不等关系与不等式11
北师大版数学八年级下册2.1《不等关系》教案
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
第二章 2.1 第一课时 不等关系与不等式
24设计》
【训练3】 在例3的方案中,哪种方案用书籍最少?共用多少本? 解 比较3种方案可知当x=18时用书籍最少.共用书籍130×18+90×12=3 420(本).
25
课前预习
课堂互动
核心素养
@《创新设计》
一、素养落地 1.通过用不等式(组)表示实际问题的不等关系,提升数学抽象素养,通过作差法比
核心素养
@《创新设计》
题型一 用不等式(组) 表示不等关系 提取有效数字,寻找不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成500 mm和600 mm两种.按照 生产的要求600 mm钢管的数量不能超过500 mm钢管数量的3倍,写出满足所有 上述不等关系的不等式(组). 解 设截得500 mm的钢管x根,截得600 mm的钢管y根. 500x+600y≤4 000, 根据题意得:3x≥x≥0y且,x∈N, y≥0且y∈N.
@《创新设计》
22
课前预习
课堂互动
核心素养
@《创新设计》
故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二, 组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型 图书角10个.
23
课前预习
课堂互动
核心素养
@《创新设计》
规律方法 1.根据实际问题列不等式(组)的关键是通过分析找出问题中的不等关系, 并确定不等号,然后写出不等号两边的代数式. 2.根据实际问题列出不等式(组),应从是否符合实际意义出发,而不能拘于某一种 形式.
文字语言
过
于
少,不低于
不超过
符号语言
>
<
≥
≤
15
人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)
目录不等关系与不等式 ................................................................................................. 错误!未定义书签。
考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。
人教版高一数学必修5 第三章《不等式》1
必修5 不等式不等关系与不等式知识点:1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<; ⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1nna b a bn n >>⇒>∈N ≥;⑧()0,2n n a b a b n n >>⇒>∈N ≥.【基础练习】1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+ 2、下列命题中正确的是( )A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b < D .若a b >,c d <,则a b c d> 3、下列命题中正确命题的个数是( )①若x y z >>,则xy yz >; ②a b >,c d >,0abcd ≠,则a bc d>; ③若110a b <<,则2ab b <; ④若a b >,则11b b a a ->-. A .1 B .2 C .3 D .44、如果0a <,0b >,则下列不等式中正确的是( ) A .11a b< B .a b -< C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( )A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x+≥ 6、若a 、b 是任意实数,且a b >,则( )A .22a b > B .1b a < C .()lg 0a b -> D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( ) A .22a a a a >>->- B .22a a a a ->>-> C .22a a a a ->>>-D .22a a a a >->>-8、若231x x M =-+,22x x N =+,则( )A .M >NB .M <NC .M ≤ND .M ≥N9、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是( ) A .M >NB .M <NC .M =ND .M ≥N10、不等式①222a a +>,②()2221a b a b +≥--,③22a b ab +>恒成立的个数是( )A .0B .1C .2D .311、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->- B .a b a b >->-> C .a b b a >->>-D .a b a b >>->-12、给出下列命题:①22a b ac bc >⇒>;②22a b a b >⇒>;③33a b a b >⇒>;④22a b a b >⇒>.其中正确的命题是( ) A .①②B .②③C .③④D .①④13、已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥14、已知a ,b ,c ,d 均为实数,且0ab >,c da b -<-,则下列不等式中成立的是( ) A .bc ad <B .bc ad >C .a b c d >D .a bc d<15、若()231f x x x =-+,()221g x x x =+-,则()f x ,()g x 的大小关系是( )A .()()f x g x <B .()()f x g x =C .()()f x g x >D .随x 值的变化而变化 16、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别为x ,y 时,且两船互不影响,则x ,y 应满足的关系是( )A .200y x x y -≥⎧⎪≥⎨⎪≥⎩B .200x y x y -≥⎧⎪≥⎨⎪≥⎩C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩17. 四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示. 盛满酒后他们约定:先各自饮杯中酒的一半. 设剩余酒的高度从左到右依次为1234,,,h h h h ,则它们的大小关系正确的是( ).(A )2h >1h >4h (B ) 1h >2h >3h (C ) 3h >2h >4h (D ) 2h >4h >1h 18. 右图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示(50,55;20,30;30,35),图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 ( )(A )123x x x >> (B )1x >3x >2x (C )231x x x >> (D )231x x x >>19、某商场对顾客实行优惠活动,规定一次购物付款总额:①200元以内(包括200元)不予优惠;②超过200元不超过500元,按标价9折优惠;③超过500元其中500元按②优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.20、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________. 21、用“>”“<”号填空:如果0a b c >>>,那么c a ________c b. 22、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.23、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________. 24、若0a b <<,且12a b +=,则12,a ,2ab ,22a b +中最大的是_______________. 25、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.26、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.27、比较下列各组中两个数或代数式的大小: ⑴ 117+与153+; ⑵ ()()4422a b a b ++与()233a b +.28、已知0a b >>,0c d <<,0e <,求证:e e a c b d>--.29、若0,0a b >>,求证:22b a a b a b+≥+.30、已知a 、b 为正实数,试比较a b b a+与a b +的大小.31、已知22ππαβ-<<<,求αβ-的范围.32、已知 1260,1536a b <<<<,求a b -及ab的取值范围.33、若二次函数()y f x =的图象过原点,且()()112,314,f f ≤-≤≤≤求()2f -的取值范围.一元二次不等式及其解法知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122bx x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅【基础练习】1、不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭ C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭2、设集合{}12x x A =≤≤,{}0x x a B =-<,若A B ≠∅ ,那么实数a 的取值范围是( ) A .()1,+∞ B .[)2,+∞ C .(],2-∞ D .[)1,+∞3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( ) A .R B .()2,2- C .()(),22,-∞-+∞ D .[]2,2-4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( )A .6-B .5-C .6D .55、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式222693191122x x x x -+++⎛⎫⎛⎫≤⎪ ⎪⎝⎭⎝⎭的解集是( )A .[]1,10-B .()[),110,-∞-+∞C .RD .(][),110,-∞-+∞8、不等式()()120x x --≥的解集是( )A .{}12x x ≤≤B .{}12x x x ≥≤或C .{}12x x <<D .{}12x x x ><或9、不等式()200ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥10、设()21f x x bx =++,且()()13f f -=,则()0f x >的解集是( )A .()(),13,-∞-+∞B .RC .{}1x x ≠ D .{}1x x =11、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a <<B .1x a a <<C .x a <或1x a >D .1x a<或x a > 12、不等式()130x x ->的解集是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .