人教版云南省2015-2016学年度上学期九年级数学期末复习题

合集下载

2015~2016学年第一学期期末考试卷九年级数学试题附答案

2015~2016学年第一学期期末考试卷九年级数学试题附答案

2015〜2016学年第一学期期末考试卷九年级数学试题2016.1题号一二三总分1920212223242526得分注意事项:1 .本卷考试时间为100分钟,满分100分.2 .卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.得分|评卷人一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个 选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1 .下列方程是一元二次方程的是()A.x 2—6x+2B.2x 2-y+1=0C.5x 2=02 .抛物线y=2x 2如何平移可得到抛物线y=2(x —3)2—4()A.向左平移3个单位,再向上平移4个单位;B.向左平移3个单位,再向下平移4个单位;C.向右平移3个单位,再向上平移4个单位;D.向右平移3个单位,再向下平移4个单位3,用一个半径为30cm,面积为300n cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.5cmB.10cmC.20cmD.5cm4 .如果一组数据X I ,x 2,,,x n 的方差是5,则另一组数据X I +5,x 2+5,,,x n +5的方差是()B.10C.15D.205 .有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③的距离相等;④平分弦的直径垂直于弦.其中正确的有,,,,,,( A.1个B.2个C.3个D.4个6 .如图,直线CD 与线段AB 为直径的圆相切于点D,并交BA 的延长线于点C,且AB=6,AD=3,P 点在切线CD 上移动.当/APB 的度数最大时,则/ABP 的度数为,,,,,,,,,,,()D.4+x=2xA.90°B,60°C.45°D,30°7.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是()A.k>-1B .k>-1C.kw08.在同一坐标系中,一次函数y=-mx+n 2与二次函数y=x 2+m 的图象可能是()B.工3二D.2点+工2AC 与。

2015-2016学年度第一学期九年级数学期末考试卷(定稿)

2015-2016学年度第一学期九年级数学期末考试卷(定稿)

2015-2016学年第一学期期末考试九年级数学试题(满分150分 考试时间120分钟)一、选择题(本题共有10小题,每小题4分,满分40分)1.下列函数是二次函数的是【 ▲ 】.A .13+=x yB .c bx ax y ++=2C .32+=x y D .22)1(x xy --= 2. 若反比例函数xk y 12+=的图象位于第一、三象限,则k 的取值可以是【 ▲ 】. A .-3 B .-2 C .-1 D .0 3.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是【 ▲ 】.A.平行四边形 B .矩形 C .正方形 D .菱形4.已知二次函数c x x y ++=2的图象与x 轴的一个交点为(2,0),则它与x 轴的另一个交点坐标是 【 ▲ 】.A .(1,0)B .(﹣1,0) C.(2,0) D .(﹣3,0) 5.已知Rt △ABC 中,∠C =90°,AB =tan A =12,则BC 的长是【 ▲ 】. A .2 B .8 C .2 D .46.抛物线22221,3,,23y x y x y x y x ==-=-=的图象开口最大的是【 ▲ 】. A. 231x y =B. 23x y -=C. 2x y -=D.22y x = 7.b 是c a ,的比例中项,且b a :=1:3,则c b :=【 ▲ 】.A .1:3B .3:1C .1:9D .9:18. 如图,⊙O 的直径AB =2,点C 在⊙O 上,弦AC =1,则∠D 的度数是【 ▲ 】. A .30° B .45° C .60° D .75° 9.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则BP AP +的最小值为【 ▲ 】.学校 班级 姓名 考号密 封 线 内 不 要 答 题A.1B.2 C.3 D.2210.已知函数{222(2)-68(2)x x x x x x y -≤+->=,若使y =【 ▲ 】.A .-1B .1二、填空题(本题共4小题,每小题5分,满分20分) 11. 抛物线5)1(22+-=x y 的顶点坐标是 ___ ____. 12.已知43=-b b a ,则=ba___ ____. 13.一只小虫由地面沿2:1=i 的坡面向上前进了10m ,则小虫距离地面的高度为_ ____m . 14.已知抛物线2221+-=x y 和直线222+=x y 的图象如图所示,当x 任取一值时,x 对应的函数值分别为21,y y .若21y y ≠,取21,y y 中的较小值记为M ;若21y y =,记21y y M ==,例如:当x =1时,1y =0,2y =4,12y y <,此时M =0.则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上.) ①当0x >时,12y y >;②使得M 大于2的x 值不存在; ③当0x <时,x 值越大,M 值越小; ④使得M =1的x 值是-12或2.第8题图第14题图三、(本题共两小题,每题8分,满分16分) 15.计算:6tan 230°-3sin60°-sin30°16. 如图,在ABC ∆中,90C∠= ,在AB 边上取一点D ,使B D B C =,过D 作DE AB⊥交AC 于E ,8AC =,6BC =.求DE 的长.四、(本题共两小题,每小题8分,满分16分)17.如图,二次函数m x y +-=2)2(的图象与y 轴交于点C ,点B 是点C 关于该函数图象对称轴对称的点,已知一次函数b kx y +=的图象经过该二次函数图象上的点1A (,0)及点B .(1)求二次函数的解析式; (2)求一次函数的解析式.第16题图第17题图18.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为-1A (,2),B (-3,4), -2C (,6).(1)画出ABC ∆绕点A 顺时针旋转90 后得到的111A B C ∆;(2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆.五、(本题共两小题,每小题10分,满分20分)ABC第19题图20.如图所示,在合肥至黄山的高铁线路建设中需要确定某条隧道AB 的长度,已知在离地面2700米高度C 处的飞机上,测量人员测得正前方B A ,两点处的俯角分别是60 和30 ,求隧道AB 的长.(结果保留根号)六、(本题满分12分)七、(本题满分12分)第20题图(2)当CPQ ∆与ABC ∆第二次相似时,求点P 总共运动了多少秒.八、(本题满分14分)23.某水果经销商到大圩种植基地采购某种水果,经销商一次性采购某种水果的单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB →BC →CD 所示(不包括端点A ).(1)当100<x <200时,写出y 与x 之间的函数关系式;(2)该水果的种植成本为2元/千克,某经销商一次性采购该水果的量不超过200千克,当采购量是多少时,大圩种植基地获利最大,最大利润w 是多少?(3)在(2)的条件下,求经销商一次性采购的水果是多少千克时,大圩种植基地能获得418元的利润?第23题图第22题图。

