人教版九年级上册数学 第二十四章 圆周周测3(24.2) 试题

合集下载

人教版九年级数学上册第二十四章圆全章测试

人教版九年级数学上册第二十四章圆全章测试

第24章 圆 全章测试一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD.3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P,PA =P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x轴相切、与y 轴相离 D .与x 轴、y 轴都相切第4题图 AB C DOP B .D .A .C .6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为( )A.23B.43C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 758.如图,A ⊙、B ⊙、C ⊙、D ⊙、E ⊙相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( ) A .π B .1.5π C .2π D .2.5π二 选择题(每题5分,计30分)9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4)则该圆弧所在圆的圆心坐标为 .第9题图 B D A C第6题图 A B DC 第10题AB CDE 第8题图O P Q D B AC 第7题图R10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________. 13.如图,△㎝,则AC的长等于_______㎝。

人教版九年级上册数学第二十四章 圆 含答案

人教版九年级上册数学第二十四章 圆 含答案

人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、下列关于圆的说法,正确的是()A.相等的圆心角所对的弦相等B.过圆心且平分弦的直线一定垂直于该弦C.经过半径的端点且垂直于该半径的直线是圆的切线D.相交两圆的连心线一定垂直且平分公共弦2、如图,已知是的外接圆,连接,若,则的度数为()A. B. C. D.3、如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=()A.35°B.45°C.55°D.70°4、如图,在半径1的圆形纸片中,剪一个圆心角为90°的扇形(图中阴影部分),则这个扇形的面积为()A. B. C. D.5、圆的内接正五边形ABCDE的边长为a,圆的半径为r.下列等式成立的是()A.a=2rsin36°B.a=2rcos36°C.a=rsin36°D.a=2rsin72°6、如图所示,AB是⊙O的直径,AB=4,AC是弦,AC=,则∠AOC为()A.120°B.130°C.140°D.150°7、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°8、某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cmB.50 cmC.100cmD.80cm9、如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°10、已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A.3 cmB.3 cmC.9cmD.6cm11、如图,是的直径,是的半径,切于点,与的延长线相交于点,. 已知,则的长为()A. B. C. D.12、如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:=4 .①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF其中正确的是()A.①②④B.①②③C.②③④D.①③④13、如图,是的直径,点,在上.若,则的度数是()A. B. C. D.14、若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3 πB.4 πC.5 πD.6 π15、如图,⊙ 的弦,是的中点,且,则⊙ 的直径等于()A.8B.2C.10D.5二、填空题(共10题,共计30分)16、如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为________17、如图,在扇形AOB中,∠AOB=900,以点A为圆心, OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.18、如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为________.19、用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 ________ 。

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、在△ABC中,∠C=90°,AC=6,BC=8,以C 为圆心r为半径画⊙C,使⊙C 与线段AB有且只有两个公共点,则r的取值范围是()A.6≤r≤8B.6≤r<8C. <r≤6D. <r≤82、如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°3、如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A. B. C.1 D.24、如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )A. B. C. D.5、若点B(a , 0)在以点A(1,0)为圆心,以3为半径的圆内,则a的取值范围为()A.-2< a<4B. a<4C. a>-2D. a>4或 a<-26、如图,在边长为2的正方形中,是以为直径的半圆的切线,则图中阴影部分的面积为()A. B. C.1 D.7、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°8、如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°9、如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…Pn…,记纸板Pn的面积为Sn,则Sn-Sn+1的值为( )A. B. C. D.10、如图,AB是⊙0的直径,点C在⊙0上,∠B=65°,则∠A=( )A.20°B.25°C.30°D.35°11、10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A,B,C,D,E,O均是正六边形的顶点.则点O是下列哪个三角形的外心().A. B. C. D.12、如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是()A.42°B.21°C.84°D.60°13、如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=36°,那么∠BAD等于()A.36°B.44°C.54°D.56°14、以已知点O为圆心,已知线段a为半径作圆,可以作()A.1个B.2个C.3个D.无数个15、下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在等腰中,,.分别以点,,为圆心,以的长为半径画弧分别与的边相交,则图中阴影部分的面积为________.(结果保留)17、如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8cm.AB=10cm,OD⊥BC于点D,则BD的长为________.18、如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长________.19、定义:几个全等的正多边形依次有一边重合,排成一圈,中间可以围成一个正多边形,我们称作正多边形的环状连接。

