.13.14.②③;二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I)因为所以……………………2分所以函数的定义域为……………………4分(II)因为……………………6分……………………8分又的单调递增区间为,令解得……………………11分又注意到所以的单调递增区间为,…………………13分16.解:(I)设至少一张中奖为事件则…………………4分(II)设福彩中心卖出一张彩票可能获得的资金为则可以取…………………6分的分布列为…………………8分所以的期望为…………………11分所以当时,即…………………12分所以当时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I)因为点在平面上的正投影恰好落在线段上所以平面,所以…………………1分因为在直角梯形中,,,,所以,,所以是等边三角形,所以是中点,…………………2分所以…………………3分同理可证又所以平面平面…………………5分(II)在平面内过作的垂线如图建立空间直角坐标系,则,,…………………6分因为,设平面的法向量为因为,所以有,即,令则所以…………………8分…………………10分所以直线与平面所成角的正弦值为…………………11分(III)存在,事实上记点为即可…………………12分因为在直角三角形中,,…………………13分在直角三角形中,点所以点到四个点的距离相等…………………14分18.解:(I)因为,其中…………………2分当,,其中当时,,,所以,所以在上递增,…………………4分当时,,,令,解得,所以在上递增令,解得,所以在上递减……………7分综上,的单调递增区间为,的单调递增区间为(II)因为,其中当,时,因为,使得,所以在上的最大值一定大于等于,令,得…………………8分当时,即时对成立,单调递增所以当时,取得最大值令,解得,所以…………………10分当时,即时对成立,单调递增对成立,单调递减所以当时,取得最大值令,解得所以…………………12分综上所述,…………………13分19.解:(I)因为椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点,所以,椭圆的方程为…………………4分(II)设因为的垂直平分线通过点,显然直线有斜率,当直线的斜率为时,则的垂直平分线为轴,则所以因为,所以,当且仅当时,取得最大值为………………7分当直线的斜率不为时,则设的方程为所以,代入得到当,即方程有两个不同的解又,…………………8分所以,又,化简得到代入,得到…………………10分又原点到直线的距离为所以化简得到…………………12分因为,所以当时,即时,取得最大值综上,面积的最大值为…………………14分20.(I)解:法1:法2:…………………3分(II)每一列所有数之和分别为2,0,,0,每一行所有数之和分别为,1;①如果首先操作第三列,则则第一行之和为,第二行之和为,这两个数中,必须有一个为负数,另外一个为非负数,所以或当时,则接下来只能操作第一行,此时每列之和分别为必有,解得当时,则接下来操作第二行此时第4列和为负,不符合题意.…………………6分②如果首先操作第一行则每一列之和分别为,,,当时,每列各数之和已经非负,不需要进行第二次操作,舍掉当时,,至少有一个为负数,所以此时必须有,即,所以或经检验,或符合要求综上:…………………9分(III)能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