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x-1)²-2的顶点坐标是(。

)。

A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2.判断一元二次方程x²-2x+1=0的根的情况是(。

)。

A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x²-4x-3=0,下列配方结果正确的是(。

)。

A.(x-4)²=19B.(x-2)²=7C.(x+2)²=7D.(x+4)²=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是(。

)。

A.100(1+x)=121B.100(1-x)=121C.100(1-x)²=121D.100(1+x)²=1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是(。

)。

A。

B。

C。

D.6.已知:点A(x₁,y₁)、B(x₂,y₂)、C(x₃,y₃)是函数y=-3x图象上的三点,且x₁<x₂<x₃,则y₁、y₂、y₃的大小关系是(。

)。

A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₃<y₁D.无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。

从而估计该地区有黄羊(。

)。

A.200只B.400只C.800只D.1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(。

)。

A。

3π/4 B。

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。

2015-2016学年人教版九年级数学初三数学期末复习题及答案

2015-2016学年人教版九年级数学初三数学期末复习题及答案

A.105 3
B.5+5
3
C.155 3
D.1510
3
5. ( 2014·四川南充中考)如图, PA和 PB是⊙ O的切线,点 A 和 B 是切点, AC是⊙ O 的直径,已知∠ P=40°,则∠ ACB的大小是( )
A.40 °
B.60
°
C.70
°
D.80
°
6. 计算 6tan 45 2cos 60 的结果是 ( )
则拉线的
15. 如图, AB是⊙ O的直径,点 C在 AB的延长线上, CD切⊙ O于点 D,连结 AD,若∠ A =25°,则∠ C =__________度 .
16. 如图,直线 l 与半径为 4 的⊙ O相切于点 A, P 是⊙ O上的一个动点(不与点 A 重
合),过点 P 作 PB⊥ l ,垂足为 B,连结 PA.设 PA= x, PB= y,则( x- y)的最大
(参考数据: sin 58 °≈ 0.85,cos 58 °≈ 0.53,tan 58 °≈ 1.60 )
第 23 题图
第 24 题图
24. (8 分 ) 某电视塔和楼的水平距离为 100 m,从楼顶处及楼底处测得塔顶的仰角分别
为 45°和 60°,试求楼高和电视塔高 ( 结果精确到 0.1 m).
值是

17. 如图所示, PA , PB 切⊙ O于 A , B 两点,若 ∠ APB 60 ,⊙ O的半径为 3,
则阴影部分的面积为 _______.
18. ( 2015·上海中考)已知在△ ABC中, AB= AC= 8,∠ BAC=30°.将△ ABC绕点 A 旋转,使点 B 落在原△ ABC的点 C处,此时点 C落在点 D处.延长线段 AD,交原△ ABC的边 BC的延长线于点 E,那么线段 DE的长等于 ___________.