()1,00,3⎛⎫-∞ ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .10,3⎛⎫ ⎪⎝⎭13、二次函数()2y ax bx c x R =++∈的部分对应值如下表:x3- 2- 1- 0 1 2 3 4y60 4- 6-6- 4- 06则不等式20ax bx c ++>的解集是____________________________.14、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________.15、不等式20a x b xc ++>的解集为{}23x x <<,则不等式20a x b x c -+>的解集是________________________.16、不等式2230x x -->的解集是___________________________.17、不等式2560x x -++≥的解集是______________________________.18、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________.19、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.20、不等式30x x +≥的解集为____________________. 21、求下列不等式的解集:⑴ ()()410x x +--<; ⑵ 232x x -+>; ⑶ 24410x x -+>.22、已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求a 、b 的值.23、已知集合{}290x x A =-≤,{}2430x x x B =-+>,求A B ,A B .25、求函数()()124lg 2--+=x x x x f 的定义域.第 11 页 共 11 页 26、用一根长为m 100的绳子能围成一个面积大于2600m 的矩形吗? 当长、宽分别为多少米时,所围成的矩形的面积最大?27、已知0122>++mx mx 恒成立,求m 的范围.。
不等关系和不等式的基本性质xxx
不等关系和不等式的基本性质及不等式的解集【知识要点】①一般地,用符号“<”或者“≤”、“>”或者“≥”连接的式子叫做不等式。
②正确理解“非负数”、“不小于”、“不大于”、“至少”等数学术语。
③不等式的两边都加上(或减少)同一个整数,不等式号的方向不变。
④不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
⑤不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(1)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
(2)不等式的解集:如6,7,8,9,10…都是x>5的解,不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集。
(3)解不等式:求不等式解集的过程叫解不等式。
在数轴上表示不等式的解集时,可这样记忆:大于向右拐小于向左拐有“等号”实心无“等号”空心.画数轴时不要少了三要素:原点、正方向和单位长度.如下图,不等式x>5的解集可以用数轴上表示5的点的右边部分来表示,在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.如图,不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示,在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.【典型例题】例1 用不等式表示、(1)5与x的3倍的差为正数。
(2)a与b两数和的平方不能大于3。
(3)x2是非负数。
(4)x的一半比-5大,比3小。
(5)3x的绝对值不小于5。
(6)a的6倍与3的差不大于1。
例2 判断下列结果对不对,为什么?①若323,2x x>>则②若36,2x x-<<-则②若12,12aa>->-则④若a>b,则a>3b例3 根椐不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式。
①47x+>②514x x<+③415x->-④2542x x+<-例4 设a<b,用“<”或“>”填空。
不等关系与不等式
2021-2022学年高一上数学必修一第二章2.1等式性质与不等式性质第1课时不等关系与不等式学习目标 1.能用不等式(组)表示实际问题中的不等关系.2.初步学会作差法、作商法比较两实数的大小.知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.依据如果a>b⇔a-b>0.如果a=b⇔a-b=0.如果a<b⇔a-b<0.结论要比较两个实数的大小,可以转化为比较它们的差与0的大小思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.预习小测自我检验1.大桥桥头竖立的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T满足关系________.答案T≤40解析“限重40吨”是不超过40吨的意思.2.设M=x2,N=2x-1则M与N的大小关系是________.答案M≥N解析因为M-N=x2-2x+1=(x-1)2≥0,所以M≥N.3.如果a>b,那么c-2a与c-2b中较大的是________.答案c-2b解析c-2a-(c-2b)=2b-2a=2(b-a)<0.4.已知a,b∈R,若ab=1,则a2+b2的最小值是________.答案 2一、用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.文字表述身高在1.2~1.5米身高超过1.5米身高不足1.2米物体长、宽、高尺寸之和不得超过160厘米符号表示解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h≤1.5,身高超过1.5米可表示为h>1.5,身高不足1.2米可表示为h<1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P≤160.如下表所示:反思感悟(1)将不等关系表示成不等式(组)的思路 ①读懂题意,找准不等式所联系的量. ②用适当的不等号连接. ③多个不等关系用不等式组表示. (2)常见的文字语言与符号语言之间的转换跟踪训练1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).二、作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 延伸探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:作差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方式的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .重要不等式典例 已知a >0,求证:a +1a ≥2.证明 方法一 利用a 2+b 2≥2ab .∵a >0,∴a +1a =(a )2+⎝⎛⎭⎫1a 2≥2a ·1a=2.方法二 a +1a -2=(a )2+⎝⎛⎭⎫1a 2-2=⎝⎛⎭⎫a -1a 2≥0,∴a +1a≥2.[素养提升] 由a +1a构建重要不等式的形式,通过逻辑推理进行证明.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.完成一项装修工程,请木工需付工资每人500元,请瓦工需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,则请工人需满足的关系式是( ) A .5x +4y <200 B .5x +4y ≥200 C .5x +4y =200 D .5x +4y ≤200答案 D解析 由题意x ,y 满足的不等式关系为500x +400y ≤20 000,即5x +4y ≤200. 3.设a =3x 2-x +1,b =2x 2+x ,则( ) A .a >b B .a <b C .a ≥b D .a ≤b答案 C解析 a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,所以a ≥b . 4.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 答案 x <y解析 x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,所以x <y . 5.某汽车公司因发展需要,需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,设购买A 型汽车和B 型汽车分别为x 辆,y 辆,写出满足上述所有不等关系的不等式组为________________. 答案 ⎩⎪⎨⎪⎧4x +9y ≤100,x ≥5,y ≥6,x ,y ∈N*解析 由题意得⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *,即⎩⎪⎨⎪⎧4x +9y ≤100,x ≥5,y ≥6,x ,y ∈N *.1.知识清单:(1)实际问题,找不等关系,构建不等式(组). (2)比较大小. (3)重要不等式. 2.方法归纳:作差法.3.常见误区:实际问题中变量的实际意义.1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x 0.5 m .由题意可得4×x 0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简)答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12.9.已知a,b∈R,x=a3-b,y=a2b-a,试比较x与y的大小.解因为x-y=a3-b-a2b+a=a2(a-b)+a-b=(a-b)(a2+1),所以当a>b时,x-y>0,所以x>y;当a=b时,x-y=0,所以x=y;当a<b时,x-y<0,所以x<y.10.已知甲、乙、丙三种食物的维生素A,B含量及成本如下表:甲乙丙维生素A(单位/kg)600700400维生素B(单位/kg)800400500成本(元/kg)119 4若用甲、乙、丙三种食物各x kg、y kg、z kg配成100 kg的混合食物,并使混合食物内至少含有56 000单位维生素A和63 000单位维生素B.试用x,y表示混合食物成本c元,并写出x,y所满足的不等关系.解依题意得c=11x+9y+4z,又x+y+z=100,∴c=400+7x+5y,由⎩⎪⎨⎪⎧600x+700y+400z≥56 000,800x+400y+500z≥63 000及z=100-x-y,得⎩⎪⎨⎪⎧2x+3y≥160,3x-y≥130.∴x,y所满足的不等关系为⎩⎪⎨⎪⎧2x+3y≥160,3x-y≥130,x≥0,y≥0.11.已知0<a1<1,0<a2<1,记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M>NC.M=N D.无法确定答案 B解析∵0<a1<1,0<a2<1,∴-1<a1-1<0,-1<a2-1<0,∴M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=a1(a2-1)-(a2-1)=(a1-1)(a2-1)>0,∴M>N,故选B.12.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2B.a1a2+b1b2C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.15.已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c ),那么P 与Q 的大小关系是( )A .P >QB .P ≥QC .P <QD .P ≤Q 答案 A解析 ∵P -Q =a 2+b 2+c 2+3-2(a +b +c ) =a 2-2a +1+b 2-2b +1+c 2-2c +1 =(a -1)2+(b -1)2+(c -1)2≥0,又∵a ,b ,c 为不全相等的实数,∴等号取不到, ∴P >Q ,故选A.16.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试探究谁先到达教室?解 设寝室到教室的路程为s ,步行速度为v 1,跑步速度为v 2,则甲用时t 1=12s v 1+12s v 2,乙用时t 2=2s v 1+v 2,t 1-t 2=s 2v 1+s 2v 2-2s v 1+v 2=s ⎝ ⎛⎭⎪⎫v 1+v 22v 1v 2-2v 1+v 2=(v 1+v 2)2-4v 1v 22v 1v 2(v 1+v 2)·s =(v 1-v 2)2·s2v 1v 2(v 1+v 2)>0,∴甲用时多.∴乙先到达教室.。