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A. B. C. D.2、下列说法正确的是()A.三点确定一个圆B.三角形的内心到三角形三个顶点距离相等C.和半径垂直的直线是圆的切线D.一个三角形只有一个外接圆3、如图,已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC 的度数是()A.25ºB.29ºC.30ºD.32°4、如图,四边形ABCD内接于⊙O.若⊙O的半径为4,∠D=135°,则弧AC的长为()A. .B.2 .C.4 .D.8 .5、如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15°B.30°C.60°D.75°6、下列说法中,错误的是( )A.垂直于弦的直径平分这条弦B.弦的垂直平分线过圆心C.垂直于圆的切线的直线必过圆心D.经过圆心且垂直于切线的直线必经过切点7、如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=6, DB=7,则BC的长是()A. B. C. D.8、如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为()A.80°B.60°C.50°D.40°9、如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π10、在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,I是△ABC的内心,延长AI交△ABC的外接圆D,则∠ICD的度数是()A.50°B.55°C.60°D.65°11、如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.10π﹣8B.10π﹣16C.10πD.5π12、已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离B.相切C.相交D.不能确定13、如图,点O是△ABC的内心,∠A=62°,则∠BOC=()A.59°B.31°C.124°D.121°14、正多边形的内切圆与外接圆的周长之比为∶2,则这个正多边形为( )A.正十二边形B.正六边形C.正四边形D.正三角形15、已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,直线DE是⊙O的切线,切点为D,交AC于E,若⊙O半径为1,BC=4,则图中阴影部分的面积为________.17、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.18、如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2,则半径OB等于________.19、如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是________.20、如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为________m.21、如图,已知O的半径为13,弦AB长为24,则点O到AB的距离是________.22、下列说法①直径是弦;②圆心相同,半径相同的两个圆是同心圆;③两个半圆是等弧;④经过圆内一定点可以作无数条直径.正确的是________填序号.23、如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是________.24、如图,点A、B、C、D在⊙O上,满足AB//CD,且AB=AC,若∠B=110°,则∠DAC的度数为________25、直径为12cm的⊙O中,弦AB=6cm,则弦AB所对的圆周角是________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。

人教版九年级上册数学 第二十四章 圆周周测4(24.2) 试题

人教版九年级上册数学 第二十四章 圆周周测4(24.2) 试题

第二十四章圆周周测4一、选择题(共10小题,每小题3分,共30分)1.已知⊙O的半径为5 cm,点P到圆心O的距离为6 cm,则点P与O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断2.⊙O的半径为5,圆心O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相交B.相离C.相切D.无法确定2,∠APO=30°,则⊙O的半径为()3.如图,P A是⊙O的切线,切点为A,P A=3A.1 B.3C.2 D.44.如图,AB为⊙O的直径,圆周角∠ABC=30°.当∠BCD=()时,CD为⊙O的切线A.40°B.50°C.60°D.70°5.如图,P A、PB是⊙O的切线,A、B为切点.若∠BOA=125°,则∠P的度数是()A.35°B.45°C.55°D.65°6.如图,P A、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB的度数为()A.50°B.60°C.70°D.80°7.如图,⊙I是△ABC的内切圆,D、E、F为三个切点.若∠DEF=52°,则∠A的度数为()A.76°B.68°C.52°D.38°8.如图,⊙I是△ABC的内切圆,点D、E分别在AB、AC上,且DE是⊙I的切线.若△ABC 的周长为21,BC=6,则△ADE的周长是()A.15 B.9 C.7.5 D.79.如图,△ABC中,∠ACB=90°,⊙O为△ABC的内切圆,切点分别为D、E、F.若AD=10,BC=5,则OB的长为()3A.4 B.7C.13D.310.如图,点A 在半径为3的⊙O 内,OA =3,P 为⊙O 上一点,延长PO 、P A 交⊙O 于M 、N .当MN 取最大值上,P A 的长等于( ) A .32B .62C .6D .33二、填空题(本大题共6个小题,每小题3分,共18分)11.已知⊙O 的半径为3 cm ,圆心O 到直线l 的距离是4 cm ,则直线l 与⊙O 的位置关系是__________12.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,切点为A ,OC 交⊙O 于D .若∠B =25°,则∠C 的大小等于__________13.如图,P A 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且∠AEB =60°,则∠P =__度 14.如图,⊙O 是△ABC 的内切圆,过O 作DE ∥BC 与AB 、AC 分别交于点D 、E .若BD =3,CE =2,则DE 的值为__________15.如图,△ABC 的外心的坐标是__________16.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,I 为△ABC 的内心,且OI ⊥AI .若AB=10,则BI 的长为__________ 三、解答题(共8题,共72分)17.(本题8分)已知矩形ABCD 的边AB =3厘米,AD =4厘米,以点A 为圆心,3厘米为半径作⊙A ,则点B 、C 、D 与圆A 的位置关系如何?请说明理由18.(本题8分)如图,在⊙O中,AB、CD是直径,BE是切线,B为切点,连接AD、BC、BD(1) 求证:△ABD≌△CDB(2) 若∠DBE=37°,求∠ADC的度数19.(本题8分)如图,在直角坐标系中,点M在第一象限内,MN⊥x轴于点N,MN=1,⊙M与x轴交于A(2,0)、B(6,0)两点(1) 求⊙M的半径的长(2) 请判断⊙M与直线x=7的位置关系,并说明理由20.(本题8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E为BC的中点,连接DE(1) 求证:DE是⊙O的切线(2) 若∠BAC=30°,DE=2,求AD的长21.(本题8分)如图,在△ABC中,AB=AC=10,BC=12,I为△ABC的内心(1) 求S△ABC(2) 求BI的长22.(本题10分)如图,在△ABC 中,∠C =90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D (1) 求证:⊙O 与BC 相切(2) 当AC =3,BC =6时,求⊙O 的半径的长23.(本题10分)如图,AB 为⊙O 的直径,CD 为⊙O 的弦,且AB ⊥CD 于E ,F 为弧AD 上一点,BF 交CD 于G ,FH 切⊙O 于点F ,交CD 的延长线于H (1) 求证:FH =GH(2) 若AB =2FH ,GF =32,求AG 的长24.(本题12分)如图,⊙O 为△ABD 的外接圆,E 为△ABD 的内心,DE 的延长线交⊙O 于C(1) 如图1,求证:CE =AC(2) 如图2,AB 为⊙O 的直径,AB =10,AD =8 ① 求S △ADE ② 求CEAE的值。