2015--2016年九年级数学(上)期末复习测试题及答案

2015--2016年九年级数学(上)期末复习测试题及答案

2015--2016年九年级数学(上)期末复习测试题班级_________ 姓名 _____________ 得分____________一、选择题(本大题共10题,每题3分,共30分) 1.下面4个算式中,正确的是( )A .8÷2=2B .23+32=56C .2(6)-= -6D .53×56=56 2.函数132x --中自变量x 的取值范围是( )A .3≥xB .3≥x 且x ≠7C .2≠xD .x >3 3.两圆直径分别为4和6,圆心距为2,则两圆位置关系为( ) A.外离 B.相交 C.外切 D.内切4.如图AB 、AC 是O ⊙的两条弦,A ∠=30°,过点C 的切线与OB 的延长线交于点D ,则D ∠的度数为( B ).A .150B .300C .400D . 6005.一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是( ) A .80πcm 2B . 40πcm 2C . 80 cm 2D . 40 cm 26.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( A ) A .π2 B .2π C .π21D .π27.如图,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( C ). A .10 B .15 C .20 D .248.设⊙O 的半径为2,圆心O 到直线l 的距离OP =m ,且m 使得关于x 的方程012222=-+-m x x 有实数根,则直线l 与⊙O 的位置关系为( )A .相离或相切B .相切或相交C .相离或相交D .无法确定9.已知⊙O1与⊙O2外切于点A ,⊙O1的半径R =2,⊙O2的半径r =1,则与⊙O1、⊙O2相切,且半径为4的圆有( )A .2个 B .4个 C .5个 D .6个 10.如下图,实线部分是半径为9m 的两条等弧组成的花圃,若每条弧所 在的圆都经过另一个圆的圆心,则花圃的周长为( B )A .12m πB .24m πC .18m πD .20m π二、填空题(本大题共8题,每题4分,共32分)11.方程240x x -=的解为___________ .12.如右图,△ABC 内接于圆,D 为弧BC 的中点,∠BAC=50°,则∠DBC 是______ 度.13.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x ,根据题意列出的方程是____________________. 14.如图有三个同心圆,由里向外的半径依次是2cm ,4cm , 6cm 将圆盘 分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的 概率是 。

2015-2016学年度第一学期期末考试九年级数学试题

2015-2016学年度第一学期期末考试九年级数学试题

2015-2016学年度第一学期期末考试九年级数学试卷一、选择题(每小题3分,共30分1.下列图案中,既是中心对称又是轴对称图形的个数有()A .1个B.2个C.3个D.4个2.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B. C.D.3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3D.44、将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为A、y=(x-1)2+4B、y=(x-4)2+4C、y=(x+2)2+D、y=(x-4)2+6 5.△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.如图,若的长为12cm,那么的长是A.10cm B.9cm C.8cm D.6cm第3题AB C第6题图6,如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( ) A .B .C .D .7,已知方程20ax bx c ++=根为1x =-1、2x =3,则二次函数2y ax bx c =++与坐标轴的交点个数( )A .0B .1C .2D . 38.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( )A B C D9,如图,以AD 为直径的半圆O 经过Rt ⊿ABC 的斜边AB 的两个端点,交直角边AC 于点E 。

B 、E 是半圆弧的三等分点,弧BE 的长为32π,则图中阴影部分的面积为( ) A 、9π B 、93π C 、2333π- D 、2233π- 10、二次函数y =-x 2+bx +c 的图象如图所示,若点A (x 1 ,y 1)、B (x 2 ,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( ) A 、y 1 ≤y 2 B 、、y 1 <y 2 C 、、y 1 ≥y 2 D 、、y 1 >y 2第11题二、填空题(每题3分,共18分)11,如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为__________m 。

2015-2016年上学期九年级数学期末复习题及答案

2015-2016年上学期九年级数学期末复习题及答案

二、填空: 13、地球与太阳之间的距离约为 149 600 000 千米,用科学记数法表示(保留 2 个有效数字)约为_______ 千米。 14.计算: 3 3(1 3) = .
15、不等式-3x+1>4 的解集是__________ 16、若二次根式 2 x 1 有意义,则 x 的取值范围是____________ 17.圆锥的底面半径为 4cm,母线长为 12cm,则该圆锥的侧面积为
0
3 2
D. 13
O
1 2
A E
F C
第 7 题图 6 题图
B
7、如图,四边形 OABC 为菱形,点 B、C 在以点 O 为圆心的 EF 上, 若 OA=1,∠1=∠2,则扇形 OEF 的面积为( A. ) D.
2

