2011年新课标版高考题库考点47 随机事件的概率、古典概型、几何概型

合集下载

随机事件的概率(古典概型、简单的几何概型、抽样方法)

随机事件的概率(古典概型、简单的几何概型、抽样方法)
【答案】 C 【解析】由题意可作出维恩图如图所示:
所以该学校阅读过《西游记》的学生人数为70人, 则该学校阅读过《西游记》的学生人数与
该学校学生总数比值的估计值为:70 0.7.故选C. 100
7.(2018西安八校联考)某班对八校联考成绩进行分析,利用随机 数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号, 然后从随机数表第9行第5列的数开始向右读,则选出的第6个 个体是 ( )
(红,黄),(红,蓝),(红,绿),(红,紫),共4种,
故所求概率P 4 2. 10 5
3.(2018新课标Ⅲ卷)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支
第1节 随机事件的概率(古典概型、简单的几何概型、抽样方法)
付的概率为 ( ) 第三组取的数为(10号)36,第四组取的数为(14号)43,
A .2 3
B .3 5
C .2 5
D .1 5
【答案】 B 【解析】由题意,通过列举可知从这5只兔子中随机取出3只的 所有情况数为10, 恰有2只测量过该指标的所有情况数为6.
所以P 6 3.故选B. 10 5
9.(2019新课标Ⅲ卷,文)两位男同学和两位女同学随机排成一列,
则两位女同学相邻的概率是
表第9行第5列的数开始向右读,则选出的第6个个体是 ( )
4.取一根长度为5m的绳子,拉直后在任意位置剪断,那么所得两
段绳子的长度都不小于2m的概率是
()
A .1 5
B .1 3
C .1 4
D .1 2
【 答 案 】 A 【 解 析 】 记 两 段 绳 子 的 长 度 都 不 小 于 2m为 事 件 A, 则 只 能 在 中 间 1m的 绳 子 上 剪 断 ,所 得 两 段 绳 子 的 长 度 才 都 不 小 于 2m,

高中数学 考点49 随机事件的概率、古典概型、几何概型(含高考试题)新人教A版-新人教A版高三全册数

高中数学 考点49 随机事件的概率、古典概型、几何概型(含高考试题)新人教A版-新人教A版高三全册数

考点49 随机事件的概率、古典概型、几何概型一、选择题1.(2013·某某高考理科·T9)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B.12C.34D.78【解题指南】本题考查的是几何概型问题,首先明确两串彩灯开始亮是通电后4秒内任一时刻等可能发生,第一次闪亮相互独立,而满足要求的是两串彩灯第一次闪亮的时刻相差不超过2秒.【解析】选C.由于两串彩灯第一次闪亮相互独立且在通电后4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件为如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是123 164,故选C.2.(2013·某某高考文科·T5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23 B.25 C.35D.910【解题指南】以甲、乙为选择对象分情况考虑,先组合再求概率。

【解析】选D.当甲、乙两人中仅有一人被录用时的概率2313536=22=1010CPC;当甲、乙两人都被录用时的概率132353=10C P C ,所以所求概率为12369+P =101010P P 。

3.(2013·新课标Ⅰ高考文科·T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.16【解析】选B.从1,2,3,4中任取2个不同的数有6种,取出的2个数之差的绝对值为2有2种,则概率3162==P . 4.(2013·某某高考理科·T5)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖X 围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 ( )A . 14π- B. 12π-C .22π-D.4π【解题指南】几何概型面积型的概率为随机事件所占有的面积和基本事件所占有的面积的比值求出该几何概型的概率.【解析】选A.由题设可知,矩形ABCD 的面积为2,曲边形DEBF 的面积为22π-,故所求概率为.41222ππ-=-5.(2013·某某高考文科·T4)集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A.23 B.12C.13D.16【解题指南】属于古典概型,列举出所有的结果是关键.【解析】选C.所有的结果为(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,满足所求事件的有2种,所以所求概率为13.6. (2013·某某高考文科·T9).已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则AD AB=( ) A.12 B.14C.32D.74【解题指南】本题的关键是找出使△APB 的最大边是AB 的临界条件,首先是确定AD<AB,然后作出矩形ABCD ,最后分别以A 、B 为圆心以AB 为半径作圆弧交CD 于F 、E ,当EF=21CD 时满足题意。

新高考数学归纳知识点

新高考数学归纳知识点

新高考数学归纳知识点新高考数学的知识点归纳是帮助学生系统地掌握高中数学知识,提高解题能力的重要环节。

以下是对新高考数学知识点的归纳总结:一、集合与函数- 集合的概念:元素、子集、并集、交集、补集等。

- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。

- 函数的表示方法:解析法、图像法、列表法等。

二、数列- 数列的基本概念:通项公式、前n项和等。

- 等差数列与等比数列:通项公式、求和公式。

- 数列的极限:无穷等比数列的极限、单调有界定理等。

三、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角恒等变换:和角公式、差角公式、倍角公式、半角公式等。