初中数学人教版九年级上册第二十四章能力测试题含答案

初中数学人教版九年级上册第二十四章能力测试题含答案

初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE =()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()1/ 45A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的3/ 45最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.5/ 45答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.7/ 45【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,9/ 45图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩形,根据垂径定理,可求得AE与AD的长,然后利用勾股定理即可求得⊙O的半径OA11/ 45长.此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,∴∠AOD=50°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,13/ 45BQ=OB=12CD=2,即PA+PB的最小值为2.故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,15/ 45【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∴∠ABO=30°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?17 / 453、直线和圆的公共点的数目不能超过 ,这是因为 。

人教版数学九年级上册第二十四章圆 测试题附答案

人教版数学九年级上册第二十四章圆 测试题附答案

人教版数学九年级上册第二十四章圆测试题附答案11.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=60°.12.如图,AB是⊙O的直径,点C在⊙O上,AC交BD 于点E,若AC=8,CE=5,则BE=________.12.如图,AB是⊙O的直径,点C在⊙O上,AC交BD 于点E,若AC=8,CE=5,则BE=3.13.如图,⊙O的直径AB上取点C,过C作⊙O的切线CD,交直线AB于点E,若AC=4,DE=6,则CE=________.13.如图,⊙O的直径AB上取点C,过C作⊙O的切线CD,交直线AB于点E,若AC=4,DE=6,则CE=10.14.如图,ABCD是一个正方形,点E,F分别在AB,BC边上,且AE=BF,连接AE,CF,交对角线BD于点G,则∠EGF=________°.14.如图,ABCD是一个正方形,点E,F分别在AB,BC边上,且AE=BF,连接AE,CF,交对角线BD于点G,则∠EGF=45°.15.如图,在△ABC中,D,E,F分别是BC,CA,AB 上的点,且AD,BE,CF交于点O,若∠AOC=120°,则∠BAC=________°.15.如图,在△ABC中,D,E,F分别是BC,CA,AB 上的点,且AD,BE,CF交于点O,若∠AOC=120°,则∠BAC=60°.16.如图,已知⊙O的半径为3,AB是直径,点C在⊙O上,且∠ACB=45°,则三角形ABC的面积为________.16.如图,已知⊙O的半径为3,AB是直径,点C在⊙O上,且∠ACB=45°,则三角形ABC的面积为(9/2)√2.17.如图,⊙O的半径为4,点A,B,C在圆上,且AB =BC,连接AC,交⊙O于点D,则AD的长为________.17.如图,⊙O的半径为4,点A,B,C在圆上,且AB =BC,连接AC,交⊙O于点D,则AD的长为4√3.18.如图,已知△ABC中,AB=AC,点D,E分别是BC,AB的中点,连接AD,AE,交角平分线于点F,若AB =4,则BF的长为________.18.如图,已知△ABC中,AB=AC,点D,E分别是BC,AB的中点,连接AD,AE,交角平分线于点F,若AB =4,则BF的长为(2/√3).19.如图,ABCD是一个平行四边形,点E,F分别在AB,CD边上,且AE=CF,连接AE,BF,交对角线AC于点G,则∠BGE=________°.19.如图,ABCD是一个平行四边形,点E,F分别在AB,CD边上,且AE=CF,连接AE,BF,交对角线AC于点G,则∠BGE=45°.20.如图,ABCD是一个梯形,AB∥CD,AB=6,CD =12,EF=3,EG=2,则FH的长为________.20.如图,ABCD是一个梯形,AB∥CD,AB=6,CD =12,EF=3,EG=2,则FH的长为5.12.如图,过圆O上一点C作圆O的切线,交圆O的直径AB的延长线于点D。

