方法技巧专题:利用一元二次方程解决面积问题
用一元二次方程解决图形的面积问题
24.4一元二次方程的应用教材:冀教版年级:九年级单位:遵化市新店子镇中学姓名:果秋红24.4一元二次方程的应用——面积问题教材分析:列一元二次方程解应用题是历年来考查的热点,经常与经济有关,有时与函数相结合,综合性较强,题型以解答题为主。
一元二次方程的应用主要有三大类型:面积问题、增长率问题和利润问题,其中面积问题相对简单些,本节课讲解一元二次方程的应用之面积问题。
学情分析:学生已经学习过一元一次方程的应用,也会表示图形的面积、解一元二次方程,所以学生对列方程解应用题并不陌生。
但是学生对于如何找出等量关系列方程还是弱点,所以引导学生找出题中的等量关系是本节课的主线。
教法:本节课采用以导学案为主线,小组合作交流、赋分评比的模式讲授,在内容展开上,让学生根据自己已有的经验,先自主探究,在独立思考的基础上再小组交流,让学生充分体会一元二次方程的建模过程。
学法:小组合作探究,其中既有小组成员之间的合作,又有小组之间的竞争。
最大限度的调动学生学习的积极性,培养学生学习数学的兴趣。
教学目标:1、知识与技能:会根据实际面积问题中的数量关系列一元二次方程解应用题,能根据具体问题的实际意义,检验结果是否合理。
2、过程与方法:经历探索列一元二次方程解面积应用题的过程,体验通过移动变化分析面积问题的方法。
3、情感态度与价值观:让学生体会一元二次方程是刻画现实世界一个有效的数学模型,感悟数学来源于生活,服务于生活;同时培养学生自我探索的兴趣和能力。
教学重点:运用一元二次方程探索和解决面积问题。
教学难点:面积问题中的等量分析。
教学过程教学环节教师活动学生活动设计意图(一)基础回顾1、一根20m长的铁丝围成一个矩形,若一边长为2m,则另一边长为______m ,所围成的矩形的面积为______平方米,若设一边长是x m,,则另一边长为______m ,若围成的矩形的面积为24 平方米,则所得的方程是_______________ ,x 的值是______。
构造一元二次方程解决图形面积问题
构造一元二次方程解决图形面积问题天津 张琪列一元二方程解决面积问题是一元二次方程的实际应用中一个重点,也是中考的一个热点. 解题的关键是结合图形列出一元二次方程,从而解决问题.【课本原题】如图1,在一块长92 m 、宽60 m 的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为855的6个矩形小块,水渠应挖多宽?(北师大九年级上册教材P57复习题第15题)思路分析:设水渠的宽度为x m ,借助平移将水平的水渠移到矩形的上面,竖直的两条水渠平移到矩形的右边(如图2),可得空白部分为一个矩形,面积为6个原矩形小块的面积和,据此列方程求解.解答展示:设水渠的宽度为x m.根据题意,得(92-2x )(60-x )=885×6.解得x 1=105(不合题意,舍去),x 2=1.答:水渠的宽度为1 m.方法领悟:有些图形中涉及的基本图形比较分散,我们可以通过适当地平移将图形进行转化,可以方便我们求解. 变式1(2017•凉州区)如图3,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x-2x 2=570 解析:仿照上面的课本原题,通过平移后可知草坪的长为(32-2x ),宽为(20-x ),进而可知答案为A..变式2 如图4,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的41,若道路与观赏亭的面积之和是矩形水池面积的61,求道路的宽. 解析:如图5,利用平移把不规则的图形转化为规则图形.设道路的宽为x 米,则AE =CH =x 米,EF =(20-4x )米,HG =(12-4x )米.根据题意,得x (12-4x )+x (20-4x )+16x2=16×20×12. 整理,得x 2+4x -5=0.解得x 1=l ,x 2=-5(舍去).答:道路的宽为1米. 图5 FG H M E 图4。
24.4.1运用一元二次方程解决图形面积问题
利用一元二次方程解决图形问题
【例1】如图,某学校要在校园内墙边
的空地上建一个矩形的存车处,存车 处的一面靠墙(墙长22米),另外三 面用90米长的铁栅栏围起来.如果这 个存车处的面积为700平方米.求这 个矩形存车处的长和宽.