π 6
B.
2
π 4
C.
π 3ቤተ መጻሕፍቲ ባይዱ
2 π 3

8、 若二次函数 y x bx 5 配方后为 y ( x 2) k 则 b 、 k 的值分别为( A.0、5 B.0、1
A
E
D
B
F
C
21、如图,将矩形纸片 ABCD 折叠, 使点 D 与点 B 重合,点 C 落在点 C 处,折痕为 EF , 若 ABE 20° ,那么 EFC 的度数为 度.
22、如图 6 所示,某班上体育课,甲、乙两名同学分别站在 C、D 的位置时,乙的影子恰好在甲的影子里 边,已知甲身高 1.8 米,乙身高 1.5 米,甲的影长是 6 米,则甲、乙同学相距________米。 B E
37、如图,在矩形 ABCD 中,E 为 BC 上一点, DF AE 于点 F。 (1)求证: ABE ~ DFA (2)若 AB 6 , AD 12 , BE 8 ,求 DF 的长。

2015-2016学年第一学期九年级数学人教期末试题

2015-2016学年第一学期九年级数学人教期末试题

ABC OPD一、选择题(每小题4分,共40分)1.下面四个事件:①在地球上观看,太阳升于西方,而落于东方;②明天是晴天;③下午刮6级阵风;④地球不停地转动。

其中是随机事件的是()A.①②B.②③C.③④D.①④2.若点(m +1,m 2)在函数y =x 2+2x 的图像上,则m 的值为()A.12B.14C.34D.-343.如图所示,在△ABC 中,∠B =90°,∠C =30°,AB =1,将△ABC 绕顶点A 旋转180°,点C 落在C ′处,则CC ′的长为()A.42√B.4C.43√D.25√4.如图所示,AB 为⊙O 的直径,PD 切⊙O 于点C,交AB 的延长线于点D,且CO =CD,则∠PCA =()A.30°B.45°C.60°D.67.5°5.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A.16B.14C.13D.126.某商品经过两次降价,零售价降为原来的12,已知两次降价的百分率均为x ,则列出方程正确的是()A.(1+x )2=12 B.(1-x )2=12C.(1+x )2=2D.(1-x )2=27.若⊙O 的半径为5cm,点A 到圆心O 的距离为4cm,那么点A 与⊙O 的位置关系是()A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定8.已知点P 1(a -1,1)和P 2(2,b -1)关于原点对称,则(a +b )2016的值为()A.1B.0C.-1D.(-3)20169.在一个不透明的袋子里装有若干个红球和黄球,这些球除颜色外完全相同。

从中任意摸出一个球,记下颜色后放回,搅匀后再重新摸球,则下列说法中正确的是()A.摸到黄球的频数越大,摸到黄球的频率越大B.摸到黄球的频数越大,摸到黄球的频率越小C.重复多次摸球后,摸到黄球的频数逐渐稳定D.重复多次摸球后,摸到黄球的频率逐渐稳定10.一条公路弯道处是一段圆弧(图中的弧AB ),点O 是这条弧所在圆的圆心,点C 是AB 的中点,半径OC 与AB 相交于点D,AB =120m,CD =20m,这段弯道的半径是()A.200mB.2003√mC.100mD.1003√m二、填空题(每小题4分,共24分)11.某制药厂随着生产技术的提高,经过两年的改革,现在生产一吨的某药品的成本下降了19%,则这种药品的成本年平均下降率为_______。

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。

2015-2016年九年级数学第一学期期末测试(带详解答案)

2015-2016年九年级数学第一学期期末测试(带详解答案)