初中数学人教版九年级上册第二十四章能力测试题含答案

初中数学人教版九年级上册第二十四章能力测试题含答案

初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE=()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩AE AD OA此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,BQ=OB=1CD=2,即PA+PB的最小值为2.2故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,∴DB平分∠ADC.【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?3、直线和圆的公共点的数目不能超过,这是因为。

2024九年级数学上册第二十四章圆周周清检测内容:24

2024九年级数学上册第二十四章圆周周清检测内容:24

检测内容:24.2得分________卷后分________评价________一、选择题(每小题5分,共35分)1.在直角坐标系中,圆心为坐标原点,⊙O的半径为5,则P(3,4)与⊙O的位置关系为( A )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.已知⊙O的直径等于12 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的交点个数为( C )A.0个B.1个C.2个D.无法确定3.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应当是( B )A.第①块B.第②块C.第③块D.第④块第3题图第4题图4.(泰安中考)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE 的度数是( B )A.50°B.48°C.45°D.36°5.(3分)如图,点P为⊙O外一点,P A为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为( A )A.3 B.3 3 C.6 D.9第5题图第6题图6.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC 上的点,且DE为⊙O的切线,则△CDE的周长为( C )A.9 B.7 C.11 D.87.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有一点D 与点C 分居直径AB 两侧,且使得MC =MD =AC ,连接AD .现有下列结论:①MD 与⊙O 相切;②四边形ACMD 是菱形;③AB =MO ;④∠ADM =120°.其中正确的结论有( A )A .4个B .3个C .2个D .1个二、填空题(每小题5分,共20分)8.用反证法证明命题“若⊙O 的半径为r ,点P 到圆心的距离为d ,且d >r ,则点P 在⊙O 的外部”,首先应假设__点P 在⊙O 上或⊙O 内__.9.(枣庄中考)如图,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C .连接BC ,若∠P =36°,则∠B =__27°__.第9题图 第10题图 第11题图10.(温州中考)如图,在Rt △ABC 中,∠A 是直角,⊙O 是它的内切圆,与AB ,BC ,CA 分别切于点D ,E ,F ,若∠ACB =40°,则∠DOE =__130°__.11.如图,正方形ABCD 的边长为6,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,BP 的长为__94或33 __.三、解答题(共45分)12.(12分)(烟台中考)如图,已知Rt △ABC 中,∠C =90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC 的角平分线AD ,交BC 于点D ;②作线段AD 的垂直平分线EF 与AB 相交于点O ;③以点O 为圆心,以OD 长为半径画圆,交边AB 于点M .(2)在(1)的条件下,求证:BC 是⊙O 的切线;解:(1)如图所示(2)证明:∵EF 是AD 的垂直平分线,且点O 在EF 上,∴OA =OD ,∴∠OAD =∠ODA ,∵AD 是∠BAC 的平分线,∴∠OAD =∠CAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∵AC ⊥BC ,∴OD ⊥BC ,故BC 是⊙O 的切线.13.(15分)(安徽中考)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD =BC ,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:△CBA ≌△DAB ;(2)若BE =BF ,求证:AC 平分∠DAB .解:(1)证明:∵AB 是半圆O 的直径,∴∠ACB =∠ADB =90°,在Rt △CBA 与Rt △DAB 中,⎩⎪⎨⎪⎧BC =AD ,BA =AB , ∴Rt △CBA ≌Rt △DAB (HL) (2)∵BE =BF ,BC ⊥EF ,∴∠E =∠BFE ,∵BE 是半圆O 所在圆的切线,∴∠ABE =90°,∴∠E +∠BAE =90°,由(1)知∠D =90°,∴∠DAF +∠AFD =90°,∵∠AFD =∠BFE ,∴∠AFD =∠E ,∴∠DAF =∠BAE ,∴AC 平分∠DAB14.(18分)如图,⊙O 为△ABC 的外接圆,D 为OC 与AB 的交点,E 为线段OC 延长线上一点,且∠EAC =∠ABC .(1)求证:直线AE 是⊙O 的切线.(2)若D 为AB 的中点,CD =6,AB =16.①求⊙O 的半径;②求△ABC 的内心到点O 的距离.解:(1)证明:如图①,连接AO ,并延长AO 交⊙O 于点F ,连接CF .∵AF 是直径,∴∠ACF =90°,∴∠F +∠F AC =90°,∵∠F =∠ABC ,∠ABC =∠EAC ,∴∠EAC =∠F ,∴∠EAC +∠F AC =90°∴∠EAF =90°,且AO 是半径,∴直线AE 是⊙O 的切线(2)①如图②,连接AO ,∵D 为AB 的中点,OD 过圆心,∴OD ⊥AB ,AD =BD =12AB =8,∵AO 2=AD 2+DO 2,∴AO 2=82+(AO -6)2,∴AO =253 ,∴⊙O 的半径为253②如图②,作∠CAB 的平分线交CD 于点H ,连接BH ,过点H 作HM ⊥AC ,HN ⊥BC ,∵OD ⊥AB ,AD =BD ,∴AC =BC ,且AD =BD ,∴CD 平分∠ACB ,且AH 平分∠CAB ,∴点H 是△ABC 的内心,且HM ⊥AC ,HN ⊥BC ,HD ⊥AB ,∴MH =NH =DH .在Rt △ACD中,AC =AD 2+CD 2 =82+62 =10=BC ,∵S △ABC =S △ACH +S △ABH +S △BCH ,∴12×16×6=12 ×10×MH +12 ×16×DH +12 ×10×NH ,∴DH =83,∵OH =CO -CH =CO -(CD -DH ),∴OH =253 -(6-83)=5。