举一反三训练
1.〈2015,保定模拟〉在Rt△ABC中,∠B为直角,AB =6 cm,BC=12 cm,动点P以每秒1 cm的速度匀速 自A点沿AB方向移动,同时点Q以每秒2 cm匀速自B 点沿BC方向移动,则( C )秒后△PQB的面积等于
员?
(1)设增长率为x, 根据题意,得10×(1+x)2=12.1,
解这个方程,得x1=0.1=10%,x2=-2.1(舍去).
答:月平均增长率为10%. (2)6月份的投递任务为:12.1×(1+0.1)=13.31 (万件). ∵13.31÷0.6≈22.18(名),
∴现有的21名快递投递业务员不能完成任务,至少需
利润 ×100% 进价(或成本)
折扣数 =折扣后价格,如原价1 000元,打5.5折,现价550元. 10
谢谢
本题(2)属于典型的增长率问题,这类问题的等量关系 均为:原量×(1+增长率)增长次数=增加后的量,或原量
×(1-减少率)减少次数=减少后的量.
举一反三训练
2.〈2015,湖南长沙〉现代互联网技术的广泛应用,催 生了快递行业的高速发展.据调查,长沙市某家小型 “大学生自主创业”的快递公司,今年三月份与五月 份完成投递的快递总件数分别为10万件和12.1万件. 现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递快递总件数的月平均增长率; (2)如果平均每人每月最多可投递快递0.6万件,那么该公 司现有的21名快递投递业务员能否完成今年6月份的快 递投递任务?如果不能,请问至少需要增加几名业务
一元二次方程应用__图形面积问题
练习:如图,小华从市场上买回一块矩形铁皮,他将此 矩形铁皮的四个角落各剪去一个边长为1m的正方形后, 剩下的部分刚好能围成一个容积为15m³的无盖长方体箱 子,且此长方体箱子的底面长比宽多2m。已知购买这种 铁皮每平方米需20元,算一算小华购回这张矩形铁皮共 花了多少钱?
解:设无盖长方体箱子宽x米,则长(x 2)米
解:设金色纸边的宽为xcm,则挂图长为 (80+2x)cm、宽为(50+2x)cm
由题意得:(80 2x)(50 2x) 5400
4x2 260x 1400 0
整理得: x2 65x 350 0
(x 5)(x 70) 0 x1 5, x2 70(不合题意舍去 ) 故金色纸边的宽为5cm.
(1)
解2:解1计算时分块较多,还要注意重叠部分要减去。 我们可以利用图形的平移,对图形进行重新整理,如右图。
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
整理得: x2 52 x 100 0 (x 2)(x 50) 0
解得:x1 2, x2 50(不合题意,舍去 ) 故道路宽为 2米.
变式2: 如图,在一块长92m,宽60m的矩形耕地上挖 三条水渠,水渠的宽度都相等。水渠把耕地分成面 积均为885m2的6个矩形小块,水渠应挖多宽?
解:设水渠宽为x米,
根据题意得: (92 2x)(60 x) 8856
整理得:x2 106 x 105 0
(x 1)(x 105) 0
x1 1, x2 105(不合题意,舍去 ) 故水渠应挖1m宽.