新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法
新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
一轮复习专题34 不等式(知识梳理)
专题34不等式(知识梳理)一、不等式的有关概念1、不等式的定义:用数学符号“≠、>、<、≥、≤”连接的两个数或代数式表示不等关系的式子叫不等式。
不等式的定义所含的两个要点:(1)不等符号<、≤、>、≥或≠;(2)所表示的关系是不等关系。
2、不等式b a ≥的含义:不等式b a ≥应读作“a 大于或者等于b ”,其含义是指“或者b a >,或者b a =”,等价于“a 不小于b ,即若b a >或b a =之中有一个正确,则b a ≥正确。
不等式中的文字语言与符号语言之间的转换:大于大于等于小于小于等于至少至多不少于不多于>≥<≤例1-1.判断(正确的打“√”,错误的打“×”)(1)某隧道入口竖立着“限高5.4米”的警示牌,是指示司机要安全通过隧道,应使车的整体高度h 满足关系为5.4≤h 。
(√)(2)用不等式表示“a 与b 的差是非负数”为0>-b a 。
(×)(3)不等式2≥x 的含义是指x 不小于2。
(√)(4)若b a <或b a =之中有一个正确,则b a ≤正确。
(√)【解析】(1)∵“限高5.4米”即为“高度不超过5.4米”。
不超过用“≤”表示,故此说法正确。
(2)∵“非负数”即为“不是负数”,∴0≥-b a ,故此说法错误。
(3)∵不等式2≥x 表示2>x 或2=x ,即x 不小于2,故此说法是正确的。
(4)∵不等式b a ≤表示b a <或b a =,故若b a <或b a =中有一个正确,则b a ≤一定正确。
二、实数比较大小的依据与方法1、实数的两个特征(1)任意实数的平方不小于0,即R a ∈⇔02≥a 。
(2)任意两个实数都可以比较大小,反之,可以比较大小的两个数一定是实数。
2、实数比较大小的依据(1)如果b a -是正数,那么b a >;如果b a -等于零,那么b a =;如果b a -是负数,那么b a <。
艺术生高考数学专题讲义:考点21 不等关系与不等式
考点二十一 不等关系与不等式知识梳理1.不等式在现实世界和日常生活中,既有相等关系,又存在着形形色色的不等关系,它们都是客观存在的基本数量关系,是数学研究的重要内容.在数学中,我们用不等式表示不等关系.不等式的定义:用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个实数或代数式,以表示它们之间的不等关系.含有这些不等号的式子,叫做不等式.注意:“a ≥b ”是指“a >b 或a =b ”,等价说法是“a 不小于b ”,对于“a ≥b ”而言,只要a >b 和a =b 中有一个成立,a ≥b 就成立,例如:3≥2,2≥2等都是真命题.同理,“a ≤b ”是指“a <b 或a =b ”,等价说法是“a 不大于b ”,只要a <b 和a =b 中只要有一个成立,a ≤b 就成立. 2.同向不等式我们把a >b 和c >d (或a <b 和c <d )这类不等号方向相同的不等式,叫做同向不等式. 3.实数比较大小的两大法则:作差比较和作商比较法关系法则作差比较 作商比较a >b a -b >0 a b >1(a ,b >0)或ab<1(a ,b <0) a =b a -b =0 ab=1(b ≠0) a <ba -b <0a b <1(a ,b >0)或ab>1(a ,b <0) 注意:作商比较时要分清所研究变两个变量的正负,然后根据“若a b >1,b >0,则a >b ;若ab >1,b <0则a <b )”的原则进行判断. 4.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2). 5.不等式的倒数性质(1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd.注意:(1)在应用传递性时,注意等号是否传递下去,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a ≤b ,b <c ⇒a <c ;(2)在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).典例剖析题型一 不等关系例1 某汽车公司因发展需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解析 设购买A 型汽车和B 型汽车分别为x 辆、y 辆, 则⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *.即⎩⎪⎨⎪⎧4x +9y ≤100,x ≥5,y ≥6,x ,y ∈N *.变式训练 某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是__________.(填序号)① ② ③ ④答案 ④解析 ∵x 不低于95分,∴ x ≥95. ∵y 是高于380分,∴y >380. ∵z 超过45分.∴z >45.解题要点 解题时关键是要弄懂“不超过”、“至少”、“不低于”、“超过”这些文字语言,它们与不等号的对应关系如下表:文字语言不超过,至多,小于等于不低于,至少,大于等于超过,大于,高于少于,小于,低于不等号 ≤ ≥ > <题型二 比较大小例2 比较下列各组中两个代数式的大小: (1)x 2+3与3x ; (2)x 1+x 2与12. 解析 (1)(x 2+3)-3x =x 2-3x +3=(x -32)2+34≥34>0,∴x 2+3>3x .(2) ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2) ≤0,∴x 1+x 2≤12. 变式训练 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解析 (x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)[(x -12)2+34],∵x <1,∴x -1<0.又(x -12)2+34>0,∴(x -1)[(x -12)2+34]<0,∴x 3-1<2x 2-2x .解题要点 “作差比较法”的一般步骤为: (1)作差:对要比较大小的两个式子作差;(2)变形:对差式通过通分、因式分解、配方等手段进行变形; (3)判断符号:对变形后的结果结合题设条件判断出差的符号; (4)作出结论.题型三 不等式的性质例3 (2014·四川)若a >b >0,c <d <0,则一定有__________.(填序号) ① a c >bd②a c <b d ③a d >b c④a d <bc答案 ④解析 方法一:令a =3,b =2,c =-3,d =-2,则a c =-1,bd =-1,所以①,②错误;a d =-32,b c =-23,所以a d <bc ,所以③错误.故选④.方法二:因为c <d <0,所以-c >-d >0,所以1-d >1-c>0.又a >b >0,所以a -d >b -c,所以a d <bc .故选④.变式训练 设a ,b 是非零实数,若a <b ,则下列不等式成立的是__________.(填序号) ① a 2<b 2 ②ab 2<a 2b ③1ab 2<1a 2b④b a <ab答案 ③解析 当a <0时,a 2<b 2不一定成立,故①错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故②错. 因为1ab 2-1a 2b =a -ba 2b 2<0,所以1ab 2<1a 2b ,故③正确.④项中b a 与ab的大小不能确定.解题要点 在利用不等式的性质比较不等式时,如果可以赋值,就用赋值法,这样可使问题快速得解;如果赋值不能排除,则应通过推理判断,结合不等式的性质作出判断. 题型三 不等式的性质的应用例4 设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是__________. 答案 ⎝⎛⎭⎫-π6,π 解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.变式训练 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围为________.答案 [1,7]解析 设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围是[1,7].解题要点 在利用同向不等式相加求解表达式范围时,一般可用待定系数法.注意,如果多次利用不等式有可能扩大变量取值范围.当堂练习1.若a 、b 为实数,则“0<ab <1”是“b <1a”的__________条件.答案 既不充分也不必要解析 若0<ab <1,当a <0时,b >1a ,反之,若b <1a ,当a <0时,ab >1.故为既不充分也不必要条件.2.已知a <0,-1<b <0,那么下列不等式成立的是__________.(填序号) ① a >ab >ab 2 ② ab 2>ab >a ③ ab >a >ab 2 ④ ab >ab 2>a 答案 ④解析 ∵a <0,-1<b <0,∴ab 2-a =a (b 2-1)>0,ab -ab 2=ab (1-b )>0. ∴ab >ab 2>a .也可利用特殊值法,取a =-2,b =-12,则ab 2=-12,ab =1,从而ab >ab 2>a .故应选④.3. 设a ,b ,c ∈R ,且a >b ,则__________.(填序号) ① ac >bc ② 1a <1b ③ a 2>b 2 ④ a 3>b 3答案 ④解析 ①项中,若c 小于等于0则不成立;②项中,若a 为正数b 为负数则不成立;③项中,若a ,b 均为负数则不成立.故选④.4.若角α,β满足-π2<α<β<π,则α-β的取值范围是__________.答案 (-3π2,0)解析 ∵-π2<α<β<π,∴-π2<α<π,-π<-β<π2,∴-3π2<α-β<3π2,又α-β<0, ∴-3π2<α-β<0.5.若a 、b ∈R ,则下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a ≥2中一定成立的是__________.(填序号) 答案 ①②解析 ①a 2-2a +3=(a -1)2+2>0; ②a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0;③a 5-a 3b 2+b 5-a 2b 3=a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a +b )(a -b )2(a 2+ab +b 2),若a =b ,则上式=0,不成立; ④若a <0,则a +1a <0.