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

九年级上册第二十四章圆测试题(答案)学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 12 小题,每小题 3 分,共 36 分)1.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r2.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180∘B.150∘C.135∘D.120∘3.弧长等于半径的圆弧所对的圆心角是()A.360∘πB.180∘πC.90∘πD.60∘4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠DB.CB^=BD^C.∠ACB=90∘D.∠COB=3∠D5.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90∘B.OE=BEC.BD=BCD.△BDE∽△CAE6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40∘,则∠P的度数为()A.140∘B.70∘C.60∘D.40∘7.如图,平面直角坐标系中,A、B两点的坐标分别为(6, 0)、(0, 8),以AB为直径的圆与直线y=x交于点P,则点P的坐标是()A.(6.5, 6.5)B.(7, 7)C.(7.5, 7.5)D.(8, 8)8.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()A.1B.√2C.√3D.2√39.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定10.一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为()A.6B.12C.24D.2√311.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()A.1 12πr2B.16πr2 C.14πr2 D.124πr212.如图,AB是⊙O的直径,C是半圆AB^上一点,连AC、OC,AD平分∠BAC,交BC^于D,交OC于E,连OD,CD,下列结论:①BD^=CD^;②AC // OD;③∠ACD=∠OED;④当C是半圆AB^的中点时,则CD=DE.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④二、填空题(共 6 小题,每小题 3 分,共 18 分)13.已知⊙O的半径为4cm,A为线段OP的中点,当OP=7cm时,点A与⊙O的位置关系是________.14.已知⊙O的半径为10cm,如果圆心O到直线的距离为10cm,那么圆和直线的位置关系________.15.如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是________m.16.某中学的铅球场如图所示,已知扇形OAB的面积是18π米2,弧AB的长度为6π米,那么圆心角为________度.17.一个圆锥的底面半径为3cm,高为4cm,则这个圆锥的表面积为________.18.如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=2√3,BD=2,则图中阴影部分的面积是________.三、解答题(共 6 小题,每小题 11 分,共 66 分)19.如图,在���形铁片ABCE上剪下以A为圆心,AD为半径的扇形,再在余下的部分剪下一个尽可能大的圆形铁片,如果要使这个圆形铁片恰好是扇形铁片所做成的圆锥的底面,那么矩形铁片的长a和宽b应满足什么条件?20.如图,已知点A、点B、点C、点D在⊙O上,CD为∠ACE的角平分线.求证:△ABD为等腰三角形.21.一圆柱形排水管的截面如图所示,已知排水管的半径为5m,水面宽AB为8m.由于天气干燥,水管水面下降,此时排水管水面宽变为6m,求水面下降的高度.22.如图,点A、B、C、D为⊙O上的一点,若∠A=40∘,求∠OCB的度数.23.如图所示,已知一个圆的外切正方形的边长为4cm,求这个圆的内接正三角形的边心距?边长?24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30∘,DE=1cm,求BD的长.答案1.B2.A3.B4.D5.B6.B7.B8.D9.C10.A11.B12.B13.点A在圆内14.相切15.40π16.18017.24πcm218.2√3−π19.解:∵AB=b,∠B=90∘,∴AE^=90πb180=bπ2,设⊙O与AD、CD分别相切于F、G,连接FO并延长交BC于H,则FH垂直于AD,OG垂直于CD,可得矩形ABHF、矩形CDFH、矩形CGOH和正方形DFOG,∴FE⊥BC,设OG=OF=r,则2πr=bπ2,解得:r=b4,∴AD=BC=a=AF+FD=b+b4,整理得:4a=5b.20.证明:∵点A、点B、点C、点D在⊙O上,∴∠DCB+∠DAB=180∘,∵∠DCB+∠DCE=180∘,∴∠DCE=∠DAB.∵CD为∠ACE的角平分线,∴∠DCE=∠DCA,∵∠DCA=∠DBA,∴∠DBA=∠DAB,∴△ABD为等腰三角形.21.水面下降了1米.22.解:∵∠A=40∘,∴∠BOC=80∘,∵BO=CO,∴∠OCB=(180∘−80∘)÷2=50∘.23.解:连接OG,过点O作OE⊥GF于点E,∵圆的外切正方形的边长为4cm,∴OG=2cm.∵△FHF是正三角形,∴∠OGE=30∘,∴OE=12OG=1m,GE=OG⋅cos30∘=1×√32=√32,∴GF=2GE=√3.24.(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA // CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90∘.∵∠DBC=30∘,∠BDC=60∘,∴∠BDE=120∘.∵DA平分∠BDE,∴∠BDA=∠EDA=60∘.∴∠ABD=∠EAD=30∘.∵在Rt△AED中,∠AED=90∘,∠EAD=30∘,∴AD=2DE.∵在Rt△ABD中,∠BAD=90∘,∠ABD=30∘,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.。