由题: x( x 2) 1 15
则矩形铁皮面积为: (5 2)(3 2) 35(平方米)
整理得: x2 2x 15 0
一元二次方程应用 面积问题问题
实践收入 翻一翻,那么这两年中财政 收 入 的 平均年 增长率 应 是多少?翻二翻, 翻三翻呢?翻n翻呢?列 出方程即可
问题2: 某服装厂花1200元购进一批服 装,按40% 的利润定价,无人购买,决定 打折出售,但仍无人购买,结果又一次打 折才售完,经结算,这批服装共赢利280 元,若两次打折相同,每次打了几折?列 出方程即可
2.设体积为S,则S= (10-2x)2
3.折合成的长方体体积不随截去的正方 形的边长的增大而 增大,有最大值。
4.设体积为V,则V=x(10-2x)2
1、现有长方体塑料片一块,19cm, 宽15cm,给你锋利小刀一把,粘胶、 直尺、你能做一个底面积为77cm2 的无盖的长方体水槽吗?说说 你是 怎样做的?
D 1000(1+x)2=2500
2 某厂一月份的产值为10万元,第 一季度的总产值为70万元,设平均 每月的增长率为X,根据题意列出方 程是( C )
A 10(1-x) 2=70
B 10(1+x)+10(1+x)2=70
C 10+10(1+x)+10(1+x)2=70
D 10(1+x)2=70
例2、某药品经两次降价, 零售价为原来的一半。已知 两次降价的百分率一样,求 每次降价的百分率。(精确 到0.1℅)
C 1+2x=2
D (1+x)+2(1+x)2=4
例2,市场经济不仅让我们走上富裕之路, 而且让我们科学的经营方法,个体户张 某 原计划按600元每套销售一批西服,但 上市后销售不佳,为使资金正常运转, 减少库存积压,张某将这批西服连续两 次降价处理,调整价格到了384元,如两 次降价率相同,求每次降价率为多少? 两次打折 标示多少折?
利用一元二次方程解决面积问题教案
利用一元二次方程解决面积问题教案1.能够建立一元二次方程模型解决有关面积的问题;(重点、难点)2.能根据具体问题的实际意义检验结果的合理性.(难点)一、情景导入如图,在宽为20m ,长为32m 的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m 2,道路的宽为多少?二、合作探究探究点:利用一元二次方程解决面积问题如图所示,某幼儿园有一道长为16m 的墙,计划用32m 长的围栏靠墙围成一个面积为120m 2的矩形草坪ABCD ,求该矩形草坪BC 边的长.解析:若设BC 长为x m ,则宽AB 可表示为32-x 2m ,由矩形的面积公式“面积=长×宽”可列方程求解.解:设矩形草坪BC 边的长为x m ,则宽AB 为32-x 2m. 根据题意,得x ·32-x 2=120. 解得x 1=12,x 2=20.又由题意知BC ≤16,∴x =20不符合题意,应该舍去.∴该矩形草坪BC 边的长为12m.方法总结:(1)结合图形分析数量关系是解决面积等几何问题时的关键;(2)注意检验一元二次方程的根是否符合题意.将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不能,请说明理由.解析:做成的是两个正方形,且已知两个正方形的面积之和,只需设出正方形的边长或用未知数表示出边长,列方程解答即可.解:设一个正方形的周长为x cm ,则另一个正方形的周长为(20-x )cm.(1)由题意可列方程(x 4)2+(20-x 4)2=17.解此方程,得x 1=16,x 2=4. 所以两段铁丝的长度分别为16cm 和4cm ;(2)由题意可列方程(x 4)2+(20-x 4)2=12, 此方程化为一般形式为x 2-20x +104=0.∵b 2-4ac =(-20)2-4×1×104=-16<0,∴此方程无解.∴两个正方形的面积之和不可能等于12cm 2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.利用一元二次方程解决面积问题教案教学目标1、体会通过建立方程解决实际问题的意义和方法2、会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力知识准备无盖的长方体是如何制作的?教学内容:一、情境创设一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。
一元二次方程方程的应用面积问题
一元二次方程方程的应用面积问题一元二次方程是数学中的重要概念,它在现实生活中有着丰富的应用。
其中之一就是在解决面积问题时发挥作用。
从简到繁,本文将深入探讨一元二次方程在面积问题中的应用,以便读者能够更深入地理解这一概念。
一、一元二次方程的基本概念在深入讨论一元二次方程在面积问题中的应用之前,我们先来复习一下一元二次方程的基本概念。
一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\) 和 \(c\) 分别是一元二次方程的系数,而 \(x\) 则是未知数。
通过求解一元二次方程,我们可以得到该方程的根,从而找到方程所代表的数学意义。
二、一元二次方程在面积问题中的应用1. 求矩形的面积假设矩形的长为 \(x+3\),宽为 \(x-1\),我们希望求解这个矩形的面积。
根据矩形面积的计算公式 \[面积 = 长 \times 宽\]我们可以建立一个关于矩形面积的一元二次方程,通过求解这个方程,就可以得到这个矩形的面积。
2. 求三角形的面积假设有一个底边长为 \(x+2\),高为 \(2x-1\) 的三角形,我们可以利用一元二次方程来求解这个三角形的面积。
根据三角形面积的计算公式\[面积 = \frac{底边 \times 高}{2}\]我们可以建立一个关于三角形面积的一元二次方程,通过求解这个方程,就可以得到这个三角形的面积。