四、解析几何- 平面直角坐标系:点的坐标、直线方程、圆的方程等。

- 空间直角坐标系:空间直线与平面的方程。

- 圆锥曲线:椭圆、双曲线、抛物线的性质与方程。

五、立体几何- 空间几何体:柱、锥、台、球等的体积与表面积。

- 空间直线与平面的位置关系:平行、垂直、相交等。

- 空间向量:向量的加减、数乘、点积、叉积等。

六、概率与统计- 随机事件的概率:古典概型、几何概型、条件概率等。

- 统计初步:数据的收集、整理、描述等。

- 离散型随机变量及其分布列:期望、方差等。

七、导数与微分- 导数的概念:导数的定义、几何意义、物理意义等。

- 基本初等函数的导数:幂函数、三角函数、指数函数、对数函数等。

- 导数的应用:函数的单调性、极值、最值等。

八、积分- 不定积分与定积分的概念:原函数、积分区间、积分值等。

- 积分的基本公式与计算方法:换元积分法、分部积分法等。

- 定积分的应用:面积、体积、物理量等。

九、复数- 复数的概念:复平面、复数的四则运算等。

- 复数的代数形式与三角形式:欧拉公式、德摩弗定理等。

- 复数的应用:解析几何、电路分析等。

十、逻辑与推理- 逻辑连接词:与、或、非、蕴含等。

- 推理方法:演绎推理、归纳推理、类比推理等。

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。

新高考数学复习:概率与统计

新高考数学复习:概率与统计

新高考数学复习:概率与统计随着新高考改革的深入,数学科目的考查范围与难度也在逐年增加。

作为高考复习的重要环节,概率与统计部分的知识点成为了考生们的焦点。

本文将探讨如何有效地进行新高考数学复习,特别是概率与统计部分的知识点。

一、明确考试要求在复习概率与统计之前,首先要了解新高考数学对于这一部分的考试要求。

通常,高考数学对于概率与统计的考查包括以下几个方面:随机事件及其概率、随机变量及其分布、数理统计的基本概念与方法等。

因此,在复习过程中,要着重这些方面的知识点。

二、扎实基础知识概率与统计部分的知识点较为抽象,需要考生具备扎实的数学基础。

在复习过程中,要注重对基础知识点的掌握,例如:集合、不等式、函数等。

只有掌握了这些基础知识,才能更好地理解概率与统计的相关概念与公式。

三、强化解题能力解题能力是高考数学考查的重要方面。

在复习概率与统计时,要注重强化解题能力。

具体而言,可以通过以下几个方面来提高解题能力:1、掌握解题方法对于概率与统计的题目,要掌握常用的解题方法,例如:直接法、排除法、枚举法等。

同时,要了解各类题型的解题步骤与方法,从而在解题时能够迅速找到突破口。

2、多做真题做真题是提高解题能力的有效途径。

通过多做真题,可以了解高考数学对于概率与统计的考查重点与难点,进而有针对性地进行复习。

同时,也可以通过对比历年真题,发现自身的知识盲点,及时查漏补缺。

3、反思与总结在解题过程中,要及时反思与总结。

对于做错的题目,要分析错误原因,并总结出正确的解题方法。

同时,也要总结出各类题型的解题技巧与注意事项,以便在今后的解题中能够更加得心应手。

四、拓展知识面高考数学对于考生知识面的考查也越来越广泛。

在复习概率与统计时,要注重拓展自身的知识面。

具体而言,可以通过以下几个方面来拓展知识面:1、阅读相关书籍可以阅读相关的数学书籍,例如:《概率论与数理统计》、《统计学》等。

通过阅读这些书籍,可以深入了解概率与统计的相关知识点,拓展自身的知识面。

2012年高考试题分类考点49 随机事件的概率、古典概型、几何概型

2012年高考试题分类考点49 随机事件的概率、古典概型、几何概型

考点49 随机事件的概率、古典概型、几何概型一、选择题1.(2012·湖北高考理科·T8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )(A)21-π(B)112-π(C)2π(D)1π【解题指南】本题考查几何概型,解答本题的关键是充分利用图形的特征,求出阴影部分的面积,再代入概率公式求解.【解析】选A. 设OA=2, 则扇形OAB 的面积为π.阴影部分的面积为:1111()2[()2]24242πππππ-⨯+---⨯=-,由P 2p ππ-=可知结果. 2.(2012·湖北高考文科·T10)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )(A)112-π (B)1π (C )21-π (D )2π【解题指南】本题考查几何概型,解答本题的关键是充分利用图形的特征,求出阴影部分的面积,再代入概率公式求解.【解析】选C. 设OA=2, 则扇形OAB 面积为π.阴影部分的面积为:1111()2[()2]24242πππππ-⨯+---⨯=-,由P 2p ππ-=可知结果.3.(2012·北京高考文科·T3)与(2012·北京高考理科·T2)相同设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π(D )44π-【解题指南】分别求出平面区域D 及到原点距离大于2的点所对应区域的面积,作比即可求出概率.【解析】选D.平面区域D 的面积为4,到原点距离大于2的点位于图中阴影部分(不含圆弧边界),其面积为4-π,所以所求概率为44π-.4.(2012·辽宁高考文科·T11)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为( )(A)16 (B)13 (C)23 (D)45【解题指南】设其中一段长为x cm ,则另一段长为(12)x -cm ,其中012x <≤, 利用(12)20x x ->求得x 的取值范围,利用几何概型求得概率.【解析】选C. 设其中一段AC 长为x cm ,则另一段BC 长为(12)x -cm ,其中012x <≤O 2由题意(12)20210x x x ->⇒<<,则点C 的取值长度为8cm ,故概率为82123=. 5.(2012·辽宁高考理科·T10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )(A) 16 (B) 13 (C) 23 (D) 45【解题指南】设其中一段长为x cm ,则另一段长为(12)x -cm ,其中012x <≤, 利用(12)32x x -<求得x 的取值范围,利用几何概型求得概率.【解析】选C. 设其中一段AC 长为x cm ,则另一段BC 长为(12)x -cm ,其中012x <≤,由题意(12)3204812x x x x -<⇒<<<≤或,则点C 的取值长度为4+4=8cm ,故概率为82123=. 6.(2012·安徽高考文科·T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )(A )15 (B )25 (C )35 (D )45【解题指南】先将所有结果一一列出,再根据古典概型即可求出两球颜色为一白一黑的概率.【解析】选B .1个红球,2个白球和3个黑球分别记为112123,,,,,a b b c c c , 从袋中任取两球有,共15种;满足两球颜色为一白一黑的有6种,概率等于62155=.二、填空题7. (2012·江苏高考·T6)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .【解题指南】从等比数列的通项公式和等可能事件的概率两方面处理.【解析】这十个数是234567891,3,(3),(3),(3),(3),(3),(3),(3),(3)---------,所以它小于8的概率等于63105=. 【答案】358.(2012·浙江高考文科·T12)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为2的概率是___________. 【解题指南】古典概型问题,该两点间的距离为2的事件可列举得出. 【解析】若使两点间的距离为,则为对角线一半,选择点必含中心,概率为142542105C C ==.【答案】259.(2012·新课标全国高考理科·T15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,250),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为【解题指南】由正态分布的意义求得三个元件使用寿命超过1 000小时的概率,然后将部件的使用寿命超过1 000小时的可能情况列出,利用相互独立事件的概率公式求解.【解析】设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然()()()12P A P B P C===,∴该部件的使用寿命超过1000小时的事件为()AB AB AB C++,∴该部件的使用寿命超过1000小时的概率为1111111322222228p⎛⎫=⨯+⨯+⨯⨯=⎪⎝⎭.【答案】3 8三、解答题10.(2012·江西高考文科·T18)如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0,),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率.(2)求这3点与原点O共面的概率.【解题指南】把从6个点中取3个点的情况全部列举出来,然后找出(1)(2)情况中所包含的基本事件的个数,把比值求出来得所求概率.【解析】从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有121122121122,,,A A B A A B A A C A A C ,共4种;y 轴上取2个点的有121B B A ,122B B A ,121B B C ,122B B C ,共4种;z 轴上取2个点的有121C C A ,122C C A ,121C C B ,122C C B ,共4种;所选取的3个点在不同坐标轴上的有111112121122,,,A B C A B C A B C A B C ,211212,A B C A B C ,221A B C 222A B C ,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:111222,A B C A B C ,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 11212010p ==.(2)选取的这3个点与原点O 共面的所有可能结果有:121122121122121122,,,,,A A B A A B A A C A A C B B A B B A ,121122121122121122,,,,,B B C B B C C C A C C A C C B C C B ,共12种,因此,这3个点与原点O 共面的概率为P 22123205p ==.11.(2012·山东高考文科·T18)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解题指南】(I )本题考查古典概型,要将基本事件都列出,然后找两张卡片颜色不同且标号之和小于4所含的基本事件的个数,由古典概型概率公式求得结果.(II )再放入一张标号为0的绿色卡片,列出基本事件,然后找出这两张卡片颜色不同且标号之和小于4所含的基本事件的个数,由古典概型概率公式求得结果.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2, 红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1, 红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.12.(2012·天津高考文科·T15)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查. (I )求应从小学、中学、大学中分别抽取的学校数目.(II )若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (1)列出所有可能的抽取结果; (2)求抽取的2所学校均为小学的概率.【解题指南】按抽取的比例计算抽取的学校数目;用列举法、古典概率公式计算概率.【解析】(I )从小学、中学、大学中分别抽取的学校数目为3,2,1.(II )(1)在抽取到的6所学校中,3所小学分别记为123,,A A A ,2所中学分别记为45,A A ,1所大学记为6A ,则抽取2所学校的所有可能结果为1213141516{,},{,},{,},{,},{,},A A A A A A A A A A 23242526{,},{,},{,},{,}A A A A A A A A ,343536{,},{,},{,}A A A A A A ,4546{,},{,}A A A A ,56{,}A A ,共15种.(2)从这6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为121323{,},{,},{,}A A A A A A ,共3种,所以31()155P B ==. 13. (2012·新课标全国高考文科·T18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