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

新人教版九年级数学上册《第二十四章圆》测试题(含答案)
16.某中学的铅球场如图所示,已知扇形������������������的面积是18������米2,弧������������的长度为6������米,那么 圆心角为________度.
17.一个圆锥的底面半径为3������������,高为4������������,则这个圆锥的表面积为________. 18.如图,菱形������������������������中,对角线������������、������������交于������点,分别以������、������为圆心,������������、������������为半径画 圆弧,交菱形各边于点������、������、������、������,若������������ = 2 3,������������ = 2,则图中阴影部分的面积是 ________.
B.(7, 7) D.(8, 8)
8.如图, ⊙ ������是等边三角形������������������的外接圆, ⊙ ������的半径为2,则等边 △ ������������������的边长为( )
A.1
B. 2
C. 3
D.2 3
9.已知点������到 ⊙ ������的最长距离是3,最短距离是2,则 ⊙ ������的半径是( )
������������于������,连������������,������������,下列结论:
^=^
^
①������������ ������������;②������������ // ������������;③∠������������������ = ∠������������������;④当������是半圆������������的中点时,则������������ = ������������.

人教版九年级上册数学 第二十四章 圆周周测3(24.2) 试题

人教版九年级上册数学 第二十四章 圆周周测3(24.2) 试题

第二十四章二次函数周周测3一、选择题1.已知相交两圆的半径分別为4和7,则它们的圆心距可能是A. 2B. 3C. 6D. 112.已知的直径为为直线l上一点,,那么直线l与的公共点有A. 0个B. 1个C. 2个D. 1个或2个3.如图,圆与圆的位置关系没有A. 相交B. 相切C. 内含D. 外离4.如图,为OB上一点,且,以点C为圆心,半径为4的圆与OA的位置关系是A. 相离B. 相交C. 相切D. 相交或相切5.如图,AB是的直径,AC与相切于点A,连接OC交于D,作交于E,连接AE,若,则等于A.B.C.D.6.已知的半径为6cm,点O到直线l的距离为5cm,则直线l与A. 相交B. 相离C. 相切D. 相切或相交7.已知:点P到直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线L的距离均为2,则半径r的取值范围是A. B. C. D.8.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是A. 外离B. 外切C. 相交D. 内切9.已知的半径为1,圆心0到直线l的距离为2,过l上任一点A作的切线,切点为B,则线段AB的最小值为B. C. D. 2A. 110.在中,,以点B为圆心,AB为半径作圆B,以点C为圆心,半径长为13作圆C,圆B与圆C的位置关系是A. 外切B. 相交C. 内切D. 内含11.如图中,,点A在MB上,以AB为直径作与MC相切于点D,则CD的长为A.B.C. 2D. 3二、计算题12.已知:如图,AB是的直径,BC是弦,,延长BA到D,使.求证:DC是的切线;若,求DC的长.13.14.15.如图,已知AB为的直径,过上的点C的切线交AB的延长线于点于点D且交于点F,连接.求证:;若,求BE的长.16.17.18.19.20.如图,AB为的弦,若且.求证:BD是的切线;当,求BC的长.21.22.23.24.25.26.如图,已知:C是以AB为直径的半圆O上一点,于点H,直线AC与过B点的切线相交于点为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.求证:点F是BD中点;求证:CG是的切线;若,求的半径.。