∴①②一定成立.课后作业一、 填空题1.设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是__________.(填序号) ①a -b >0 ② a +b >0 ③ a 2-b 2>0 ④ a 3+b 3<0 答案 ②解析 由b >|a |,可得-b <a <b .由a <b ,可得a -b <0,所以选项①错误.由-b <a ,可得a +b >0,所以选项②正确.由b >|a |,两边平方得b 2>a 2,则a 2-b 2<0,所以选项③错误,由-b <a ,可得-b 3<a 3,则a 3+b 3>0,所以选项④错误.2.设a <b <0,则下列不等式中不成立的是__________.(填序号) ①1a >1b ②1a -b >1a ③|a |>-b ④-a >-b 答案 ②解析 由题设得a <a -b <0,所以有1a -b <1a 成立,即1a -b >1a 不成立.3.若a >b >0,则下列不等式中一定成立的是__________.(填序号) ①a +1b >b +1a ②b a >b +1a +1 ③a -1b >b -1a ④2a +b a +2b >a b答案 ①解析 ∵a >b >0,∴1b >1a >0,∴a +1b >b +1a,选①项.4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的__________条件. 答案 充分而不必要解析 若(a -b )·a 2<0,则a ≠0,且a <b ,所以充分性成立;若a <b ,则a -b <0,当a =0时,(a -b )·a 2=0,所以必要性不成立.故“(a -b )·a 2<0”是“a <b ”的充分而不必要条件. 5.若a 、b 、c 为实数,则下列命题正确的是__________.(填序号) ①若a >b ,c >d ,则ac >bd ②若a <b <0,则a 2>ab >b 2 ③若a <b <0,则1a <1b ④若a <b <0,则b a >ab答案 ②解析 对于①,只有当a >b >0,c >d >0时,不等式才成立;③中由a <b <0,得1a >1b ,故③不正确,又b a -a b =b 2-a 2ba =(b +a )(b -a )ab ,又a <b <0,∴(b +a )(b -a )ab <0,∴b a <ab ,故④不正确;对于②,∵a <b <0,∴a 2>ab >b 2,故选②. 6.若a ,b ∈R ,下列命题中①若|a |>b ,则a 2>b 2; ②若a 2>b 2,则|a |>b ; ③若a >|b |,则a 2>b 2; ④若a 2>b 2,则a >|b |. 其中正确的是__________.(填序号) 答案 ②和③解析 条件|a |>b ,不能保证b 是正数,条件a >|b |可保证a 是正数, 故①不正确,③正确.a 2>b 2⇒|a |>|b |≥b ,故②正确,④不正确.7.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是__________.(填序号) ①c a <b a ②b -a c >0 ③b 2c <a 2c ④a -c ac <0 答案 ③解析 ∵c <b <a ,且ac <0,∴c <0,a >0,∴c a <b a ,b -a c >0,a -c ac <0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.选③项. 8.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是__________.(填序号) ①a 2>b 2 ②a |c |>b |c | ③1a <1b ④a c 2+1>bc 2+1答案 ④解析 方法一:(特殊值法)令a =1,b =-2,c =0,代入①,②,③,④中,可知①,②,③均错,故选④. 方法二:(直接法)∵a >b ,c 2+1>0,∴a c 2+1>bc 2+1,故选④.9.若a >b >c ,则1b -c 与1a -c的大小关系为________. 答案1a -c <1b -c解析 ∵a >b >c ,∴a -c >b -c >0,∴1a -c <1b -c.10.现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2a -b -32;③7+10>3+14.其中恒成立的不等式共有________个. 答案 2解析 ①∵a 2+1-2a =(a -1)2≥0,故①不恒成立; ②a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0, ∴a 2+b 2>2a -b -32恒成立;③∵(7+10)2=17+270,(3+14)2=17+242, 又∵70>42, ∴17+270>17+242, ∴7+10>3+14,成立.11.若x >y ,a >b ,则在 ①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的不等式的序号是__________.(写出所有恒成立的不等式的序号). 答案 ②④解析 令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立. 又∵ax =-6,by =-6, ∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推 出②④成立. 二、解答题12.已知某学生共有10元钱,打算购买单价分别为0.6元和 0.7元的铅笔和练习本,根据需要,铅笔至少买7枝,练习本至少买6本.写出满足条件的不等式. 解析 设铅笔买x 枝,练习本买y 本(x ,y ∈N *),总钱数为 0.6x +0.7y ,且不大于10,∴⎩⎪⎨⎪⎧0.6x +0.7y ≤10,x ≥7,x ∈N *,y ≥6,y ∈N *.13.设x =(a +3)(a -5),y =(a +2)(a -4),试比较x 与y 的大小. 解析 ∵x -y =a 2+3a -5a -15-a 2-2a +4a +8=-7<0,∴x <y .。
专题05 不等式与不等式组专题详解(解析版)
专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。
专题7.1不等关系与不等式的性质及一元二次不等式(2021年高考数学一轮复习专题)
专题 不等关系与不等式的性质及一元二次不等式一、题型全归纳题型一 不等式性质的应用命题角度一 判断不等式是否成立【题型要点】判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断. 【例1】(2020·石家庄质量检测)已知a >0>b ,则下列不等式一定成立的是( ) A .a 2<-ab B .|a |<|b | C.1a >1bD .(12)a >(12)b【解析】:通解:当a =1,b =-1时,满足a >0>b ,此时a 2=-ab ,|a |=|b |,⎝⎛⎭⎫12a <⎝⎛⎭⎫12b,所以A ,B ,D 不一定成立,因为a >0>b ,所以b -a <0,ab <0,所以1a -1b =b -a ab >0,所以1a >1b 一定成立,故选C.优解:因为a >0>b ,所以1a >0>1b ,所以1a >1b一定成立.故选C.【例2】若1a <1b <0,给出下列不等式:①1a +b <1ab ;①|a |+b >0;①a -1a >b -1b ;①ln a 2>ln b 2.其中正确的不等式是( )A .①①B .①①C .①①D .①①【解析】因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a >-1b 可推出a -1a >b -1b ,显然有1a +b<0<1ab ,综上知,①①正确,①①错误.命题角度二 比较两个数(式)大小的两种方法【题型要点】比较两个数(式)大小的3种方法【例1】若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c【解析】:法一:易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1.所以a >b ;b c =5ln 44ln 5=log 6251 024>1.所以b >c .即c <b <a .法二:对于函数y =f (x )=ln xx ,y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .【例2】已知a ,b 是实数,且e<a <b ,其中e 是自然对数的底数,则a b 与b a 的大小关系是 .【解析】:令f (x )=ln xx ,x >0,则f ′(x )=1-ln x x 2,当x >e 时,f ′(x )<0,即函数f (x )在x >e 时是减函数. 因为e<a <b ,所以ln a a >ln bb,即b ln a >a ln b ,所以ln a b >ln b a ,则a b >b a .命题角度三 求代数式的取值范围【题型要点】求代数式取值范围的方法利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径. 【例1】(2020·长春市质量检测(一))已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是 .【解析】:设3α-β=m (α-β)+n (α+β)=(m +n )α+(n -m )β,则⎩⎪⎨⎪⎧m +n =3,n -m =-1,解得⎩⎪⎨⎪⎧m =2,n =1.因为-π2<α-β<π2,0<α+β<π,所以-π<2(α-β)<π,故-π<3α-β<2π.【例2】已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.【解析】因为-1<x<4,2<y<3,所以-3<-y<-2,所以-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以1<3x+2y<18.题型二一元二次不等式的解法【题型要点】一元二次不等式的解法(1)对于常系数一元二次不等式,可以用分解因式法或判别式法求解,题目简单,情况单一.(2)含有参数的不等式的求解,往往需要对参数进行分类讨论.①若二次项系数为常数,需先将二次项系数化为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;①若二次项系数为参数,则应先考虑二次项系数是否能为零,以确定不等式是一次不等式还是二次不等式,再讨论二次项系数不为零的情形,以便确定解集的形式;①对方程的根进行讨论,比较大小,以便写出解集.(3)若一元二次不等式的解集为区间的形式,则区间的端点值恰对应相应的一元二次方程的根,要注意解集的形式与二次项系数的联系.【易错提醒】当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.命题角度一不含参数的一元二次不等式解一元二次不等式的四个步骤【例1】不等式0<x2-x-2≤4的解集为.【答案】:[-2,-1)①(2,3]【解析】:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}.命题角度二 含参数的一元二次不等式解含参数的一元二次不等式的一般步骤【例2】解关于x 的不等式ax 2-(a +1)x +1<0.