3. 求圆的面积对于圆的面积问题,我们需要利用一元二次方程的相关知识进行转化。
假设一个圆的半径为 \(x+1\),我们希望求解这个圆的面积。
根据圆的面积公式 \[面积 = \pi \times 半径^2\]我们可以建立一个关于圆面积的一元二次方程,通过求解这个方程,就可以得到这个圆的面积。
三、总结与回顾通过以上的例子,我们可以看到一元二次方程在面积问题中的广泛应用。
无论是矩形、三角形还是圆,我们都可以利用一元二次方程来求解其面积,这为我们在实际生活中的计算提供了便利。
九年级上一元二次方程应用题常见类型总结
九年级上 专题复习之实际问题与一元二次方程【一、面积问题】【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2【题型二 矩形中通道】 【例2】如图,要设计一副宽20cm 、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?【题型三边框设计】【例3】如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5【针对练习1】1.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm2.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.3.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.4.如图,利用一面墙(墙的长度为20m ),用34m 长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m 宽的门,设AB 的长为xm .(1)若两个鸡场总面积为96m 2,求x ;(2)若两个鸡场总面积和为Sm 2,求S 关于x 的关系式;(3)两个鸡场面积和S 有最大值吗?若有,最大值是多少?【二、循环向题、增长率问题、传染等问题】1.n 支球队参加单循环比赛、一共赛12n (n -1)场;n 支球队参加双循环比赛,一共赛n (n -1)场; 2.基数A 经过两轮增长(下降),平均增长(下降)率为x ,两轮后结果为A (1±x )2; 3.一人感冒,经过两轮传染,平均每人传染x 人,两轮后感冒人数为(1+x )2【题型一 循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x 名学生,根据题意列出方程为________.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.102.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________3.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.84.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________6.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.【三、利润问题】【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【针对练习3】1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x元(x≥100).(1)每天有游客居住的房间数为(用x表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w(元)最大?(3)宾馆某天统计结果显示,该天利润为1870元,请求出这天每间房的定价x(元)的值。
最新版初中数学教案《利用一元二次方程解决面积问题》精品教案(2022年创作)
第2课时利用一元二次方程解决面积问题教学内容根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.2.•难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备小黑板教学过程一、复习引入〔口述〕1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?〔学生口答,老师点评〕二、探索新知现在,我们根据刚刚所复习的面积公式来建立一些数学模型,解决一些实际问题.例1.某林场方案修一条长750m,断面为等腰梯形的渠道,断面面积为m2,•上口宽比渠深多2m,渠底比渠深多.〔1〕渠道的上口宽与渠底宽各是多少?〔2〕如果方案每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm,那么上口宽为x+2,•渠底为x+0.4,那么,根据梯形的面积公式便可建模.解:〔1〕设渠深为xm那么渠底为〔x+0.4〕m,上口宽为〔x+2〕m依题意,得:1 2整理,得:5x2+6x-8=0解得:x1=45=0.8m,x2=-2〔舍〕∴上口宽为,渠底为.〔2〕1.675048=25天答:渠道的上口宽与渠底深各是和;需要25天才能挖完渠道.学生活动:例2.如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度〔精确到〕?老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,•那么左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为〔27-18x〕cm,宽为〔21-14x〕cm.