人教版九年级数学上册《第二十四章圆》测试卷-带含有答案

人教版九年级数学上册《第二十四章圆》测试卷-带含有答案

人教版九年级数学上册《第二十四章圆》测试卷-带含有答案一、单选题1.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144°B.132°C.126°D.108°2.如图,点A,B,C在上,若,则的度数等于()A.40°B.35°C.30°D.20°3.如图,四边形内接于,的半径为,则的长是()A.B.C.D.4.如图所示,BC是的直径,D,E是上两点,连结BD,CE并延长交于点,连结OD,OE.如果,那么的度数为().A.B.C.D.5.如图,在中,直径与弦相交于点P,连接,若,则()A.B.C.D.6.如图所示,射线PB,PD分别交于点A,B和点C,D,且.已知的半径等于5,OA∥PC,则OP的长为().A.8 B.C.D.107.如图,不等边内接于,I是其内心,AC=14,BC=13,内切圆半径为()A.4 B.C.D.8.已知点A,B,C在上,把劣弧沿着直线折叠交弦于点D.若,则的长为()A.B.9 C.D.二、填空题9.已知的直径,弦,且于点,则的面积为. 10.如图,点A在半圆O上,BC为直径.若∠ABC=30°,BC=3,则的长是.11.如图,为的直径,弦,垂足为E ,CE=1,AB=6,则弦的长度为.12.如图,是的外接圆,为的直径,连接,若,则的长为cm.13.如图,在扇形中平分交于点,点为半径的中点.若,则阴影部分的面积为.三、解答题14.如图,A,C,B.D四点都在⊙O上,AB是⊙O的直径,且AB=6,∠ACD=45°,求弦AD的长.15.如图.为的直径,连接,点E在上.求证:(1)平分;(2).16.如图,AB是的直径,点C,M为上两点,且C点为的中点,过C点的切线交射线BM、BA于点EF.(1)求证:;(2)若求的长度.17.如图,以菱形的边为直径作交于点,连接交于点,是上的一点,且,连接.(1)求证:;(2)求证:是的切线.18.如图,在中以为直径的分别与、相交于点、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为,求图中阴影部分的面积.参考答案:1.A2.D3.C4.C5.D6.C7.A8.C9.32或810.11.12.613.14.解:∵AB是⊙O的直径∴∠ADB=90°∵∠ABD=∠ACD=45°∴△ABD为等腰直角三角形∴。

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章 圆含答案

人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、已知:如图,在半径为4的⊙O中,AB为直径,以弦AC(非直径)为对称轴将弧AC折叠后与AB相交于点D,如果AD=3BD,那么AC的长为A. B. C. D.62、如图,AB是⊙O的直径,AC、BC是⊙O的弦,PC是⊙O的切线,切点为C,∠ACP =55°,∠BAC那么等于()A.35°B.45°C.55°D.65°3、如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A.140°B.70°C.80°D.60°4、如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB. πC.2πD. π5、如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )A.πB.C.D.6、与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界)B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)7、若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A. B. C. 或 D.a+b或a﹣b8、如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A.65°B.75°C.85°D.105°9、《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为 1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13B.24C.26D.2810、如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A. B. C. D.11、如图,为半圆的直径,,是半圆弧上的点,平分,于点,,,则图中阴影部分的面积为()A. B. C. D.12、已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为()A.相离B.相交C.相切D.相交或相切13、《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.6步B.7步C.8步D.9步14、已知圆锥的底面半径为3,侧面展开图的圆心角为180°,则圆锥的母线长是()A.6B.C.D.915、如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是A.AD=DCB.C.∠ADB=∠ACBD.∠DAB=∠CBA二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是________.17、如图,直线AB与CD分别与⊙O 相切于B、D两点,且AB⊥CD,垂足为P,连接BD.若BD=4,则阴影部分的面积为________.18、如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是________度.19、如图,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为________.20、如图,一块六边形绿化园地,六角都做有半径为R的圆形喷水池,则这六个喷水池占去的绿化园地的面积为________(结果保留)21、如图,在中,,,则图中阴影部分的面积为________.22、如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D.已知BC=8cm,DE=2cm,则AD的长为________cm.23、如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=________24、如图,A,B,C是上的三点,若是等边三角形,则________.25、如图,矩形ABCD中,AD=4,AB=2 ,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N 分别是OA、OB的中点.求证:MC=NC.28、在直角三角形ABC中,∠B=90°,它的内切圆分别与边BC,CA,AB相切与点D,E,F,连接AD,与内切圆相交于另一点P,连接PC,PE,PF.已知PC⊥PF,求证:(1)PD平分∠FPC;(2)PE∥BC.29、如图,在△ABC中,AC=BC,以AB为直径的分别交AC,BC于点E,F,求证:.30、如图,直线AB与CD相交于O,EF⊥AB于F,GH⊥CD于H.求证:EF和GH 必相交.参考答案一、单选题(共15题,共计45分)1、A2、A3、A4、A5、B6、D7、C8、B9、C10、A11、D12、D13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。