【解析】 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,原不等式等价于⎪⎭⎫ ⎝⎛-a x 1(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于⎪⎭⎫ ⎝⎛-a x 1(x -1)<0. ①当a =1时,1a =1,⎪⎭⎫ ⎝⎛-a x 1(x -1)<0无解;①当a >1时,1a <1,解⎪⎭⎫ ⎝⎛-a x 1(x -1)<0,得1a <x <1;①当0<a <1时,1a >1,解⎪⎭⎫ ⎝⎛-a x 1(x -1)<0,得1<x <1a .综上所述,当a <0时,解集为⎭⎬⎫⎩⎨⎧><11x a x x 或; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎭⎬⎫⎩⎨⎧<<a x x 11; 当a =1时,解集为①;当a >1时,解集为⎭⎬⎫⎩⎨⎧<<11x a x.命题角度三 已知一元二次不等式的解集求参数【例3】已知不等式ax 2-bx -1>0的解集是⎭⎬⎫⎩⎨⎧<<31-21-x x ,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧-12+⎝⎛⎭⎫-13=ba ,-12×⎝⎛⎭⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0,解得x ≥3或x ≤2.【例4】(2020·黄冈模拟)关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( )A .(-∞,1)①(2,+∞)B .(-1,2)C .(1,2)D .(-∞,-1)①(2,+∞)【解析】因为关于x 的不等式ax +b >0的解集是(1,+∞),所以a >0,且-ba=1,所以关于x 的不等式(ax +b )(x -2)<0可化为⎪⎭⎫⎝⎛+a b x (x -2)<0,即(x -1)(x -2)<0,所以不等式的解集为{x |1<x <2}. 命题角度四 分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.(1)f (x )g (x )>0(<0)①f (x )·g (x )>0(<0);(2)f (x )g (x )≥0(≤0)①⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0.【例5】不等式1-x 2+x≥1的解集为( )A.⎥⎦⎤⎢⎣⎡--21,2 B.⎥⎦⎤ ⎝⎛21-2-,C .(-∞,-2)①⎪⎭⎫ ⎝⎛∞+,21- D .(-∞,-2]①⎪⎭⎫ ⎝⎛∞+,21- 【解析】:1-x 2+x ≥1①1-x 2+x -1≥0①1-x -2-x 2+x ≥0①-2x -12+x ≥0①2x +1x +2≤0①⎩⎪⎨⎪⎧(2x +1)(x +2)≤0x +2≠0①-2<x ≤-12.故选B.【例6】不等式2x +1x -5≥-1的解集为________.【解析】:将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧(3x -4)(x -5)≥0,x -5≠0,解得x >5或x ≤43.所以原不等式的解集为⎭⎬⎫⎩⎨⎧><534x x x 或. 题型三 一元二次不等式恒成立问题类型一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围【题型要点】一元二次不等式在R 上恒成立的条件【例1】若不等式(a -2)x 2+2(a -2)x -4<0对一切x ①R 恒成立,则实数a 的取值范围是 . 【解析】 当a -2=0,即a =2时,不等式为-4<0,对一切x ①R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2,a 的取值范围是(-2,2].类型二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围【题型要点】形如f (x )≥0(f (x )≤0)(x ①R )恒成立问题的求解思路(1)根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围; (2)数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求参数的取值范围.【例2】(2020·江苏海安高级中学调研)已知对于任意的x ①(-∞,1)①(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是 .【解析】 设f (x )=x 2-2(a -2)x +a .因为对于任意的x ①(-∞,1)①(5,+∞),都有f (x )=x 2-2(a -2)x +a >0, 所以Δ<0或⎩⎪⎨⎪⎧Δ≥0,1≤a -2≤5,f (1)≥0,f (5)≥0,解得1<a <4或4≤a ≤5,即1<a ≤5.类型三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围【题型要点】形如f (x )>0或f (x )<0(参数m ①[a ,b ])的不等式确定x 的范围时,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.【例3】求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 【解析】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1.因为f (a )>0在|a |≤1时恒成立,所以 (1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 则实数x 的取值范围为(-∞,2)①(4,+∞).题型四 转化与化归思想在不等式中的应用【题型要点】(1)一元二次不等式ax 2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax 2+bx +c =0的根,也是函数y =ax 2+bx +c 与x 轴交点的横坐标.(2)二次函数y =ax 2+bx +c 的图象在x 轴上方的部分,是由不等式ax 2+bx +c >0的x 的值构成的;图象在 x 轴下方的部分,是由不等式ax 2+bx +c <0的x 的值构成的,三者之间相互依存、相互转化.【例1】(2020·内蒙古包头)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )【解析】由题意得⎩⎪⎨⎪⎧a <0,-2+1=1a ,-2×1=-c a,解得⎩⎪⎨⎪⎧a =-1,c =-2,则函数y =f (-x )=-x 2+x +2,结合选项可知选C.【例2】a ,b 是关于x 的一元二次方程x 2-2mx +m +6=0的两个实根,则(a -1)2+(b -1)2的最小值是( ) A .-494B .18C .8D .-6【解析】:因为关于x 的一元二次方程x 2-2mx +m +6=0的两个根为a ,b ,所以⎩⎪⎨⎪⎧a +b =2m ,ab =m +6,且Δ=4(m 2-m -6)≥0,解得m ≥3或m ≤-2.所以y =(a -1)2+(b -1)2=(a +b )2-2ab -2(a +b )+2=4m 2-6m -10=4⎝⎛⎭⎫m -342-494. 由二次函数的性质知,当m =3时,函数y =4m 2-6m -10取得最小值,最小值为8.故选C.二、高效训练突破 一、选择题1.(2020·潍坊模拟)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x ≤2},则A ∩B =( ) A .[-2,-1] B .[-1,2] C .[-1,1]D .[1,2]【解析】A ={x |x 2-2x -3≥0}={x |(x -3)(x +1)≥0}={x |x ≤-1或x ≥3},又B ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1}.2.若正实数a ,b 满足a >b ,且ln a ·ln b >0,则( )A.1a >1bB .a 2<b 2C .ab +1>a +bD .lg a +lg b >0【解析】由已知得a >b >1或0<b <a <1,因此必有1a <1b,a 2>b 2,所以A ,B 错误;又ab >1或0<ab <1,因此lg a +lg b =lg (ab )>0或lg (ab )<0,所以D 错误;而ab +1-(a +b )=(a -1)(b -1)>0,即ab +1>a +b ,所以C 正确.3.已知a >0>b ,则下列不等式一定成立的是( ) A .a 2<-ab B .|a |<|b | C.1a >1bD .ba ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛2121【解析】:法一:当a =1,b =-1时,满足a >0>b ,此时a 2=-ab ,|a |=|b |,ba⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛2121,所以A ,B ,D 不一定成立.因为a >0>b ,所以b -a <0,ab <0,所以1a -1b =b -a ab >0,所以1a >1b 一定成立,故选C.法二:因为a >0>b ,所以1a >0>1b ,所以1a >1b一定成立,故选C.4.(2020·安徽淮北一中(文)模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( ) A .(0,3) B .[-4,-3) C .[-4,0) D .(-3,4]【解析】:由(x -1)(x -2)<2解得0<x <3,函数y =(x +1)(x -3)的图象的对称轴是直线x =1,故函数在(0,1)上单调递减,在(1,3)上单调递增,在x =1处取得最小值,最小值为-4,在x =3处取值为0,在x =0处取值为-3,故(x +1)(x -3)的取值范围为[-4,0).5.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]①[5,+∞)C .(-∞,-1]①[4,+∞)D .[-2,5] 【解析】:.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4即可,解得-1≤a ≤4.6.(2020·湖南益阳4月模拟)已知函数f (x )=ax 2+(a +2)x +a 2为偶函数,则不等式(x -2)f (x )<0的解集为( ) A .(-2,2)①(2,+∞) B .(-2,+∞) C .(2,+∞)D .(-2,2)【解析】:因为函数f (x )=ax 2+(a +2)x +a 2为偶函数,所以a +2=0,得a =-2,所以f (x )=-2x 2+4,所以不等式(x -2)f (x )<0可转化为⎩⎪⎨⎪⎧x -2<0,f (x )>0或⎩⎪⎨⎪⎧x -2>0,f (x )<0,即⎩⎪⎨⎪⎧x <2,-2x 2+4>0或⎩⎪⎨⎪⎧x >2,-2x 2+4<0,解得-2<x <2或x >2.故原不等式的解集为(-2,2)①(2,+∞).故选A. 7.(2020·广东清远一中月考)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式 (ax +b )(x -3)>0的解集是( )A .(-∞,-1)①(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)①(3,+∞)【解析】关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),①a =b <0,①不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,①所求解集是(-1,3).故选C. 8.