高考数学一轮复习专题训练—古典概型与几何概型

高考数学一轮复习专题训练—古典概型与几何概型

古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。

2024年高考数学---随机事件、古典概型

2024年高考数学---随机事件、古典概型

2.互斥事件与对立事件
名称 互斥事件
对立事件
定义
若A∩B为不可能事件,那么称事 件A与事件B互斥
若A∩B为不可能事件,A∪B为 必然事件,那么称事件A与事件B 互为对立事件
符号表示 A∩B=⌀
A∩B=⌀ 且A∪B=Ω (Ω为全集)
3.概率的基本性质 性质1:对任意的事件A,都有P(A)≥0. 性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0. 性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B). 性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B). 性质5:如果A⊆B,那么P(A)≤P(B). 性质6:设A,B是一个随机试验中的两个事件,则P(A∪B)=P(A)+P(B)-P(A∩ B).
基础篇
考点一 随机事件的概率 1.随机事件的频率与概率 1)频数与频率:在相同的条件S下进行n次试验,观察某一事件A是否出现, 称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比 例fn(A)= nA 为事件A出现的频率.
n
2)概率:对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A 的概率用P(A)表示.
对角面(如平面AA1C1C),有6种情况,
在同一个平面的有6+6=12个结果,构成三棱锥的有70-12=58个结果; ②从正方体的8个顶点中任取3个,共有 C83 =56个结果,其中所取3点与中心 共面,则这4个点在同一对角面上,共有6C34 =24个结果,因此,所选3点与中 心构成三棱锥的有56-24=32个结果. 故从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的个 数为58+32=90,故所求概率P= 90 = 5 .故选D.

古典概型和几何概型

古典概型和几何概型

一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。

②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。

5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。

古典概型注意:①列举法:适合于较简单得试验。

②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。

2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。

随机事件的概率与古典概型、几何概型

随机事件的概率与古典概型、几何概型

随机事件的概率与古典概型、几何概型一.知识整合:1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。

(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。

2.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n m总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。

由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。

3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。

注:当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。

(2)交事件(积事件)若某事件的发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。

5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ; 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。