【3套】人教版九年级数学上册第24章圆单元测试题(含答案)

【3套】人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC .∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,即∠OCM =90°,∴OC ⊥MN ,∴MN 是⊙O 的切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =2 3,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3. ∴图中阴影部分的面积为163π-4 3. 20.解:(1)证明:在图①中,连接OB .∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°.∵OA =OB ,∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°,∴∠DEA =∠CBE .∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE .(2)证明:在图②中,连接OF ,OB .在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°.∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°.∵CB =CE ,∴△BCE 是等边三角形.(3)在图③中,连接OB ,∴∠OBC =90°.又∵∠DCB =45°,∴△OBC 为等腰直角三角形,∴BC =OB =2,OC =2 2.又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2,∴EF =DF -OE =2-(2 2-2)=4-2 2.人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC =3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB 的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒3.图中,不能由一个基本图形通过旋转而得到的是( )A .B .C .D . 4.在以下几种生活现象中,不属于旋转的是( )A .下雪时,雪花在天空中自由飘落B .钟摆左右不停地摆动C .时钟上秒针的转动D .电风扇转动的扇叶5.下列图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.等腰直角三角形C.平行四边形D.菱形 7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为( )A. B.C. D.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿 x 轴依次绕点A 、B 、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为( )A.(30,0)B.(32,0)C.(34,0)D.(36,0)9.如图,将ABC △绕点B 顺时针旋转60︒得到DBE ,点C 的对应点E 落在AB 的延长线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=10.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4,则以下四个结论中:①△BDE 是等边三角形; ②AE ∥BC ; ③△ADE 的周长是9; ④∠ADE=∠BDC .其中正确的序号是( )A .②③④B .①②④C .①②③D .①③④二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____; 12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.三、解答题:(共72分)17.如图,已知△ABC 的顶点A ,B ,C 的坐标分别是A (-1,-1),B (-4,-3),C (-4,-1).(1)作出△ABC 关于原点O 中心对称的图形△A ’B ’C ’;(2)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐标.18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.19.如图,在平面直角坐标系中,直线:3l y x =-+与x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.20.在Rt △ABC 中,∠ACB=90°,,点D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE . (1)求△ADE 的周长的最小值;(2)若CD=4,求AE 的长度.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.24.如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN(1)求证:AM⊥BN(2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;(3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当1BMBC n时,请求出四边形四边形ABCDAMEFSS的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章二次函数周周测3
一、选择题
1.已知相交两圆的半径分別为4和7,则它们的圆心距可能是
A. 2
B. 3
C. 6
D. 11
2.已知的直径为为直线l上一点,,那么直线l与的公共点有
A. 0个
B. 1个
C. 2个
D. 1个或2个
3.如图,圆与圆的位置关系没有
A. 相交
B. 相切
C. 内含
D. 外离
4.如图,为OB上一点,且,以点C为圆心,半径为4的圆与OA的
位置关系是
A. 相离
B. 相交
C. 相切
D. 相交或相切
5.如图,AB是的直径,AC与相切于点A,连接
OC交于D,作交于E,连接AE,若
,则等于
A.
B.
C.
D.
6.已知的半径为6cm,点O到直线l的距离为5cm,则直线l与
A. 相交
B. 相离
C. 相切
D. 相切或相交
7.已知:点P到直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两
点到直线L的距离均为2,则半径r的取值范围是
A. B. C. D.
8.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是
A. 外离
B. 外切
C. 相交
D. 内切
9.已知的半径为1,圆心0到直线l的距离为2,过l上任一点A作的切线,切点
为B,则线段AB的最小值为
B. C. D. 2
A. 1
10.在中,,以点B为圆心,AB为半径作圆B,以点C为
圆心,半径长为13作圆C,圆B与圆C的位置关系是
A. 外切
B. 相交
C. 内切
D. 内含
11.如图中,,点A在MB上,以AB为直径作
与MC相切于点D,则CD的长为
A.
B.
C. 2
D. 3
二、计算题
12.已知:如图,AB是的直径,BC是弦,,
延长BA到D,使.
求证:DC是的切线;
若,求DC的长.
13.
14.
15.如图,已知AB为的直径,过上的点C的切线交AB
的延长线于点于点D且交于点F,连接

求证:;
若,求BE的长.
16.
17.
18.
19.
20.如图,AB为的弦,若且.
求证:BD是的切线;
当,求BC的长.
21.
22.
23.
24.
25.
26.如图,已知:C是以AB为直径的半圆O上一点,于点H,直线AC与过B点
的切线相交于点为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
求证:点F是BD中点;
求证:CG是的切线;
若,求的半径.。

相关文档
最新文档