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是( ) A .x >2且y >2 B .x <2且y <2 C .0<x <2且0<y <2D .x >2且0<y <2【解析】:由题意得⎩⎪⎨⎪⎧xy >0,x +y >0,则⎩⎪⎨⎪⎧x >0,y >0,由2x +2y -4-xy =(x -2)·(2-y )<0,得⎩⎪⎨⎪⎧x >2,y >2或⎩⎪⎨⎪⎧0<x <2,0<y <2,又xy <4,可得⎩⎪⎨⎪⎧0<x <2,0<y <2.9.(2020·天津市新华中学模拟)已知命题p :1a >14,命题q :①x ①R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】求解不等式1a >14可得0<a <4,对于命题q ,当a =0时,命题明显成立;当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,10.设a ,b ①R ,定义运算“①”和“①”如下:a ①b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ①b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ①n ≥2,p ①q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4【解析】:.结合定义及m ①n ≥2可得⎩⎪⎨⎪⎧m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4; 结合定义及p ①q ≤2,可得⎩⎪⎨⎪⎧p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2,所以p +q ≤4. 11.(2020·安徽蒙城五校联考)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则实数a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-3,5]D .[-2,4]【解析】:因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a };当a <1时,不等式的解集为{x |a <x <1},要使不等式的解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是a ①[-2,4],故选D. 12.已知函数f (x )=-x 2+ax +b 2-b +1(a ①R ,b ①R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ①[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .(-1,0)B .(2,+∞)C .(-∞,-1)①(2,+∞)D .不能确定【解析】:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ①[-1,1]时,f (x )为增函数, 所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f (x )>0恒成立,即b 2-b -2>0恒成立解得b <-1或b >2.二、填空题1.设a >b ,有下列不等式①a c 2>b c 2;①1a <1b ;①|a |>|b |;①a |c |≥b |c |,则一定成立的有________.(填正确的序号)【解析】:对于①,1c 2>0,故①成立;对于①,a >0,b <0时不成立;对于①,取a =1,b =-2时不成立;对于①,|c |≥0,故①成立.2.已知实数a ①(1,3),b ①⎪⎭⎫⎝⎛4181,,则a b的取值范围是________.【解析】:依题意可得4<1b <8,又1<a <3,所以4<ab <24,故答案为(4,24).3.不等式|x (x -2)|>x (x -2)的解集是________.【解析】:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.4.(2020·扬州模拟)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是 . 【解析】:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2), 因为a 1<a 2,b 1<b 2,所以(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.6.已知①ABC 的三边长分别为a ,b ,c 且满足b +c ≤3a ,则ca的取值范围为________.【解析】:由已知及三角形的三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,所以⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >ba ,所以⎩⎨⎧1<b a +ca ≤3,-1<c a -b a <1,两式相加得,0<2×c a <4,所以ca的取值范围为(0,2).7.若x >y ,a >b ,则在①a -x >b -y ;①a +x >b +y ;①ax >by ;①x -b >y -a ;①a y >bx 这五个式子中,恒成立的不等式的序号是________.【解析】:令x =-2,y =-3,a =3,b =2.符合题设条件x >y ,a >b .因为a -x =3-(-2)=5,b -y =2-(-3)=5.所以a -x =b -y ,因此①不成立.因为ax =-6,by =-6,所以ax =by ,因此①不成立.因为a y =3-3=-1,b x =2-2=-1,所以a y =bx,因此①不成立.由不等式的性质可推出①①成立.8.已知函数f (x )=x 2+2x +ax,若对任意x ①[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.【解析】对任意x ①[1,+∞),f (x )>0恒成立.等价于x 2+2x +a >0,即a >-(x +1)2+1在[1,+∞)上恒成立,令g (x )=-(x +1)2+1,则g (x )在[1,+∞)上单调递减,所以g (x )max =g (1)=-3,所以a >-3.9.(2020·江西临川一中高考模拟)已知函数f (x )=x ln (3-x ),则不等式f (lg x )>0的解集为________.【解析】因为f (x )=x ln (3-x ),则⎩⎪⎨⎪⎧x ≥0,3-x >0,解得0≤x <3,所以定义域为[0,3),因为f (x )=x ln (3-x )>0等价于⎩⎨⎧x >0,ln (3-x )>0,解得0<x <2,因为f (lg x )>0,所以⎩⎪⎨⎪⎧0≤lg x <3,0<lg x <2,x >0,解得1<x <100,所以解集为(1,100).10.已知函数f (x )=x 2+ax +b (a ,b ①R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.【解析】:由题意知f (x )=x 2+ax +b =22⎪⎭⎫ ⎝⎛+a x +b -a 24,f (x )的值域为[0,+∞),所以b -a 24=0,即b =a 24.所以f (x )=(x +a 2)2.又f (x )<c ,所以(x +a 2)2<c ,即-a 2-c <x <-a2+c .所以⎩⎨⎧-a2-c =m ①,-a2+c =m +6 ①.①-①,得2c =6,所以c =9.三 解答题1.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 【解析】:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,因为f (a )>0在|a |≤1时恒成立,所以 (1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4则实数x 的取值范围为(-∞,2)①(4,+∞). 2.已知函数f (x )=ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 【解析】:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1, 综上可知,a 的取值范围是[0,1].(2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,因为a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32,所以不等式的解集为⎪⎭⎫⎝⎛2321-,.3已知函数f (x )=ax 2+(b -8)x -a -ab ,当x ①(-∞,-3)①(2,+∞)时,f (x )<0,当x ①(-3,2)时,f (x )>0. (1)求f (x )在[0,1]内的值域;(2)若ax 2+bx +c ≤0的解集为R ,求实数c 的取值范围.【解析】:(1)因为当x ①(-∞,-3)①(2,+∞)时,f (x )<0,当x ①(-3,2)时,f (x )>0. 所以-3,2是方程ax 2+(b -8)x -a -ab =0的两个根,所以⎩⎨⎧-3+2=8-ba,-3×2=-a -aba ,所以a =-3,b =5.所以f (x )=-3x 2-3x +18=-3221⎪⎭⎫ ⎝⎛+x +754.因为函数图象关于x =-12对称且抛物线开口向下,所以f (x )在[0,1]上为减函数,所以f (x )max =f (0)=18, f (x )min =f (1)=12,故f (x )在[0,1]内的值域为[12,18].(2)由(1)知不等式ax 2+bx +c ≤0可化为-3x 2+5x +c ≤0,要使-3x 2+5x +c ≤0的解集为R ,只需Δ=b 2-4ac ≤0,即25+12c ≤0,所以c ≤-2512,所以实数c 的取值范围为⎥⎦⎤ ⎝⎛∞1225--, 4.(2020·湖北孝感3月模拟)设关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实根x 1,x 2.(1)求(1+x 1)(1+x 2)的值;(2)求证:x 1<-1且x 2<-1;(3)如果x 1x 2①⎥⎦⎤⎢⎣⎡10101,,试求a 的取值范围. 【解析】:(1)因为关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实根x 1,x 2. 所以x 1+x 2=-1a ,x 1x 2=1a ,则(1+x 1)(1+x 2)=1+x 1+x 2+x 1·x 2=1-1a +1a =1.(2)证明:由Δ≥0,得0<a ≤14.设f (x )=ax 2+x +1,则f (x )的对称轴与x 轴交点横坐标x =-12a ≤-2,又由于f (-1)=a >0,所以f (x )的图象与x 轴的交点均位于点(-1,0)的左侧,故x 1<-1且x 2<-1. (3)由⎩⎨⎧x 1+x 2=-1a ,x 1·x 2=1a①(x 1+x 2)2x 1·x 2=x 1x 2+x 2x 1+2=1a .因为x 1x 2①⎣⎡⎦⎤110,10,所以1a =x 1x 2+x 2x 1+2①⎣⎡⎦⎤4,12110①a ①⎣⎡⎦⎤10121,14.又⎩⎪⎨⎪⎧a >0,Δ=1-4a ≥0①0<a ≤14, 所以a 的取值范围为⎣⎡⎦⎤10121,14.。
第11讲 不等式
( 3 x 1) 2(3x 1) 6
3x 3 6 x 2 6 3x 6 x 6 3 2 3x 7
(不要漏乘!每一项都得乘)
(注意符号,不要漏乘!) (移项要变号) (计算要正确)
合并同类项,得 系数化为 1, 得 颠倒了)
x
7 (同除负,不等号方向要改变,分子分母别 3
是 .