因为四周的彩色边衬所点面积是封面面积的14,那么中央矩形的面积是封面面积的.所以〔27-18x〕〔21-14x〕=34×27×21整理,得:16x2-48x+9=0解方程,得:,x1≈,x2所以:9x1=〔舍去〕,9x2=,7x2=因此,上下边衬的宽均为,左、右边衬的宽均为.三、稳固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?〔精确到0.1尺〕四、应用拓展例3.如图〔a〕、〔b〕所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A•开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.〔1〕如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.〔2〕如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C•后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于2.〔友情提示:过点Q•作DQ⊥CB,垂足为D,那么:DQ CQAB AC=〕分析:〔1〕设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.〔2〕设经过y秒钟,这里的y>6使△PCQ的面积等于cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=〔14-y〕,CQ=〔2y-8〕,又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.解:〔1〕设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.那么:12〔6-x〕·2x=8整理,得:x2-6x+8=0解得:x1=2,x2=4∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.〔2〕设y秒后点P移到BC上,且有CP=〔14-y〕cm,点Q在CA上移动,且使CQ=〔2y-8〕cm,过点Q作DQ⊥CB,垂足为D,那么有DQ CQ AB AC=∵AB=6,BC=8∴由勾股定理,得:∴DQ=6(28)6(4) 105y y--=那么:12〔14-y〕·6(4)5y-整理,得:y2-18y+77=0 解得:y1=7,y2=11 九年级 练数 学 习同步即经过7秒,点P在BC上距C点7cm处〔CP=14-y=7〕,点Q在CA上距C点6cm处〔CQ=•2y-8=6〕,使△PCD的面积为m2.经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,∴点Q已超过CA的范围,即此解不存在.∴本小题只有一解y1=7.五、归纳小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.六、布置作业1.教材P442.选用作业设计:一、选择题1.直角三角形两条直角边的和为7,面积为6,那么斜边为〔〕.A B.5 C D.72.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是〔〕.A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽,第二块木板长7m,宽;D.以上都不对3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,那么原来的正方形铁片的面积是〔〕.A.8cm B.64cm C.8cm2D.64cm2二、填空题1.矩形的周长为,面积为1,那么矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,那么它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,假设竹篱笆总长为35m,所围的面积为150m2,那么此长方形鸡场的长、宽分别为_______.三、综合提高题1.如下列图的一防水坝的横截面〔梯形〕,坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,假设坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少?〔说明:•背水坡度CFBF=12,迎水坡度11DEAE〕〔精确到〕2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,那么这个宽度为多少?3.谁能量出道路的宽度:如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,•只有无刻度的足够长的绳子一条,如何量出道路的宽度?请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形. BCE CDA AB3【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
1.3一元二次方程的应用(2)面积问题
化为一般形式:x2-106x+105=0
(x-1)(x-105)=0
∴x1=1,x2=105 (不合题意,舍去) 答:水渠应挖 1 m宽。
已知矩形(记为A)长为4,宽为1,是否 存在另一个矩形(记为B),使得这个矩形 的周长和面积都为原来矩形周长和面积 的一半?如果存在,求出这个矩形的长和 宽;如果不存在,试说明理由。 A B
二、列方程解应用题的关键是:
找出相等关系.