2015-2016学年度第一学期期末试卷九年级数学一.选择题(共8小题)1.在平面直角坐标系中,将抛物线y=x2﹣2先向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式是A.y=(x+2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+1 D.y=(x+2)2﹣12.若反比例函数y=(2k﹣1)的图象位于第二、四象限,则k的值是()A.0 B.0或1 C.0或2 D.43.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个4.已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y35.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D. a(5)(6)(7)(8)6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4 C.4D.87.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°8.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cm B.4πcm C.D.二.填空题(共6小题)9.下列函数中:①y=﹣x2;②y=2x;③y=22+x2﹣x3;④m=3﹣t﹣t2是二次函数的是(其中x、t为自变量).10.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.11.已知三角形两边的长为3和4,若第三边长是方程x 2﹣6x +5=0的一根,则这个三角形的形状为 ,面积为 .12.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,0),C (6,4)以原点为位似中心,将△ABC 缩小,位似比为1:2,则线段AC 中点P 变换后对应点的坐标为 .(12)(13)(14)13.如图,已知抛物线y=x 2+bx +c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是 .14.如图所示,已知二次函数y=ax 2+bx +c 的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+= . 三.解答题(共10小题)15.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不能,请说明理由.16.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=﹣1,当x=3时,y=5,求y 与x 之间的函数关系式.17.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式.18.已知:如图,以△ABC 的边AB 为直径的⊙O 交边AC 于点D ,且过点D的切线DE 平分边BC .(1)BC 与⊙O 是否相切?请说明理由;(2)当△ABC 满足什么条件时,以点O ,B ,E ,D 为顶点的四边形是平行四边形?并说明理由.19.已知:如图,D 是AC 上一点,BE ∥AC ,BE=AD ,AE 分别交BD 、BC 于点F 、G ,∠1=∠2.(1)图中哪个三角形与△FAD 全等?证明你的结论;(2)探索线段BF 、FG 、EF 之间的关系,并说明理由.(3)求证:FD 2=FG•FE .20.甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.21.如图,已知双曲线y 1=经过点D (6,1),点C 是双曲线第三象限分支上的动点,过点C 作CA ⊥x 轴,过点D 作BD ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,①若直线CD 的解析式为y 2=ax +b ,求a 、b 的值;②根据图象,直接写出y 1>y 2时x 的取值范围;③判断直线AB 与CD 的位置关系,并说明理由.22.如图1,l 1∥l 2∥l 3直线AB 和CH 交于O 点,分别交l 2于D ,E 两点,已知CE=6,HE=3,AB=12.(1)尝试探究在图1中,求出DB 和AD 的长;(2)类比延伸:平移AB使得A与H重合,如图2所示,过点D作DF∥AC,若DE=5,求线段BF的长;(3)拓展迁移:如图3,若某个三角形ABC的面积是10,点D,E分别位于AB,CA上,DE∥BC,点F在BC上且BF=2,CF=3,如果△CBE的面积和四边形FCED的面积相等,求这个相等的面积值.23.如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.2015-2016学年度第一学期期末试卷九年级数学参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,将抛物线y=x2﹣2先向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式是()A.y=(x+2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+1 D.y=(x+2)2﹣1【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),根据点平移的规律,点(0,﹣2)向右平移2个单位,再向上平移3个单位得到对应点的坐标为(2,1),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向右平移2个单位,再向上平移3个单位得到对应点的坐标为(2,1),所以平移后的抛物线的解析式为y=(x﹣2)2+1.故选C.2.若反比例函数y=(2k﹣1)的图象位于第二、四象限,则k的值是()A.0 B.0或1 C.0或2 D.4【分析】先根据反比例函数的定义列出方程求出k的可能取值,再根据图象经过的象限决定常数的取值范围,进而得出k的值.【解答】解:依题意有3k2﹣2k﹣1=﹣1,解得k=0或k=,又因为函数图象位于第二、四象限,所以2k﹣1<0,即k<,而,所以k的值是0.故选A.3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个【分析】两条边长分别是6和8的直角三角形有两种可能,即已知边均为直角边或者8为斜边,运用勾股定理分别求出第三边后,和另外三角形构成相似三角形,利用对应边成比例即可解答.【解答】解:根据题意,两条边长分别是6和8的直角三角形有两种可能,一种是6和8为直角边,那么根据勾股定理可知斜边为10;另一种可能是6是直角边,而8是斜边,那么根据勾股定理可知另一条直角边为.所以另一个与它相似的直角三角形也有两种可能,第一种是,解得x=5;第二种是,解得x=.所以可以有2个.故选:B.4.已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.5.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD 的面积为()A.a B.C.D.a【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.8.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cm B.4πcm C.D.【分析】根据旋转的定义得到点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,由于∠ABA1=90°,∠A1CA2=60°,AB= =5cm,CA1=3cm,然后根据弧长公式计算即可.