如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m 。

高考数学 分类题库考点47 随机事件的概率、古典概型、几何概型理

高考数学 分类题库考点47 随机事件的概率、古典概型、几何概型理

考点47 随机事件的概率、古典概型、几何概型一、选择题1.(2020·广东高考理科·T6)甲、乙两队进行排球决赛.此刻的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.假设两队胜每局的概率相同,则甲队取得冠军的概率为( ) (A )12 (B )35 (C )23 (D )34【思路点拨】此题利用独立重复实验及对立事件的概率公式可求解. 【精讲精析】选D.由题意知,乙队胜的概率为412121=⨯,由对立事件概率公式得,甲队获胜的概率为43411=-=P .应选D.2.(2020·安徽高考文科·T9)从正六边形的6个极点中随机选择4个极点,那么以它们作为极点的四边形是矩形的概率等于( ) (A )110 (B )18 (C )16 (D )15【思路点拨】大体事件总数是46C =15,观看可得组成3个矩形.【精讲精析】选D. 大体事件总数是46C =15,观看可得组成3个矩形.因此是矩形的概率为.51153= 3.(2020·福建卷理科·T4)与(2020·福建卷文科·T7)相同如图,矩形ABCD 中,点E 为边CD 的中点,假设在矩形ABCD 内部随机取一个点Q ,那么点Q 取自△ABE 内部的概率等于( ) (A)14 (B)13 (C)12 (D)23【思路点拨】此题属几何概型问题,所求概率转化为△ABE 与矩形A BCD 的面积之比.【精讲精析】选C. 由题意知,112.2∆⋅=⋅ABE ABCD AB BCS P S AB BC 矩形== 4.(2020·新课标全国高考理科·T4)与(2020·新课标全国高考文科·T6)相同有3个爱好小组,甲、乙两位同窗各自参加其中一个小组,每位同窗参加各个小组的可能性相同,那么这两位同窗参加同一个爱好小组的概率为( )(A )13 (B )12 (C )23 (D )34【思路点拨】甲、乙两位同窗能够同时参加3个爱好小组中的1个,参加每一个小组的可能性均为13,能够利用排列组合和独立事件的概率求法来计算所求概率.【精讲精析】选A. 先从3个爱好小组当选1个,有133C =种方式;甲、乙两位同窗都参加那个爱好小组的概率为111.339⨯=故这两位同窗参加同一个爱好小组的概率为12311().33C = 5.(2020·辽宁高考理科·T5)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,那么P(B ︱A)=( ) (A)18 (B)14 (C)25 (D)12【思路点拨】此题要紧考查条件概率及其运算.【精讲精析】选B .从1,2,3,4,5中任取2个不同的数,共有10个大体事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).事件A 发生共有4个大体事件:(1,3),(1,5),(3,5),(2,4).事件B 发生共有1个大体事件:(2,4). 事件A ,B 同时发生也只有1个大体事件:(2,4).依照条件概率公式得,()1(|)()4==P AB P B A P A . 6.(2020·陕西高考理科·T10)甲乙两人一路去游“2020西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每一个景点参观1小时,那么最后一小时他们同在一个景点的概率是( ) (A )136 (B )19 (C )536 (D )16【思路点拨】此题抓住要紧条件,去掉次要条件(例如参观时刻)能够简化解题思路,然后把问题简化为两人所选的游览景点线路的排列问题.【精讲精析】选D.甲乙两人各自独立任选4个景点的情形共有4466A A ⋅(种);最后一小时他们同在一个景点的情形有33556A A ⋅⨯(种),因此33554466616A A P A A ⋅⨯==⋅.7.(2020·浙江高考理科·T9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.假设将其随机地抽取并排摆放在图书架的同一层上,那么同一科目的书都不相邻的概率是( ) (A )15 (B )25 (C )35 (D )45【思路点拨】古典概型大体问题,可从反面来考虑.【精讲精析】选B.大体事件总数为55120A =,同一科目中有相邻情形的有4242322424232272A A A A A A A +-=个,故同一科目都不相邻的概率是1207221205-=.8.(2020·浙江高考文科·T8)从装有3个红球、2个白球的袋中任取3个球,那么所取的3个球中至少有1个白球的概率是( ) (A )110 (B )310 (C )35 (D )910【思路点拨】古典概型问题.【精讲精析】选D.从装有3个红球、2个白球的袋中任取3个球共有3510C =个大体事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个大体事件,因此所取的3个球中至少有1个白球的概率是1911010-=.二、填空题9.(2020·江西高考理科·T12)小波通过做游戏的方式来确信周末活动,他随机地往单位圆内抛掷一点,假设此点到圆心的距离大于12,那么周末去看电影;假设此点到圆心的距离小于14,那么去打篮球;不然,在家看书,那么小波周末不在家看书的概率为 .【思路点拨】依照条件先求出小波周末去看电影的概率,再求出他去打篮球的概率,易患周末不在家看书的概率.【精讲精析】记“看电影”为事件A ,“打篮球”为事件B ,“不在家看书”为事件C. 【答案】3161 10.(2020·湖南高考理科·T15)如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部份)内”,那么 (1)P(A)=______;(2)P (B|A )=______. 【思路点拨】此题要紧考查面积型几何概型.【精讲精析】关键是计算出正方形的面积和扇形的面积. 【答案】214π 11.(2020·湖南高考文科·T15)已知圆C :,y x 1222=+直线l :4x+3y=25. (1)圆C 的圆心到直线l 的距离为_________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. 【思路点拨】此题考查点到直线的距离公式和几何概型.【精讲精析】(1)1222=+y x 的圆心(0,0)到直线4x+3y=25的距离为:d=534|250304|22=+-⨯+⨯.(2)作一条与4x+3y=25平行而且与4x+3y=25的距离为2的直线交圆于A ,B 两点,那么,ACB ,AB CB CA 6032||,32||||=∠∴===6136060==∴概率. 【答案】(1)5 (2)1612.(2020·福建卷理科·T13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.假设从中随机掏出2个球,那么所掏出的2个球颜色不同的概率等于_______.【思路点拨】别离求出5从个球中任取2个球的方法数和从中取一红球一黄球(颜色不同)的方法数,所求概率为两者之比.【精讲精析】由题意知,从5个球中随机掏出2个球共有2510C =种不同取法,而掏出的球颜色不同共有11326C C =种不同取法,故所掏出的2个球颜色不同的概率为11322563.105===C C P C【答案】3513.(2020·江苏高考·T5)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个的两倍的概率是______.【思路点拨】此题考查的是古典概型的概率计算,解题的关键是找出总的大体事件个数和其中一个数是另一个的两倍所包括的事件个数.【精讲精析】从1,2,3,4这四个数中一次随机取两个数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6个大体事件,其中一个数是另一个的两倍的有(1,2),(2,4)两个大体事件,因此其中一个数是另一个的两倍的概率是2163=. 【答案】13三、解答题14.(2020·福建卷文科·T19)某日用品按行业质量标准分成五个品级,品级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其品级系数进行统计分析,取得频率散布表如下:X12 3 4 5fa0.20.45bc(I)假设所抽取的20件日用品中,品级系数为4的恰有3件,品级系数为5的恰有2件,求a,b,c 的值; (II)在(I )的条件下,将品级系数为4的3件日用品记为x 1,x 2,x 3,品级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被掏出的可能性相同),写出所有可能的结果,并求这两件日用品的品级系数恰好相等的概率.【思路点拨】(Ⅰ)由品级系数为4和5的件数可求得频率,b c 的值,再由频率和为1求得a 的值; (Ⅱ)此问属于求古典概型的概率问题,用列举法可求.【精讲精析】(Ⅰ)由频率散布表得0.20.451++++=a b c ,即0.35++=a b c , 因为抽取的20件日用品中,品级系数为4的恰有3件,因此30.15.20==b 品级系数为5的恰有2件,因此20.1.20==c从而0.350.1=--=a b c ,因此0.1,0.15,0.1.===a b c (II )从日用品12312,,,,x x x y y 中任取两件,所有可能情形为:12131112{,},{,},{,},{,}x x x x x y x y ,232122{,},{,},{,},x x x y x y 313212{,},{,},{,}x y x y y y .设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其品级系数相等”,那么A 包括的大体事件为12132312{,},{,},{,},{,}x x x x x x y y ,共4个.又大体事件的总数为10,故所求的概率4()0.4.10==P A 15.(2020·新课标全国高考文科·T19)某种产品的质量以其质量指标值衡量,质量指标值越大说明质量越好,且质量指标值大于或等于102的产品为优质产品,现用两种新配方(别离称为A 配方和B 配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,取得下面实验结果:A 配方的频数散布表指标值分组 [)90,94[)94,98[)98,102 [)102,106 []106,110频数82042228B 配方的频数散布表指标值分组 [)90,94[)94,98[)98,102 [)102,106 []106,110频数412423210(Ⅰ)别离估量用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为估量用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.【思路点拨】第(Ⅰ)问别离用A 配方、B 配方生产的产品中优质品的频率来估量概率,第(II )问,用B 配方生产的一件产品的利润大于0时即质量指标94t ≥时,求94t ≥时的频率作为概率,生产的100件产品中平均一件的利润为9494102102(2)24t t t <≤<≥-⨯+⨯+⨯频率频率频率. 【精讲精析】(Ⅰ)由实验结果知,用A 配方生产的产品中优质品的频率为100822+=,因此用A配方生产的产品中优质品率的估量值为.由实验结果知,用B 配方生产的产品中优质品的频率为1001032+=, 因此用B 配方生产的产品中优质品率的估量值为.(II )由条件知,用B 配方生产的一件产品的利润大于0的概率相当于频率t ≥94的概率,由实验结果知, t ≥94的频率为,因此用B 配方生产的一件产品的利润大于0的概率估量值为. 用B 配方生产的上述100件产品平均一件的利润为()[]4422542-41001⨯+⨯+⨯⨯=(元). 16.(2020·山东高考文科·T18)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (I )假设从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )假设从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【思路点拨】(I )此题考查古典概型,要将大体事件都列出,然后找出2名教师性别相同所含的大体事件的个数,由古典概型概率公式求得结果.(II )从报名的6名教师中任选2名,列出大体事件,然后找出2名教师来自同一学校所含的大体事件的个数,由古典概型概率公式求得结果.【精讲精析】(I) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2,乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女, 乙女1)、(甲女, 乙女2),共4种,因此选出的2名教师性别相同的概率为49. (II )从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、 (甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、 (乙女1, 乙女2),共15种;选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2,甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种, 因此选出的2名教师来自同一学校的概率为62155=. 17.(2020·湖南高考文科T18)某河流上的一座水力发电站,每一年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (Ⅰ)完成如下的频率散布表:近20年六月份降雨量频率散布表(II )假定今年六月份的降雨量与近20年六月份降雨量的散布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【思路点拨】此题考查频率散布表的明白得和求概率.兼顾考查了对概率,频率关系的明白得,频率反映概率,频率不是概率,概率是通过频率表现的.频率和概率最大的特性是和均为1.而第二问必需把发电量、降雨量和概率的关系联系起来.【精讲精析】(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率散布表为II ()P (“("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=”) 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.18.(2020·江西高考文科·T16)某饮料公司对一名员工进行测试以便确信其考评级别,公司预备了两种不同的饮料共5杯,其颜色完全相同,而且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料当选出3杯A 饮料.假设该员工3杯都选对,那么评为优秀;假设3杯选对2杯,那么评为良好;不然评为合格.假设这人对A 和B 两种饮料没有辨别能力.(1)求这人被评为优秀的概率; (2)求这人被评为良好及以上的概率.【思路点拨】第一将所有情形一一列举出来,共有10种情形,结合题意可得这人被评为优秀和被评为良好及以上的概率.【精讲精析】将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,那么从5杯饮料当选出3杯的所有可能情形为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种,令D 表示这人被评为优秀的事件,E 表示这人被评为良好的事件,F 表示这人被评为良好及以上的事件,那么(1)P(D)=110. (2)P(E)=35,P(F)=P(D)+P(E)=710.19.(2020·陕西高考文科·T20)如图,A 地到火车站共有两条途径1L 和2L ,现随机抽取100位从A 地抵达火车站的人进行调查,调查结果如下:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择1L 的人数 6 12 18 12 12 选择2L 的人数416164(Ⅰ)试估量40分钟内不能赶到火车站的概率;(Ⅱ)别离求通过途径1L 和2L 所历时刻落在上表中各时刻段内的频率;(Ⅲ)现甲、乙两人别离有40分钟和50分钟时刻用于赶往火车站,为了尽可能最大可能在许诺的时刻内赶到火车站,试通过计算说明,他们应如何选择各自的途径.【思路点拨】(Ⅰ)读懂数表,确信不能赶到火车站的人数所在的区间,用相应的频率作为所求概率的估量值;(Ⅱ)依照频率的计算公式计算;(Ⅲ)计算选择不同的途径,在许诺的时刻内赶往火车站的概率,通过比较概率的大小确信选择的最正确途径.【精讲精析】(Ⅰ)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,∴用频率估量相应的概率为.(Ⅱ)选择1L 的有60人,选择2L 的有40人, 故由调查结果得频率为:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择1L 选择2L(Ⅲ)用1A ,2A 别离表示甲选择1L 和2L 时,在40分钟内赶到火车站;用1B ,2B 别离表示乙选择1L 和2L 时,在50分钟内赶到火车站.由(Ⅱ)知P(A 1) =++=,P(A 2)=+=, P(A 1)> P(A 2),∴甲应选择途径1L ;P(B 1) =+++=,P (B 2)=++=,P (B 2)>P (B 1), ∴ 乙应选择途径2L .20.(2020·天津高考文科·T15)编号别离为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练竞赛中的得分记录如下: 运动员编号 1A2A3A4A5A6A7A8A得分 1535212825361834运动员编号 9A10A11A12A13A14A15A16A得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格: (Ⅱ)从得分在区间运动员中随20,30内的机抽取2人.(i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率. 【思路点拨】(Ⅰ)别离按区间范围列举出人数;(Ⅱ)用列举法、古典概率公式计算概率.【精讲精析】(Ⅰ)4,6,6.(Ⅱ)(i )得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种.因此51().153P B 21.(2020·北京高考文科·T16)以下茎叶图记录了甲、乙两组各四名同窗的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)若是X =8,求乙组同窗植树棵数的平均数和方差;(Ⅱ)若是X =9,别离从甲、乙两组中随机选取一名同窗,求这两名同窗的植树总棵数为19的概率. (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)【思路点拨】(Ⅰ)代入平均数、方差公式进行计算;(Ⅱ区间10,2020,3030,40人数甲组 乙组 9 9 0 X 8 9)先求出大体事件空间包括的大体事件总数,再求出所求事件包括的大体事件数,最后求概率.【精讲精析】(Ⅰ)当X=8时,由茎叶图可知,乙组同窗植树的棵数是8,8,9,10,因此平均数为889103544x +++==;方差为2222213535353511[(8)(8)(9)(10)]4444416s =-+-+-+-=.(Ⅱ)记甲组四名同窗为1234,,,A A A A ,他们植树的棵数依次为9,9,11,11;乙组四名同窗为1234,,,B B B B ,他们植树的棵数依次为9,8,9,10.别离从甲、乙两组中随机选取一名同窗,所有可能的结果有16个,它们是:1112131421222324(,),(,),(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B A B A B ,3132333441424344(,),(,),(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B A B A B .用C 表示:“选出的两名同窗的植树总棵数为19”这一事件,那么C 中的结果有4个,它们是14243242(,),(,),(,),(,)A B A B A B A B ,故所求概率为41()164P C ==.。