试一试:
如图,小明把一张边长为10cm的正方形硬纸板 的四周剪去一个同样大小的正方形,再折合成 一个无盖的长方形盒子。如果要求长方体的底 面面积为81cm2,那么剪去的正方形边长为多少?
边长2=面积
解:设剪去的正方形的边长为 x cm,则长方体 (10-2x)cm 的底面边长为___________,依题意得: (10-2x)2=81 10-2x=±9 1 19 ∴x1= x2= (不合题意,舍去)
1.3一元二次方程的应用(二) -----------面积问题
回顾旧知
一、列方程解应用题的一般步骤是:
1.审:审清题意:已知什么,求什么?已,未知之间有什么关系; 2.设:设未知数,语句要完整,有单位的要注明单位;
3.列:列代数式,列方程;
4.解:解所列的方程; 5.验:是否是所列方程的解;是否符合题意; 6.答:答案也必需是完整的语句,注明单位.
x (18 x ) 81 化简得,x 2 18 x 81 0
( x 9) 0 x x 9
2
1 2
答:应围成一个边长为9米的正方形.
练习:
.如图,是长方形鸡场平面示意图,一边靠 墙,另外三面用竹篱笆围成,若竹篱笆总长 为35m,所围的面积为150m2,则此长方形 鸡场的长、宽分别为_______.
九年级数学上册知识点---- 利用一元二次方程解决面积问题
九年级数学上册知识点
利用一元二次方程解决面积问题
问题引入
问题 某小区规划在一个长30m、宽20m的长方形土地
上修建三条等宽的通道,使其中两条与AB平行,另外
一条与AD平行,其余部分种花草,要使每一块花草的
面积都为78m2,那么通道宽应该设计为多少?设通道
宽为xm,则由题意列的方程为A
1 (6 x)2x 9 2
整理,得 x2 6x9 0
解得 x1= x2=3
答:点P,Q出发3s后可使△PCQ的面积为9cm².
方法点拨
主要集中在几何图形的面积问题, 这类问题的面 积公式是等量关系. 如果图形不规则应割或补成规则 图形,找出各部分面积之间的关系,再运用规则图形的 面积公式列出方程;
答:小路的宽为4m.
典例精析
例1:要设计一本书的封面,封面长27㎝,宽21cm正中 央是一个与整个封面长宽比例相同的矩形,如果要使 四周的边衬所占面积是封面面积的四分之一,上、下 边衬等宽,左、右边衬等宽,应如何 设计四周边衬的宽度?(精确到0.1cm)
21cm
27cm
分析:这本书的长宽之比 9 :7 正中
典例精析
例3:如图,在一块宽为20m, 长为32m的矩形地面上 修筑同样宽的两条道路,余下的部分种上草坪,要使草 坪的面积为540㎡,求道路的宽为多少?
解:设道路的宽为x米
20 32 32x 20x x2 540 x
还有其他 解法吗?
20 x
32
方法二:
x
解:设道路的宽为 x 米 20
(32-x)(20-x)=540 整理,得x2-52x+1002_x_)_(_2_0_-_x_)_=_6_×__7_8__.
1.4一元二次方程的应用(1)——面积问题
厘米,那么铁皮各角应切去多大的正方形 ?
50㎝ 100㎝
练习:一块长方形铁板,长是宽的2倍, 如果在4个角上截去边长为5cm的小正方
形,然后把四边折起来,做成一个没有
盖的盒子,盒子的容积是3000 cm3, 求铁板的长和宽.