【解答】解:点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,∵∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,∴点A翻滚到A2位置时共走过的路径长=+=π(cm).故选:C.二.填空题(共6小题)9.下列函数中:①y=﹣x2;②y=2x;③y=22+x2﹣x3;④m=3﹣t﹣t2是二次函数的是①④(其中x、t为自变量).【分析】根据二次函数的定义条件判定则可.【解答】解:①y=﹣x2,二次项系数为﹣1,是二次函数;②y=2x,是一次函数;③y=22+x2﹣x3,含自变量的三次方,不是二次函数;④m=3﹣t﹣t2,是二次函数.故填①④.10.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.【分析】抛掷这个正方体一次,平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同,6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个.【解答】解:∵抛掷这个正方体一次,平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同,6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个.∴抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.11.已知三角形两边的长为3和4,若第三边长是方程x2﹣6x+5=0的一根,则这个三角形的形状为直角三角形,面积为6.【分析】根据第三边的长是方程x2﹣6x+5=0的根确定三角形的第三边,利用勾股定理的逆定理判断出其形状,根据直角三角形的面积等于两直角边乘积的一半求出其面积.【解答】解:∵第三边的长是方程x2﹣6x+5=0的根,∴解得:x=1(舍去)或x=5,∵32+42=52,∴该三角形是直角三角形;∴三角形的面积=×3×4=6.故答案为:直角三角形,6.12.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为(﹣2,﹣)或(2,).【分析】分缩小后的三角形在第一象限和第三象限两种情况,根据网格结构分别找出点A、B、C的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点P的坐标.【解答】解:如图,∵A(2,2),C(6,4),∴点P的坐标为(4,3),∵以原点为位似中心将△ABC缩小位似比为1:2,∴线段AC的中点P变换后的对应点的坐标为(﹣2,﹣)或(2,).故答案为:(﹣2,﹣)或(2,).13.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是1(在﹣2<b<2范围内的任何一个数).【分析】把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【解答】解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:1(在﹣2<b<2范围内的任何一个数).14.如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=.【分析】由二次函数y=ax2+bx+c的图象过(﹣1,0)和(0,﹣1)两点,求c的值及a、b的关系式,根据对称轴的位置判断a的取值范围,再把二次根式化简求值.【解答】解:把(﹣1,0)和(0,﹣1)两点代入y=ax2+bx+c中,得a﹣b+c=0,c=﹣1,∴b=a+c=a﹣1,由图象可知,抛物线对称轴x=﹣>0,且a>0,∴a﹣1<0,0<a<1,+=+=|a+|+|a﹣|,=a+﹣a+,=.故答案为:.三.解答题(共10小题)15.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.【分析】(1)这段铁丝被分成两段后,围成正方形.其中一个正方形的边长为xcm,则另一个正方形的边长为=(5﹣x),根据“两个正方形的面积之和等于17cm2”作为相等关系列方程,解方程即可求解;(2)设两个正方形的面积和为y,可得二次函数y=x2+(5﹣x)2=2(x﹣)2+,利用二次函数的最值的求法可求得y的最小值是12.5,所以可判断两个正方形的面积之和不可能等于12cm2.【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(5﹣x)cm,依题意列方程得x2+(5﹣x)2=17,整理得:x2﹣5x+4=0,(x﹣4)(x﹣1)=0,解方程得x1=1,x2=4,1×4=4cm,20﹣4=16cm;或4×4=16cm,20﹣16=4cm.因此这段铁丝剪成两段后的长度分别是4cm、16cm;(2)两个正方形的面积之和不可能等于12cm2.理由:设两个正方形的面积和为y,则y=x2+(5﹣x)2=2(x﹣)2+,∵a=2>0,∴当x=时,y的最小值=12.5>12,∴两个正方形的面积之和不可能等于12cm2;(另解:由(1)可知x2+(5﹣x)2=12,化简后得2x2﹣10x+13=0,∵△=(﹣10)2﹣4×2×13=﹣4<0,∴方程无实数解;所以两个正方形的面积之和不可能等于12cm2.)16.已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1,当x=3时,y=5,求y与x之间的函数关系式.【分析】设y1=kx,y2=,则y=kx+,将x=1、y=﹣1和x=3、y=5代入求解可得.【解答】解:设y1=kx,y2=,则y=kx+,根据题意,得:,解得:,则.17.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式.【分析】(1)利用现以O点为原点,抛物线最大高度为6米,底部宽度OM为12米,得出点M及抛物线顶点P的坐标即可;(2)利用顶点式将P点M点代入求出抛物线解析式即可.【解答】解:(1)∵其最大高度为6米,底部宽度OM为12米,∴点M及抛物线顶点P的坐标分别为:M(12,0),P(6,6).(2)设抛物线解析式为:y=a(x﹣6)2+6,∵抛物线y=a(x﹣6)2+6经过点(0,0),∴0=a(0﹣6)2+6,即a=﹣,∴抛物线解析式为:y=﹣(x﹣6)2+6,即y=﹣x2+2x.18.已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.(1)BC与⊙O是否相切?请说明理由;(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.【分析】(1)连接OD,BD,根据已知及圆周角定理等可求得∠ABC=90°,OD是半径,故BC与⊙O 相切.(2)若四边形OBED是平行四边形,应有OD∥BC,OD=BE;而BE=CE,所以BC=2BE=2OD=AB,故此时△ABC是等腰直角三角形.【解答】解:(1)BC与⊙O相切;理由:连接OD,BD;∵DE切⊙O于D,AB为直径,∴∠EDO=∠ADB=90°,∵DE平分CB,∴DE=BC=BE,∴∠EDB=∠EBD;∵∠ODB=∠OBD,∠ODB+∠EDB=90°,∴∠OBD+∠DBE=90°,即∠ABC=90°,∴BC与⊙O相切;(2)当△ABC为等腰直角三角形(∠ABC=90°)时,四边形OBED是平行四边形;∵△ABC是等腰直角三角形(∠ABC=90°),∴AB=BC,∵BD⊥AC于D,∴D为AC中点,∴OD=BC=BE,OD∥BC,∴四边形OBED是平行四边形.19.