10.3 随机事件、古典概型与几何概型

10.3 随机事件、古典概型与几何概型

§10.3随机事件、古典概型与几何概型知识诠释思维发散一、事件1.必然事件:我们把在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称.2.不可能事件:我们把在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称.3.随机事件:我们把在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称.注:必然事件与不可能事件统统称为相对于条件的确定事件,要辩证地看待“在某条件S 下”.对随机事件概念的理解应包含以下三方面:①随机事件是指在一定条件下所出现的某种结果,随着条件的改变,结果也会不同;②随机事件可以重复地进行大量的试验,每次试验的结果不一定相同,且无法预测下一次结果,但随着试验的重复进行,结果呈现规律性;③必然事件和不可能事件是随机事件的两种特例.随机事件的发生有其随意性,它在一次试验中发生与否是随机的,但随机中又含有规律性,这种规律便是概率的体现.二、“频率”与“概率”概念1.频率:在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=为事件A出现的;2.概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的.三、古典概型1.古典概型概念我们把具有:①试验中所有可能出现的基本事件只有;②每个基本事件出现的可能性,两个特点的概率模型称为古典概率模型,简称为.2.古典概型的概率公式如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果某个事件A包含的结果有m个基本事件,那么事件A的概率P(A)=.四、几何概型1.定义:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为.2.特点:①:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;②:在这个随机试验中,每个试验结果出现的可能性相等,即基本事件发生是等可能的.3.几何概型的概率计算在几何概型中,事件A的概率的计算公式如下:P(A)=.1.设a是抛掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实数根的概率为()(A).(B).(C).(D).2.已知平面区域D={(x,y)|-1≤x≤1,-1≤y≤1},在区域D内任取一点,则取到的点位于直线y=kx(k∈R)下方的概率为.3.在一球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为()(A).(B).(C).(D).核心突围技能聚合题型1基本事件及事件的概率例1有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1个正四面体玩具出现的点数,y表示第2个正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.变式训练1盒中有3只灯泡,其中2只是正品,1只是次品.(1)从中取出1只,然后放回,再取1只,求连续2次取出的都是正品的概率;(2)从中一次任取出2只,求2只都是正品的概率.题型2古典概型的概率例2袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)取出的两球都是白球;(2)取出的两球1个是白球,另1个是红球.变式训练2把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,已知方程组解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.题型3几何概型的概率例3(1)如图,在一个长为π,宽为2的矩形OABC内,曲线y=sin x(0≤x≤π)与x 轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是()(A).(B).(C).(D).(2)有一段长为10米的木棍,现要截成两段,则每段不小于3米的概率是.变式训练3(1)如图,设T是直线x=-1,x=2与函数y=x+2的图象在x轴上方围成的直角梯形区域,S 是T内函数y=x2图象下方的点构成的区域(图中阴影部分).向T中随机投一点,则该点落入S 中的概率为()(A).(B).(C).(D).(2)某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,则乘客候车时间不超过6分钟的概率是.题型4古典概型与统计的综合应用例4某日用品按行业质量标准分成五个等级,等级系数X依次为1、2、3、4、5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5f a0.2 0.45 b c(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件.求a、b、c的值;(2)在(1)的条件下,将等级系数为4的3件记为x1、x2、x3,等级系数为5的2件记为y1、y2.现从这五件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.变式训练4以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.1.必然事件U的概率为1,记为P(U)=1;不可能事件V的概率为0,记为P(V)=0;而任意事件A的概率满足0≤P(A)≤1.2.随机事件A发生的频率为,其中频率中的m,n均随试验次数的变化而变化,但频率总是接近于事件A的概率.3.几何概型的计算关键是将基本事件总数和有关事件总数进行度量.度量值通常是长度、面积、体积等.4.古典概型与几何概型的相同点:古典概型与几何概型都具有等可能性的特征;不同点:古典概型要求可能结果的总数必须有限.例(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【学生解答】(1)P==.(2)m、n组成的数对的所有结果共有16个,满足n<m+2的结果有11个.∴P1=.【正确解答】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.[2分]从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.[4分]因此所求事件的概率为P==.[6分](2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[8分]又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.[10分]故满足条件n<m+2的事件的概率为1-P1=1-=.[12分]【点评】(1)根据题意,正确写出基本事件是解决本类问题的关键,在写基本事件时可以利用列表、画树状图等方法,以防遗漏.(2)本题解答时,存在格式不规范,思维不流畅的严重问题.如该生在解答时,缺少必要的文字说明,没有按要求列出基本事件.在第(2)问中,由于不能将事件n<m+2的概率转化成n≥m+2的概率,导致数据复杂、易错.所以按要求规范解答是做好此类题目的基本要求.参考答案§10.3随机事件、古典概型与几何概型知识梳理一、1.必然事件2.不可能事件3.随机事件二、1.频率2.概率三、1.①有限个②相等古典概型2.四、1.几何概型2.①无限性②等可能性3.基础自测1.A 2.3.D典例剖析例1(1)(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)(1,1),(2,2),(3,3),(4,4)变式训练1(1)(2)例2(1)(2)变式训练2(1)(2)例3(1)A(2)0.4变式训练3(1)B(2)例4(1)a=0.1,b=0.15,c=0.1(2)所有可能结果为{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2},概率为0.4变式训练4(1)平均数为,方差为(2)。