2013北京海淀区高三一模数学(理)试题答案

2013北京海淀区高三一模数学(理)试题答案

海淀区高三年级第二学期期中练习数 学 (理) 参考答案及评分标准2013.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为2()2cos )fx x x =--22= 2(3sin cos cos )x x x x -+-22(12sin 2)x x =-+-………………2分2= 12sin 2x x -+cos22x x =………………4分π= 2sin(2)6x +………………6分所以πππ2π()2sin(2)2sin 4463f =⋅+==7分 9.0 10.14 11.24512.3, 13.491a <≤ 14.2,(21,2), Z k k k -∈所以 ()f x 的周期为2π2π= π||2T ω==………………9分 (II )当ππ[,]63x ∈-时,π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当π6x =-时,函数取得最小值π()16f -=-………………11分 当π6x =时,函数取得最大值π()26f =………………13分 16.解:(I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………1分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯=………………3分(II) 求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………7分(Ⅲ)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20………………8分2621015(16)45C P C ξ===, 116221012(17)45C C P C ξ===11262222101013(18)45C C C P C C ξ==+=, 11222104(19)45C C P C ξ=== 222101(20)45C P C ξ===所以ξ的分布列为………………11分所以1512134186161718192045454545455E ξ=⨯+⨯+⨯+⨯+⨯= 所以ξ的数学期望为865………………13分 17.证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PA AC A =I ,所以BD ⊥平面PAC ………………3分又PC ⊂平面PAC ,所以BD PC ⊥………………4分(Ⅱ)在正三角形ABC中,BM =5分在ACD ∆中,因为M 为AC 中点,DM AC ⊥,所以AD CD =120CDA ∠=o,所以DM =:3:1BM MD =………………6分 在等腰直角三角形PAB 中,4PA AB ==,PB =所以:3:1BN NP =,::BN NP BM MD =,所以//MN PD ………………8分 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以//MN 平面PDC ………………9分 (Ⅲ)因为90BAD BAC CAD ∠=∠+∠=o , 所以AB AD ⊥,分别以,AB AD AP , 为x 轴, y 轴, z 轴建立如图的空间直角坐标系,所以(4,0,0),(0,0,4)B C D P由(Ⅱ)可知,(4,DB =u u u r 为平面PAC 的法向量………………10分4)PC =-u u u r ,(4,0,4)PB =-u u u r设平面PBC 的一个法向量为(,,)n x y z =r,yx则00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r,即240440x z x z ⎧+-=⎪⎨-=⎪⎩,令3,z =则平面PBC的一个法向量为n =r………………12分设二面角A PC B --的大小为θ,则cos n DB n DBθ⋅==⋅u u u r r u u u r r所以二面角A PC B --余弦值为7………………14分 18. 解:(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++………………2分 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++=………………3分 当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:………………5分所以()f x 的单调递增区间为1(0,)2,1+∞(,)单调递减区间为1(,1)2………………6分(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==………………7分因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-………………9分 当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)ln e+e (21)e 1f a a =-+=,解得1e 2a =-………………11分 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增 所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)ln e+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a<=<矛盾………………12分 当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾 综上所述,12a e =-或2a =-. ………………13分 19.(本小题满分14分) 解:(I )设椭圆的焦距为2c ,ABG H因为a =,c a =1c =,所以1b =. 所以椭圆C :2212x y +=………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-= ,则120x x +=,122212x x k=-+………………6分所以AB ==7分 点M0)到直线l的距离d =则GH =………………9分显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾,所以要使AG BH =,只要AB GH =所以222228(1)24()121k k r k k +=-++22424222424222(1)2(331)2(1)112231231k k k k k r k k k k k k +++=+==+++++++………………11分 当0k =时,r =12分当0k ≠时,242112(1)2(1)31322r k k =+<+=++ 又显然24212(1)2132r k k =+>++,<r ≤<14分20.解:(Ⅰ)因为x ∆+=3(,y x y ∆∆∆为非零整数)故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点0P 的相关点有8个………………2分又因为22()()5x y ∆+∆=,即221010()()5x x y y -+-=所以这些可能值对应的点在以0P为半径的圆上………………4分 (Ⅱ)依题意(,)n n n P x y 与000(,)P x y 重合则1-12211000()()...()()n n n n n x x x x x x x x x x x --=-+-++-+-+=,1-12211000()()...()()n n n n n y y y y y y y y y y y --=-+-++-+-+=即1-122110()+()+...+()+()=0n n n n x x x x x x x x ------,1-122110()+()+...+()+()=0n n n n y y y y y y y y ------两式相加得1112-121010[()+()]+[()+()]+...+[()+()]=0n n n n n n n n x x y y x x y y x x y y -----------(*)因为11,3(1,2,3,...,)Z i i i i i i x y x x y y i n --∈-+-==, 故11()+()(=1,2,3,...,)i i i i x x y y i n ----为奇数,于是(*)的左边就是n 个奇数的和,因为奇数个奇数的和还是奇数, 所以n 一定为偶数………………8分(Ⅲ)令11,,i i i i i i x x x y y y --∆=-∆=-(1,2,3,...,)i n =, 依题意11210()()...()100n n n n y y y y y y ----+-++-=, 因为0nii T x===∑012n x x x x ++++L112121(1)(1)(1)n x x x x x x =++∆++∆+∆+++∆+∆++∆L L 121(1)n n n x n x x =++∆+-∆++∆L ………………10分因为有3i i x y ∆∆=+,且i i x y ∆∆,为非零整数, 所以当2i x ∆=的个数越多,则T 的值越大,而且在123,,,..,n x x x x ∆∆∆∆这个序列中,数字2的位置越靠前,则相应的T 的值越大而当i y ∆取值为1或1-的次数最多时,i x ∆取2的次数才能最多,T 的值才能最大. 当100n =时,令所有的i y ∆都为1,i x ∆都取2, 则1012(12100)10201T =++++=L . 当100n >时,若*2(50,)n k k k =>∈N ,此时,i y ∆可取50k +个1,50k -个1-,此时i x ∆可都取2,()S n 达到最大 此时T =212((1)1)21n n n n n +++-++=++L .若*21(50,)n k k k =+≥∈N ,令2n y ∆=,其余的i y ∆中有49k -个1-,49k +个1. 相应的,对于i x ∆,有1n x ∆=,其余的都为2, 则212((1)1)12T n n n n n =+++-++-=+L当50100n ≤<时,令1,2100,2,2100,i i y i n y n i n ∆=≤-∆=-<≤ 则相应的取2,2100,1,2100,i i x i n y n i n ∆=≤-∆=-<≤则T =1n ++2((1)(101))n n n +-+-L ((100)(99)1)n n +-+-+L2205100982n n +-=综上,22220510098, 50100,2(1), 100+2, 100n n n T n n n n n ⎧+-≤<⎪⎪⎪=+≥⎨⎪≥⎪⎪⎩且为偶数,且为奇数.………………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013北京市海淀区高三年级第二学期期末练习数 学 (理科) 2013.5、6本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C . [1,2]D .[1,)+∞ 2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3- 3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A. 32B. 36C. 42D. 487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为A.B.1C.1D.2俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B.若m ={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9. 在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,2A B a ∠=∠==,则_____;b = C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π)4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I) 假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (I) 求证:平面//EFH 平面PBC ;(II) 求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218. (本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆(O 为原点)面积的最大值.20. (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.22221212a a a a a a a a ------海淀区高三年级第二学期期末练习数 学 (理科)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x + ……………………8分又sin y x =的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令 πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF ECP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z =因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以 (3,3,0)n =- …………………8分cos ,||||22n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面PHB …………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分 在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增, …………………4分 当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增 令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)- (II )因为1()||e 2t S t t a =-,其中t a ≠当2a >,[0,2]t ∈时,1()()e 2t S t a t =- 因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , 所以3a ≥ …………………10分 当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以ln223a +≤< …………………12分 综上所述,ln22a +≤ …………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y += …………………4分(II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2|||||||||2AOB S x y x y x ∆==2211(3)322x x +-≤=,所以AOB S ∆≤1||x =AOB S ∆ ………………7分当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分 所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t << …………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆ …………………12分 因为04t <<,所以当2t =时,即k =AOB S ∆综上,AOB ∆…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a --- 必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------此时第4列和为负,不符合题意. …………………6分 ② 如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =- 经检验,0a =或1a =-符合要求综上:0,1a =- …………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。

相关文档
最新文档