13.小明用 100 元钱购得笔记本和钢笔共 30 件,已知每本笔记本 2 元,每只钢 笔 5 元.那么小明最多能买 只钢笔.
14.某种商品的进价为 800 元,出售时标价为 1200 元,后来由于该商品积压, 商店准备打折销售,但要保证利润率不低于 5%,则至多可打 二、选择题(共 4 小题,每题 3 分,共 12 分) 15.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解 集为( ) B.x<2 C.2<x<4 D.x>2
o
75
说明: 不等式的解与一元一次方程的解是有区别的, 不等式的解是不确定的, 是一个范围,而一元一次方程的解则是一个具体的数值. (5)常见不等式所表示的基本语言与含义还有: ①若 a-b>0,则 a 大于 b ; ②若 a-b<0,则 a 小于 b ; ③若 a-b≥0,则 a 不小于 b ; ④若 a-b≤0,则 a 不大于 b ;
②若 a b 且 c 0 ,则 ac c
b c c .
(3)填空:已知 a <b<0 c<0,则 ac (4)若 x <1,则 2 x 2 ____ 0 。
bc
(5)根据不等式的基本性质,把下列不等式化成 x > a 或 x < a 的形式。 ① 4 x 5 > 2 x 7 ② 5 x 11 < 11 6 x
2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析
§3.1 不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一 不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二 作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考 x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案 作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三 不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a >b ,b >c ⇒a >c (传递性);(3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;(5)a >b ,c >d ⇒a +c >b +d ;(6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N ,n ≥1⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥2⇒>.n a n b1.2≥1.( √ )2.>1⇒a >b .( × )a b3.a >b ⇔a +c >b +c .( √ )4.Error!⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为x 万元,(8-x -2.50.1×0.2)那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式(8-x -2.50.1×0.2)x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时(1)要先读懂题,设出未知量;(2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x题,成绩才能不低于80分,列出其中的不等关系:.(不用化简)答案 5x-2(19-x)≥80,x∈N*解析 这个学生至少答对x题,成绩才能不低于80分,即5x-2(19-x)≥80,x∈N*.题型二 比较大小命题角度1 作差法比较大小例2 已知a,b均为正实数.试利用作差法比较a3+b3与a2b+ab2的大小.解 ∵a3+b3-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b).当a=b时,a-b=0,a3+b3=a2b+ab2;当a≠b时,(a-b)2>0,a+b>0,a3+b3>a2b+ab2.综上所述,a3+b3≥a2b+ab2.引申探究1.若a>0,b>0,a5+b5与a3b2+a2b3的大小关系又如何?解 (a5+b5)-(a3b2+a2b3)=a5-a3b2+b5-a2b3=a3(a2-b2)+b3(b2-a2)=(a2-b2)(a3-b3)=(a -b )2(a +b )(a 2+ab +b 2).∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0.∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小.解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1),[(x -12)2+34]又∵2+>0,x -1<0,(x -12)34∴(x -1)<0,∴x 3-1<2x 2-2x .[(x -12)2+34]命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系.解 ==,|log a (1-x )||log a (1+x )||log a (1-x )log a (1+x )||log (1+x )(1-x )|∵0<x <1,∴=-log (1+x )(1-x )=log (1+x ),|log (1+x )(1-x )|11-x∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <,11-x∴log (1+x )>1,11-x即>1,|log a (1-x )||log a (1+x )|∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则>1⇔a >b .a b跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小.解 =a a -b b b -a =a -b ,a a b b a b b a (a b)∵a >b >0,∴>1,a -b >0,a b∴a -b >1,即>1,(a b )a a b ba b b a又∵a >b >0,∴a a b b >a b b a .题型三 不等式的基本性质例4 已知a >b >0,c <0,求证:>.c a c b证明 因为a >b >0,所以ab >0,>0.1ab于是a ×>b ×,即>.由c <0,得>.1ab 1ab 1b 1a c a c b反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质.跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd .证明Error!⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求的取值范围.a b[错解] ∵12<a <60,15<b <36,∴<<,1215a b 6036∴<<.45a b 53[点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴<<,又12<a <60,1361b 115∴<<,∴<<4,1236a b 601513a b即的取值范围是.a b (13,4)[素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.Error!B.Error!C.Error!D.Error!答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45.2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD .a >b >-a >-b答案 C 解析 由a +b >0,知a >-b ,∴-a <b <0.又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( )A .a >b ⇒ac 2>bc 2B.>⇒a >b a c b cC.Error!⇒>D.Error!⇒>1a 1b1a 1b 答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒<,即>,C 成a ab b ab 1a 1b 立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( )A.>B.<a d b ca dbc C.> D.<a c b da cb d 答案 B解析 因为c <d <0,所以-c >-d >0,即>>0.1-d 1-c 又a >b >0,所以>,a -d b -c从而有<.a d b c5.比较(a +3)(a -5)与(a +2)(a -4)的大小.解 ∵(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0,∴(a+3)(a-5)<(a+2)(a-4).1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<ax D.x2>a2>ax答案 B解析 ∵x2-ax=x(x-a)>0,∴x2>ax.又ax-a2=a(x-a)>0,∴ax>a2,∴x2>ax>a2.2.已知a <0,b <-1,则下列不等式成立的是( )A .a >> B.>>aa b ab 2a b 2a b C.>a > D.>>aa b ab 2a b ab 2答案 D解析 取a =-2,b =-2,则=1,=-∴>>a .a b a b 212a b ab 23.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.< B .a 2>b 21a 1b C.> D .a |c |>b |c |a c 2+1bc 2+1答案 C解析 对于A ,若a >0>b ,则>0,<0,1a 1b 此时>,∴A 不成立;1a 1b 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴>恒成立,∴C 成立;ac 2+1bc 2+1对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,Error!则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C.< D.