古典概型和几何概型的意义和主要区别

古典概型和几何概型的意义和主要区别

专题六作业:3.在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,是否更有利于从事相应的教学,举例说明;在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,更有利于从事相应的数学教学。

一、古典概型1、古典概型的意义如果随机试验E具有下列性质:(1)E的所有可能结果(基本事件),只有有限多个;(2)E的每一个可能结果(基本事件),发生的可能性大小相等;则称E为有限等可能型随机试验或等可能概型。

因为它是概率论发展初期的主要研究对象,所以它被称为古典概型.2.古典概型的两个基本特点(1)试验中所有可能出现的基本事件只有有限个,由试验产生随机数。

(2)每个基本事件出现的可能性相等.2、常见的三种古典概型基本模型(1) 摸球模型;同类型的问题还有1) 中彩问题;2) 抽签问题;3) 分组问题;4) 产品检验问题;5) 扑克牌花色问题;6) 英文单词、书、报及电话号码等排列问题.(2) 分房问题;同类型的问题还有:1) 电话号码问题2) 骰子问题3) 英文单词、书、报等排列问题.(3) 随机取数问题.同类型的问题还有:1) 球在杯中的分配问题(球→人,杯→房)2) 生日问题;(日→房,N=365天) ( 或月→房,N=12月)3) 旅客下站问题;( 站→房)4) 印刷错误问题;(印刷错误→人,页→房)5) 性别问题(性别→房,N=2)在老教材中的古典概型是强调用排列组合的公式计算事件个数,而新教材中的古典概型是强调利用枚举法,画树形图来排出所有的事件个数。

二、几何概型1 .几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。

用这种方法处理随机试验,称为几何概型.(这里的区域可以是线段、平面图形、立体图形等)2 .几何概型的基本特点:( 1 )基本事件的个数,有无限多个。

高考数学《概率,随机变量及分布列》复习

高考数学《概率,随机变量及分布列》复习
P( A) 这是通用的求条件概率的方法.
(2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n A , 再在事件 A 发生的条件下求事件 B 包含的基本事件数,即 n AB , 得 P B | A= n( AB) .
n( A)
1.从分别写有 1,2,3,4,5,6 的 6 张卡片中无放回随机抽取 2 张,则抽到的 2 张卡片上的
(3)在一次试验中,对立事件 A 和 A 不会同时发生,但一定有一个发生,因此有 P( A)= 1-P(A).
2.相互独立事件同时发生的概率
若 A,B 为相互独立事件,则 P AB=P(A)P(B).
3.独立重复试验 如果事件 A 在一次试验中发生的概率是 p,那么它在 n 次独立重复试验中恰好发生 k 次的概
解题技巧
2.间接法 当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解. 对于“至少”“至多”等问题往往也用这种方法求解. 3.注意点 注意辨别独立重复试验的基本特征: ①在每次试验中,试验结果只有发生与不发生两种情况; ②在每次试验中,事件发生的概率相同.
1.围棋盒子中有多粒黑子和多粒白子,已知从中取出 2 粒都是黑子的概率为 1 ,从中取出 2
.故选
C.
(二)核心知识整合
考点 2:互斥事件,对立事件及独立事件 1.互斥事件与对立事件 (1)对立事件是互斥事件,互斥事件未必是对立事件. (2)如果事件 A,B 互斥,那么事件 A B 发生(即 A,B 中有一个发生)的概率,等于事件 A,
B 分别发生的概率的和,即 P(A B)=P A+PB .这个公式称为互斥事件的概率加法公式.
其中恰有 1 件一等品的取法有 (1,4),(1,5),(2,4),(2,5),(3,4),(3,5) ,

高考分类题库考点48 随机事件的概率、古典概型、几何概型

高考分类题库考点48 随机事件的概率、古典概型、几何概型

点48 随机事件的概率、古典概型、几何概型一、选择题1. (2014·湖北高考文科·T5)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则 ( ) A.p 1<p 2<p 3 B.p 2<p 1<p 3 C.p 1<p 3<p 2D.p 3<p 1<p 2【解题提示】考查古典概型及其概率计算公式.首先列表,然后根据表格点数之和不超过5,点数之和大于5,点数之和为偶数情况,再根据概率公式求解即可. 【解析】选C.列表得:所以一共有36种等可能的结果,两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,所以向上的点数之和不超过5的概率p 1=1036=518,点数之和大于5的概率p 2=2636=1318,点数之和为偶数的概率记为p 3=1836 =12.2. (2014·湖北高考理科·T7)由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【解题提示】 首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解 【解析】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 3. (2014·湖南高考文科·T5)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率 为( )4.5A 3.5B 2.5C 1.5D 【解题提示】利用几何概型的知识解决.【解析】选B. 基本事件空间为区间[2,3]-它的度量是长度5,1X ≤的度量是3,所以所求概率为53。

2023年高考分类题库考点46 随机事件的概率、古典概型、几何概型

2023年高考分类题库考点46 随机事件的概率、古典概型、几何概型

考点46随机事件的概率、古典概型、几何概型4.(2023·全国甲卷·文科·T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16 B.13 C.12 D.23【解析】选D .依题意设高一年级的学生编号为1和2,高二年级的学生编号为3和4,则从这4名学生中随机选2名组织校文艺汇演情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况,符合情况的有(1,3),(1,4),(2,3),(2,4)这4种情况,故这2名学生来自不同年级的概率为46=23.9.(2023·全国乙卷·文科·T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .56B .23C .12D .13【解析】选A .将这6个主题分别编号为1~6号,建立如下表格:项目甲123456乙1×2×3×4×5×6×其中一共有36种情况,表格画“×”表示甲、乙两位参赛同学抽到相同主题的情况,有6种,那么甲、乙两位参赛同学抽到不同主题的情况就有36-6=30(种),所以甲、乙两位参赛同学抽到不同主题概率为3036=56.21.(2023·新高考Ⅰ卷·T21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量X i 服从两点分布,且P (X i =1)=1-P (X i =0)=q i ,i=1,2,…,n ,则E (∑ =1 X i )=∑i=1nq i .记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求E (Y ).【命题意图】本题综合考查了全概率的计算公式、两点分布及数学期望,考查了等比数列的通项及前n 项和.考查了学生综合运用所学知识解决问题的能力,考查了学生的逻辑推理及运算能力,培养了学生的数学抽象素养.【解析】(1)记“第i 次投篮的人是甲”为事件A i ,“第i 次投篮的人是乙”为事件B i ,所以P (B 2)=P (A 1B 2)+P (B 1B 2)=P (A 1)P (B 2|A 1)+P (B 1)P (B 2|B 1)=0.5×(1-0.6)+0.5×0.8=0.6.(2)设P (A i )=p i ,依题可知,P (B i )=1-p i ,则P (A i+1)=P (A i A i+1)+P (B i A i+1)=P(Ai)P(A i+1|A i)+P(B i)P(A i+1|B i),即p i+1=0.6p i+(1-0.8)×(1-p i)=0.4p i+0.2,构造等比数列{p i+λ},设p i+1+λ=25(p i+λ),解得λ=-13,则p i+1-13=25p i-13,又p1=12,p1-13=16,所以p i-13是首项为16,公比为25的等比数列,即p i-13=16×,p i=16×+13.(3)因为p i=16×+13,i=1,2,…,n,所以当n∈N*时,E(Y)=p1+p2+…+p n=16×251−25+ 3=5181+ 3,故E(Y)=5181+ 3.13.(2023·天津高考)甲、乙、丙三个盒子中装有一定数量的黑球和白球,其总数之比为5∶4∶6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为;将三个盒子混合后任取一个球,是白球的概率为.【解析】设盒子中共有球15n个,则甲盒子中有黑球2n个,白球3n个,乙盒子中有黑球n个,白球3n个,丙盒子中有黑球3n个,白球3n 个,从三个盒子中各取一个球,取到的三个球都是黑球的概率为2 5 × 4 ×3 6 =120;将三个盒子混合后任取一个球,是白球的概率为9 15 =35.答案:120356.(2023·全国甲卷·理科·T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为() A.0.8B.0.4C.0.2D.0.1【解析】选A.报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A,记“某人报兵乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)= ( ) ( )=4757=0.8.。