已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.(1)图中哪个三角形与△FAD全等?证明你的结论;(2)探索线段BF、FG、EF之间的关系,并说明理由.【分析】(1)已知有一组对顶角和一对边相等,根据平行线的性质又可得到一组角相等,则利用AAS 判定△FEB≌△FAD;(2)根据有两组角对应相等的两个三角形相似,可得到△BFG∽△EFB,根据相似三角形的对应边成比例即可得到BF2=FG•EF.【解答】解:(1)△FEB≌△FAD.证明:∵AD∥BE,∴∠1=∠E.又∠EFB=∠AFD,BE=AD,∴△FEB≌△FAD;(2)BF2=FG•EF.理由:∵∠1=∠E,∠1=∠2,∴∠2=∠E.又∵∠GFB=∠BFE,∴△BFG∽△EFB,∴=,即BF2=FG•EF.20.如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG•FE.【分析】根据BE∥AC,BE=AD,可得ABED为平行四边形,FD=FB.欲证FD2=FG•FE,则证FB2=FG•FE,即证FB:FG=FE:FB.易证它们所在的三角形相似.【解答】证明:∵BE∥AC,∴∠1=∠E.(2分)∵∠1=∠2,∴∠2=∠E.(4分)又∵∠BFG=∠EFB,∴△BFG∽△EFB.(5分)∴,∴BF2=FG•EF.(6分)∵BE∥AC,BE=AD,∴ABED为平行四边形,FD=FB.∴FD2=FG•FE.(10分)21.甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.【分析】(1)直接求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率;【解答】解;(1)甲伸出小拇指的可能一共有5种,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜)=;(2)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)==.22.如图,已知双曲线y1=经过点D(6,1),点C是双曲线第三象限分支上的动点,过点C作CA ⊥x轴,过点D作BD⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,①若直线CD的解析式为y2=ax+b,求a、b的值;②根据图象,直接写出y1>y2时x的取值范围;③判断直线AB与CD的位置关系,并说明理由.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)①先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;②根据图象即可得到y1>y2时x的取值范围;③根据题意求出点A、B的坐标,然后利用待定系数由法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵双曲线y=经过点D(6,1),∴=1,解得k=6;(2)①设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,=×6•h=12,∴S△BCD解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),则,解得;②由图象知当x<﹣2或0<x<6时,y1>y2,③AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=﹣x+1,设直线CD的解析式为y=ex+f,则,解得,∴直线CD的解析式为y=﹣x+,∵AB、CD的解析式k都等于﹣,∴AB与CD的位置关系是AB∥CD.23.如图1,l1∥l2∥l3直线AB和CH交于O点,分别交l2于D,E两点,已知CE=6,HE=3,AB=12.(1)尝试探究在图1中,求出DB和AD的长;(2)类比延伸:平移AB使得A与H重合,如图2所示,过点D作DF∥AC,若DE=5,求线段BF的长;(3)拓展迁移:如图3,若某个三角形ABC的面积是10,点D,E分别位于AB,CA上,DE∥BC,点F在BC上且BF=2,CF=3,如果△CBE的面积和四边形FCED的面积相等,求这个相等的面积值.【分析】(1)如图1,根据平行线分线段成比例定理,由l1∥l2∥l3得=,则利用比例性质可计算出AD=4,于是DB=AB﹣AD=8;(2)如图2,由平移性质得BD=8,AD=4,再证明四边形DECF为平行四边形,得到DE=CF=5,根据平行线分线段成比例定理,由DF∥AC得到=,利用比例性质可计算BF;=S△DEF,根据三角形面积公式和(3)如图3,利用△CBE的面积和四边形FCED的面积相等可得S△BEF平行线的判定可得EF∥BD,则根据平行线分线段成比例定理得==,然后再利用三角形面积公=S△ABC=6.式可计算出S△CBE【解答】解:(1)如图1,∵l1∥l2∥l3,∴=,即=,∴AD=4,∴DB=AB﹣AD=12﹣4=8;(2)如图2,∵平移AB使得A与H重合,∴BD=8,AD=4,∵DF∥AC,而DE∥CF,∴四边形DECF为平行四边形,∴DE=CF=5,∵DF∥AC,∴=,即=,∴BF=10;(3)如图3,∵△CBE的面积和四边形FCED的面积相等,即S△BEF +S△CEF=S△CEF+S△DEF,∴S△BEF=S△DEF,∴EF∥BD,∴==,∴S△CBE=S△ABC=×10=6,即这个相等的面积值为6.24.如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.【分析】(1)由抛物线y=(x+1)2+k与y轴交于点C(0,﹣3),即可将点C的坐标代入函数解析式,解方程即可求得k的值,由抛物线y=(x+1)2+k即可求得抛物线的对称轴为:x=﹣1;(2)连接AC交抛物线的对称轴于点P,则PA+PC的值最小,求得A与C的坐标,设直线AC的解析式为y=kx+b,利用待定系数法即可求得直线AC的解析式,则可求得此时点P的坐标;=×4×|(x+1)2﹣4|,由二次函数的最(3)①设点M的坐标为:(x,(x+1)2﹣4),即可得S△AMB值问题,即可求得△AMB的最大面积及此时点M的坐标;=S△OBC+S△ADM+S梯形②设点M的坐标为:(x,(x+1)2﹣4),然后过点M作MD⊥AB于D,由S四边形ABCM,根据二次函数的最值问题的求解方法,即可求得四边形AMCB的最大面积及此时点M的坐标.OCMD【解答】解:(1)∵抛物线y=(x+1)2+k与y轴交于点C(0,﹣3),∴﹣3=1+k,∴k=﹣4,∴抛物线的解析式为:y=(x+1)2﹣4,∴抛物线的对称轴为:直线x=﹣1;(2)存在.连接AC交抛物线的对称轴于点P,则PA+PC的值最小,当y=0时,(x+1)2﹣4=0,解得:x=﹣3或x=1,∵A在B的左侧,∴A(﹣3,0),B(1,0),设直线AC的解析式为:y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,当x=﹣1时,y=﹣(﹣1)﹣3=﹣2,∴点P的坐标为:(﹣1,﹣2);(3)点M是抛物线上的一动点,且在第三象限,∴﹣3<x<0;①设点M的坐标为:(x,(x+1)2﹣4),∵AB=4,=×4×|(x+1)2﹣4|=2|(x+1)2﹣4|,∴S△AMB∵点M在第三象限,=8﹣2(x+1)2,∴S△AMB∴当x=﹣1时,即点M的坐标为(﹣1,﹣4)时,△AMB的面积最大,最大值为8;②设点M的坐标为:(x,(x+1)2﹣4),过点M作MD⊥AB于D,S四边形ABCM=S△OBC+S△ADM+S梯形OCMD=×3×1+×(3+x)×[4﹣(x+1)2]+×(﹣x)×[3+4﹣(x+1)2]=﹣(x2+3x﹣4)=﹣(x+)2+,∴当x=﹣时,y=(﹣+1)2﹣4=﹣,即当点M的坐标为(﹣,﹣)时,四边形AMCB的面积最大,最大值为.。