<1ab 21a 2bb a a b 答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,>0,∴<;1a 2b 21ab 21a 2b对于D ,当a =-1,b =1时,==-1.b a a b6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( )A .M <NB .M ≤NC .M >ND .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1,y =log a x 为(0,+∞)上的增函数,∴log a (a 3+1)>log a (a 2+1);当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数,∴log a (a 3+1)>log a (a 2+1),∴当a >0且a ≠1时,总有M >N .二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, .答案 >a +m b +m a b 解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 .答案 (-32,52)解析 由函数的解析式可知0<a +b <2,-1<-a +b <1,且2a -b =(a +b )-(-a +b ),1232结合不等式的性质可得,2a -b ∈.(-32,52)9.若x ∈R ,则与的大小关系为 .x 1+x 212答案 ≤x 1+x 212解析 ∵-==≤0.x 1+x 2122x -1-x 22(1+x 2)-(x -1)22(1+x 2)∴≤.x 1+x 21210.(x +5)(x +7)与(x +6)2的大小关系为 .答案 (x +5)(x +7)<(x +6)2解析 因为(x +5)(x +7)-(x +6)2=x 2+12x +35-(x 2+12x +36)=-1<0.所以(x +5)(x +7)<(x +6)2.三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表13示出来.解 由题意可得Error!(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =且z =1时取等号.1213.已知a >b >0,c <d <0,e <0,求证:>.e a -c eb -d 证明 ∵c <d <0,∴-c >-d >0,又∵a >b >0,∴a +(-c )>b +(-d )>0,即a -c >b -d >0,∴0<<,1a -c 1b -d 又∵e <0,∴>.e a -c eb -d14.若x >0,y >0,M =,N =+,则M ,N 的大小关系是()x +y1+x +y x1+x y1+y A .M =N B .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0,∴<,<,x 1+x +y x 1+x y 1+x +y y 1+y故M ==+<+=N ,即M <N .x +y 1+x +y x 1+x +y y 1+x +y x 1+x y 1+y 15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 .答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴Error!⇒Error!∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10,又-4≤x -y ≤-1,∴-6≤9x -3y ≤9.。
不等式与不等关系、解及其解集
9.1.1不等式、解及其解集一.【知识要点】不等式的定义: 用不等号(“>”“<”“≥”“≤”“≠”)把两个代数式连接起来,表示________关系的式子叫不等式。
根据题意列不等式: 根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,研究不等关系、列不等式的重点就是抓住关键词,弄清不等关系。
3.能使不等式成立的未知数的值,叫做_____________.4.一个含有未知数的不等式的____________,组成这个不等式的解集。
5.求不等式的解集的过程叫做________________. 二.【经典例题】1.判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式?2(1) (2)37;(3)5230; (5) 5>4; (6)5224x y x x +>=+≤≠; (4)x2.1x =-不是下列哪个不等式的解 ( )A.213x +≤-B.2-13x ≤-C.213x -+≤D.213x --≤3.把某关于x 的不等式的解集表示在数轴上如图所示,则该不等式的解集是__________.4.列不等式表示下列关系: x 与y 的和大于1; m 的9倍与n 的13的和是正数; 2与x 的5倍的差是非负数; x 与2的和的3倍不大于x 的13; m 的23与2的差的相反数不小于-55.小刚准备用节省的零花钱购买一部学习机用来学习英语,他已存有50元,并计划以后每月再存30元,直到他存的钱超过280元才可以买,设x 个月后小刚存的钱超过280元,请你列出不等式,并找出此不等式的最小整数解.【题库】 【A 】1.下列式子:⑴202=x ;⑵23>;⑶34-≠x ;⑷b a 65+;⑸y x 231>;⑹y x 531+≤;⑺3ab ;⑻35>x,是不等式的有( ) A.2个 B.3个 C.4个 D.5个2.x 的3倍不大于2与x 的和的一半表示成不等式为( )1.3(2x)2A x >+ 1.3(2x)2B x <+ 1.32x2C x ≤+ 1.3(2x)2D x ≤+ 3.某种品牌的八宝粥,外包装表明:净含量为330g ±10g ,表明这罐八宝粥的净含量x 的范围是 . 4. a 的21与6的差不小于5, 用不等式表示为 . 5.下列说法中正确的是( )A. x=1是方程-2x=2的解.B.x=-1是不等式-2x>2的唯一解.C.x=-2是不等式-2x>2的解集.D.x=-2,-3都是不等式-2x>2的解且它的解有无数个. 6.下面列出的不等式中,正确的是( ) A .“m 不是正数”表示为m <0B .“m 不大于3”表示为m <3C .“n 与4的差是负数”表示为n ﹣4<0D .“n 不等于6”表示为n >6【B 】1.在下列各式:210;10;2-5;3;0x x x x y x≠+>+<+=<①②③④⑤, 其中是不等式的是 ( )A.①②③④⑤B.①②③④C.①②③⑤D.②③⑤ 2.下列说法正确的有:_________________________.132512341;3134431-23-5x x x x x x x x x x =->-<==<=≥()是不等式的解;()不等式的解是()是不等式的解;()是不等式的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
a > n b > 0 (开方法则 开方法则) 开方法则
(倒数法则 倒数法则) 倒数法则
注:一定要在理解的基础上,记准、记熟不等式的这些 一定要在理解的基础上,记准、 这是我们对不等式进行变形的基础. 基本性质 ,这是我们对不等式进行变形的基础.
1 1 例1.已知 a > b > 0, 求证 < . a b c c 例2.已知a>b>0,c<0,求证 > . a b
a > b,c > d ⇒ a + c > b + d
(反对称性 反对称性) 反对称性 (传递性 传递性) 传递性 (可加性 可加性) 可加性 (同向不等式可加性 ) 同向不等式可加 同向不等式可加性 (可乘性 可乘性) 可乘性
a > b,c > 0 ⇒ ac > bc ⑷ a > b,c < 0 ⇒ ac < bc
练习: 练习:用不等式表示
(1) x与y的积是正数 ) 与 的积是正数 倍小于-3 (2) x的2.5倍小于 ) 的 倍小于 (3) 12与x 的2倍的差是正数 ) 与 倍的差是正数 (4) t与6的和是非负数 ) 与 的和是非负数 两数的平方差不大于0 (5) x、y两数的平方差不大于 ) 、 两数的平方差不大于 的差大于y的 (6) y与1的差大于 的45% ) 与 的差大于 (7) x比3小 ) 比 小 不小于1 (8) a不小于 ) 不小于 (9) y的绝对值与 的和为正数 ) 的绝对值与-8的和为正数 的绝对值与 (10)a与b的差的平方是非负数 ) 与 的差的平方是非负数
(正数同向不等式可乘 性 ) 正数同向不等式可乘 正数同向不等式 可乘性 0 ⇒ (乘方法则 乘方法则) ⑸ a > b > (n ∈ N * ,n ≥ 2) a n > b n > 0 乘方法则
a > b > 0,c > d > 0 ⇒ ac > bd
*
0 ⇒ ⑹ a > b > ( n ∈ N , n ≥ 2) 1 1 ⑺ a > b,ab > 0 ⇒ < a b
2 2
∴ ( a + 3)( a − 5) < (a + 2)(a − 4)
2 2
确定大小
的大小. 例 2 已知 x≠0,比较 (x +1) 与 x + x +1的大小. ≠
4 2
常用的不等式的基本性质有: 常用的不等式的基本性质有 ⑴a >b ⇔ b < a ⑵ a > b,b > c ⇒ a > c ⑶a >b ⇒ a+c >b+c
比较(a+ 的大小. 例 1 比较 +3)(a-5)与(a+2)(a-4)的大小. - 与 + - 的大小 作差 解: ∵ (a + 3)(a − 5) − (a + 2)(a − 4)
= ( a − 2a − 15) − (a − 2a − 8) 变形 = −7 ∴ (a + 3)(a − 5) − (a + 2)(a − 4) <0 定符号 0
1 1 例3.已知a < b < 0,求证 < . a −b a
a = b⇔ a−b= 0 a < b⇔ a−b< 0
作差比较法
这既是比较大小 或证明大小) 基本方法, 这既是比较大小(或证明大小)的基本方法,又是 比较大小( 推导不等式的性质的基础. 推导不等式的性质的基础.
作差比较法其一般步骤是: 作差比较法其一般步骤是: 其一般步骤是 作差→变形→判断符号→确定大小. 作差→变形→判断符号→确定大小.
xy>0 2.5x<-3 12-2x>0 t+6≥ 0 x2-y2≤ 0 y-1>45%y x<3 a≥ 1 |y|-8>0 (a-b)2≥ 0
பைடு நூலகம்
对于任意两个实数 a、 b,在 a> b, a = b, a< b 、 , > , , < 三种关系中有且仅有一种成立. 三种关系中有且仅有一种成立.
判断两个实数大小的依据是: 判断两个实数大小的依据是: 依据是 a > b⇔ a−b> 0