解:设铁板的宽为xcm,则有长为2xcm
5(2x-10)(x-10)=3000
25cm
某农户利用27 m 长的墙为一边,用70 m 米 长的铁丝网当三边,围成了一个面积为528 m2 的长方形鸡场,求鸡场的长和宽各是多少? 设垂直于墙壁的一边长为x 米, 则平行于墙壁的一边长为(70-2x)米。 根据题意得:
2) 32 2 20 2 2 =100 ( 米 草坪面积= 32 20 100 = 540(米2)
取x=2时,道路总面积为:
2
答:所求道路的宽为2米。
解法二: 我们利用“图形经过移动, 它的面积大小不会改变”的道理, 把纵、横两条路移动一下,使列 方程容易些(目的是求出路面的 宽,至于实际施工,仍可按原图 的位置修路)
Q C
分析:PQ的长度如何求?如图过Q点作垂线,构造直角三角形
小结
•列一元二次方程解应用题的步骤与 列一元一次方程解应用题的步骤类似, 即审、设、列、解、验、答.
• 这里要特别注意:在列一元二次方 程解应用题时,由于所得的根一 般有两个,所以要检验这两个根 是否符合实际问题的要求.
练习:
5、围绕长方形公园的栅栏长 280m.已知该公园的面积为 4800m2.求这个公园的长与宽.
2.3.2 利用一元二次方程解决面积问题 课件(共19张PPT)
利用一元二次方程解决面积问题
1.通过阅读课本会分析实际问题中的等量关系,并能够用公式法
解决简单的面积问题,提高应用意识.
2.结合方案设计训练,不断探究,寻找问题的突破口,从而学会
用公式法解决简单应用问题,增强解决问题的能力.
3.通过对实际问题的分析,进一步理解方程是刻画数学问题的有
效模型,培养在生活中发现问题、解决问题的能力.
当x=20时,100-4x=20<25,
当x=5时,100-4x=80>25,不合题意,舍去.
答:羊圈的边长 AB和BC 分别是20 m,20 m.
典例精讲
【题型】几何面积问题
例 1: 某单位要兴建一个矩形的活动区(图中阴影部分),根据规
划,活动区的长和宽分别为21 m 和12 m,同时要在它四周外围修
理由如下:设 BC=y
−+
m,则AB=
−+
m,依题意得y·
=480,
整理得y²-62y+960=0,
解得y1=30,y2=32.
∵墙EF 最长可利用28 m, ∴y1=30,y2=32均不符合题意,
∴不能围成面积为 480 m²的矩形花园.
1.教材习题:完成课本第44-45页习题2.6的第1、2、3题.
−+
m,则AB=
m,依题意得
−+
x·
整理得x²-62x+600=0,解得x1=12,x2=50.
∵墙EF 最长可利用28 m, ∴x=12.
答:当 BC为 12 m时,矩形花园的面积为 300 m².
=300,
典例精讲
(2)能否围成面积为 480 m²的矩形花园? 为什么?
列一元二次方程解面积类应用题教案
成共识6、(CAI动态演示)各图形中路的平行移动过程,师概括点明做此类题目的方法并板书过程。
7、观察图形⑸,能否用上述方法,又如何理解呢?同学们讨论得出将图⑹的路平行向四周移动可得图⑸(CAI动态演示)。
8、学生独立完成此题。
(CAI课件展示)例2、要设计一本书的封面,封面长27 cm ,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).1、讨论:此题与上题的图⑸有什么不同?又如何解答?2、师讲解:如何由封面及正中的长宽比例相同为9:7,得出上、下边衬宽与左、右边衬宽的比也是9:7.。
3、学生讨论得出直接设中央的长与宽的比9X:7X,从而列方程求解。
4、一人演板。
5、集体订正,强调结果验证。
1、如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?论形成的结果,易记熟且能灵活运用。
设疑,激发学生积极思考用题目之间的联系培养学生灵活处理问题的能力。
此方法不易理解,但可以借助图⑸,拓宽了学生的知识面。
设元的灵活性。
触类旁通,你有哪些心得体会。
拓展延伸总结反思2、有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?归纳小结:系统地总结此类应用题的解法。
布置作业:(略)板书设计:12.6 一元二次方程的应用(二)例1.略例2.略解:设………解:………………………………课后反思,本节课的收获,还有没有需要老师帮助解决的问题。
18米2米。