高中数学 考点44 随机事件的概率、古典概型、几何概型(含高考试题)新人教A版

高中数学 考点44 随机事件的概率、古典概型、几何概型(含高考试题)新人教A版

考点44 随机事件的概率、古典概型、几何概型一、 选择题1.(2017·山东高考理科·T8)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是 ( ) A. 518 B.49 C. 59 D.79【命题意图】本题考查古典概型概率及互斥事件的概率的求解,意在考查考生分析问题、解决问题的能力.【解析】选C.奇偶性不同可能先抽到奇数牌再抽到偶数牌,或者先抽到偶数牌再抽到奇数牌,由于二者为互斥事件,故所求的概率为P=54459898⨯⨯+⨯⨯=59. 2.(2017·全国乙卷理科·T2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 ()A.14B.8πC.12D.4π 【命题意图】以传统文化为载体,考查几何概型的计算问题.【解题指南】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算P(A).【解析】选B.设正方形边长为2,则圆半径为1,则正方形的面积为2×2=4,圆的面积为π×12=π,图中黑色部分的面积为2π,则此点取自黑色部分的概率为24π=8π.二、 简答题1.(2017·全国丙卷·文科·T18)(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【解析】(1)需求量不超过300瓶,即最高气温不高于25℃,从表中可知有54天,所以所求概率为P=5490=35.低于20℃:Y=200×6+250×2-450×4=-100;[20,25):Y=300×6+150×2-450×4=300;不低于25℃:y=450×(6-4)=900,所以Y 大于0的概率为P=3690+2590+790+490=45.2.(2017·江苏高考·T7)记函数 D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 .【命题意图】考查几何概型概率的求法.【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x ≤3,根据几何概型的概率计算公式得x ∈D 的概率是()()3254----=59. 答案:59 【反思总结】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.3.(2017·山东高考文科·T16)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率.(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.【命题意图】本题考查古典概型概率的求解,意在考查考生的分析问题、解决问题的能力.【解析】(1)从A 1,A 2,A 3,B 1,B 2,B 3,6个国家中任选2个国家,有以下结果:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3),共有15种.记“所选的两个国家都是亚洲国家”为事件M,则事件M包含3种结果:(A1,A2),(A1,A3),(A2,A3),所以P(M)=315=15.(2)从亚洲国家和欧洲国家中各任选1个,有以下结果:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),共有9种,记“这两个国家包括A1但不包括B1”为事件N,则事件N包含2种结果:(A1,B2),(A1,B3),所以P(N)= 29.4.(2017·天津高考文科·T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.15【命题意图】考查古典概率模型.要求考生能够找出基本事件总数,利用古典概型概率公式求解.【解析】选C.从5支彩笔中任取2支不同颜色的彩笔有(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)共10种取法,取出的2支彩笔中含有红色彩笔的有(红,黄),(红,蓝),(红,绿),(红,紫)共4种取法.因此所求概率为410=25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

考点47 随机事件的概率、古典概型、几何概型一、选择题1.(2011·广东高考理科·T6)甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) (A )12 (B )35 (C )23 (D )34【思路点拨】本题利用独立重复试验及对立事件的概率公式可求解.【精讲精析】选 D.由题意知,乙队胜的概率为412121=⨯,由对立事件概率公式得,甲队获胜的概率为43411=-=P .故选D.2.(2011·安徽高考文科·T9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) (A )110(B )18 (C )16 (D )15【思路点拨】基本事件总数是46C =15,观察可得构成3个矩形.【精讲精析】选D. 基本事件总数是46C =15,观察可得构成3个矩形.所以是矩形的概率为.51153= 3.(2011·福建卷理科·T4)与(2011·福建卷文科·T7)相同如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) (A)14 (B)13 (C)12 (D)23【思路点拨】本题属几何概型问题,所求概率转化为△ABE 与矩形ABCD 的面积之比.【精讲精析】选C. 由题意知,112.2∆⋅=⋅ABE ABCD AB BCS P S AB BC 矩形== 4.(2011·新课标全国高考理科·T4)与(2011·新课标全国高考文科·T6)相同有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34【思路点拨】甲、乙两位同学可以同时参加3个兴趣小组中的1个,参加每个小组的可能性均为13,可以利用排列组合和独立事件的概率求法来计算所求概率.【精讲精析】选A. 先从3个兴趣小组中选1个,有133C =种方法;甲、乙两位同学都参加这个兴趣小组的概率为111.339⨯=故这两位同学参加同一个兴趣小组的概率为12311().33C = 5.(2011·辽宁高考理科·T5)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B ︱A)=( ) (A)18 (B)14 (C)25 (D)12【思路点拨】本题主要考查条件概率及其运算.【精讲精析】选B .从1,2,3,4,5中任取2个不同的数,共有10个基本事件:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).事件A 发生共有4个基本事件:(1,3),(1,5),(3,5),(2,4).事件B 发生共有1个基本事件:(2,4).事件A ,B 同时发生也只有1个基本事件:(2,4).根据条件概率公式得,()1(|)()4==P AB P B A P A . 6.(2011·陕西高考理科·T10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) (A )136 (B )19 (C )536(D )16【思路点拨】本题抓住主要条件,去掉次要条件(例如参观时间)可以简化解题思路,然后把问题简化为两人所选的游览景点路线的排列问题.【精讲精析】选D.甲乙两人各自独立任选4个景点的情形共有4466A A ⋅(种);最后一小时他们同在一个景点的情形有33556A A ⋅⨯(种),所以33554466616A A P A A ⋅⨯==⋅. 7.(2011·浙江高考理科·T9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地抽取并排摆放在图书架的同一层上,则同一科目的书都不相邻的概率是( ) (A )15 (B )25 (C )35 (D )45【思路点拨】古典概型基本问题,可从反面来考虑.【精讲精析】选B.基本事件总数为55120A =,同一科目中有相邻情况的有4242322424232272A A A A A A A +-=个,故同一科目都不相邻的概率是1207221205-=.8.(2011·浙江高考文科·T8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) (A )110 (B )310 (C )35 (D )910【思路点拨】古典概型问题.【精讲精析】选D.从装有3个红球、2个白球的袋中任取3个球共有3510C =个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1911010-=.二、填空题9.(2011·江西高考理科·T12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 .【思路点拨】根据条件先求出小波周末去看电影的概率,再求出他去打篮球的概率,易得周末不在家看书的概率.【精讲精析】记“看电影”为事件A ,“打篮球”为事件B ,“不在家看书”为事件C.2211()()131241144116311341616π⋅π⋅=-=π⋅π⋅∴+=+=.P(A)=1-=,P(B)=,P(C)=P(A)P(B)【答案】3161 10.(2011·湖南高考理科·T15)如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P(A)=______;(2)P (B|A )=______. 【思路点拨】本题主要考查面积型几何概型.【精讲精析】关键是计算出正方形的面积和扇形的面积.【答案】214π 11.(2011·湖南高考文科·T15)已知圆C :,y x 1222=+直线l :4x+3y=25. (1)圆C 的圆心到直线l 的距离为_________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. 【思路点拨】本题考查点到直线的距离公式和几何概型.【精讲精析】(1)1222=+y x 的圆心(0,0)到直线4x+3y=25的距离为:d=534|250304|22=+-⨯+⨯.(2)作一条与4x+3y=25平行而且与4x+3y=25的距离为2的直线交圆于A ,B 两点,则,A C B ,AB CB CA 6032||,32||||=∠∴===6136060==∴概率. 【答案】(1)5 (2)1612.(2011·福建卷理科·T13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【思路点拨】分别求出5从个球中任取2个球的方法数和从中取一红球一黄球(颜色不同)的方法数,所求概率为两者之比.【精讲精析】由题意知,从5个球中随机取出2个球共有2510C =种不同取法,而取出的球颜色不同共有11326C C =种不同取法,故所取出的2个球颜色不同的概率为11322563.105===C C P C 【答案】3513.(2011·江苏高考·T5)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个的两倍的概率是______.【思路点拨】本题考查的是古典概型的概率计算,解题的关键是找出总的基本事件个数和其中一个数是另一个的两倍所包含的事件个数.【精讲精析】从1,2,3,4这四个数中一次随机取两个数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6个基本事件,其中一个数是另一个的两倍的有(1,2),(2,4)两个基本事件,所以其中一个数是另一个的两倍的概率是2163=.【答案】13三、解答题14.(2011·福建卷文科·T19)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(I)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c 的值; (II)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.【思路点拨】(Ⅰ)由等级系数为4和5的件数可求得频率,b c 的值,再由频率和为1求得a 的值; (Ⅱ)此问属于求古典概型的概率问题,用列举法可求.【精讲精析】(Ⅰ)由频率分布表得0.20.451++++=a b c ,即0.35++=a b c , 因为抽取的20件日用品中,等级系数为4的恰有3件,所以30.15.20==b 等级系数为5的恰有2件,所以20.1.20==c 从而0.350.1=--=a b c ,所以0.1,0.15,0.1.===a b c (II )从日用品12312,,,,x x x y y 中任取两件,所有可能情况为:12131112{,},{,},{,},{,}x x x x x y x y ,232122{,},{,},{,},x x x y x y 313212{,},{,},{,}x y x y y y .设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”,则A 包含的基本事件为12132312{,},{,},{,},{,}x x x x x x y y ,共4个.又基本事件的总数为10,故所求的概率4()0.4.10==P A 15.(2011·新课标全国高考文科·T19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质产品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为2,2,494,94102,102.,t t t y <≤<-=⎨⎪≥⎧⎪⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 【思路点拨】第(Ⅰ)问分别用A 配方、B 配方生产的产品中优质品的频率来估计概率,第(II )问,用B 配方生产的一件产品的利润大于0时即质量指标94t ≥时,求94t ≥时的频率作为概率,生产的100件产品中平均一件的利润为9494102102(2)24t t t <≤<≥-⨯+⨯+⨯频率频率频率. 【精讲精析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为100822+=0.3,所以用A 配方生产的产品中优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为1001032+=0.42, 所以用B 配方生产的产品中优质品率的估计值为0.42.(II )由条件知,用B 配方生产的一件产品的利润大于0的概率相当于频率t ≥94的概率,由试验结果知, t ≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的上述100件产品平均一件的利润为()[]4422542-41001⨯+⨯+⨯⨯=2.68(元). 16.(2011·山东高考文科·T18)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 【思路点拨】(I )本题考查古典概型,要将基本事件都列出,然后找出2名教师性别相同所含的基本事件的个数,由古典概型概率公式求得结果.(II )从报名的6名教师中任选2名,列出基本事件,然后找出2名教师来自同一学校所含的基本事件的个数,由古典概型概率公式求得结果.【精讲精析】(I) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2,乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女, 乙女1)、(甲女, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(II)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1,乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62 155.17.(2011·湖南高考文科T18)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(Ⅰ)完成如下的频率分布表:近20年六月份降雨量频率分布表(II)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【思路点拨】本题考查频率分布表的理解和求概率.兼顾考查了对概率,频率关系的理解,频率反映概率,频率不是概率,概率是通过频率体现的.频率和概率最大的特性是和均为1.而第二问必须把发电量、降雨量和概率的关系联系起来.【精讲精析】(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为II ()P (“("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=”)故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310. 18.(2011·江西高考文科·T16)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【思路点拨】首先将所有情况一一列举出来,共有10种情况,结合题意可得此人被评为优秀和被评为良好及以上的概率.【精讲精析】将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P(D)=110. (2)P(E)=35,P(F)=P(D)+P(E)=710.19.(2011·陕西高考文科·T20)如图,A 地到火车站共有两条路径1L 和2L ,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:(Ⅰ)试估计40分钟内不能赶到火车站的概率;(Ⅱ)分别求通过路径1L 和2L 所用时间落在上表中各时间段内的频率;(Ⅲ)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.【思路点拨】(Ⅰ)读懂数表,确定不能赶到火车站的人数所在的区间,用相应的频率作为所求概率的估计值;(Ⅱ)根据频率的计算公式计算;(Ⅲ)计算选择不同的路径,在允许的时间内赶往火车站的概率,通过比较概率的大小确定选择的最佳路径.【精讲精析】(Ⅰ)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,∴用频率估计相应的概率为0.44.(Ⅱ)选择1L 的有60人,选择2L 的有40人, 故由调查结果得频率为:(Ⅲ)用1A ,2A 分别表示甲选择1L 和2L 时,在40分钟内赶到火车站;用1B ,2B 分别表示乙选择1L 和2L 时,在50分钟内赶到火车站.由(Ⅱ)知P(A 1) =0.1+0.2+0.3=0.6,P(A 2)=0.1+0.4=0.5, P(A 1)> P(A 2),∴甲应选择路径1L ;P(B 1) =0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), ∴ 乙应选择路径2L .20.(2011·天津高考文科·T15)编号分别为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:分(Ⅰ)将得分在对应区间内的人数填入相应的空格:(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人. (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率. 【思路点拨】(Ⅰ)分别按区间范围列举出人数;(Ⅱ)用列举法、古典概率公式计算概率.【精讲精析】(Ⅰ)4,6,6.(Ⅱ)(i )得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种.所以51().153P B == 21.(2011·北京高考文科·T16)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果X =8,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,,n x x x 的平均数) 【思路点拨】(Ⅰ)代入平均数、方差公式进行计算;(Ⅱ)先求出基本事件空间包含的基本事件总数,再求出所求事件包含的基本事件数,最后求概率.【精讲精析】(Ⅰ)当X=8时,由茎叶图可知,乙组同学植树的棵数是8,8,9,10,所以平均数为889103544x +++==;甲组 乙组9 9 0 X 8 9 1 1 1 0- 11 - 方差为2222213535353511[(8)(8)(9)(10)]4444416s =-+-+-+-=. (Ⅱ)记甲组四名同学为1234,,,A A A A ,他们植树的棵数依次为9,9,11,11;乙组四名同学为1234,,,B B B B ,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:1112131421222324(,),(,),(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B A B A B ,3132333441424344(,),(,),(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B A B A B .用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是14243242(,),(,),(,),(,)A B A B A B A B ,故所求概率为41()164P C ==. 关闭Word 文档返回原板块。

相关文档
最新文档