2015-2016学年度人教版九年级上期末考试数学试题及答案

2015-2016学年度人教版九年级上期末考试数学试题及答案

2015-2016学年度第一学期期末质量评价九年级数学参考答案及评分标准一、选择题(每小题3分,共30分)BABBD ,DCBBA二、填空题(每小题3分,共30分) 11.74 12.21- a 13.(2,-3)14.10 15.21y y 16.(0,8) 17.175)1(50)1(50502=++++x x 18.5 19.10 20. -10三、解答题(本题共8个小题,共60分)21.解:原式=5-3+232⨯+1+2 ..................................................................................4分 =8 .......................................................................................................................6分22.解:(1)正确,(2)错误. …………………………………………………………..2分改正:整理,得01022=--x x ,配方,得11)1(2=-x ,111±=-x1111+=x ,1112-=x ………………………………………………….6分23.解:设每件童装降价x 元. ……………………………………………………………1分1200)40)(220(=-+x x , ……………………………………………………4分整理,得0200302=+-x x解得101=x ,202=x . …………………………………………………………………6分要想最大限度地降低库存,应取20=x .答:每件童装应降价20元. ……………………………………………..………………8分24.解:小亮选择B 方案,使他获胜的可能性较大............................................................1分 方案A :∵四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,∴P (小亮获胜)==; ...................................................................................................4分 方案B :画树状图得:................................................6分∵共有12种等可能的结果,两张牌面数字之和为偶数的有4种情况,不是偶数的有8种情况,∴P (小亮获胜)==;......................................................7分 ∴小亮选择B 方案,使他获胜的可能性较大......................................................................8分25. 解:(1)∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,OB =OD ,∴∠DMN =∠BCN ,∠MDN =∠NBC ,∴△MND ∽△CNB ,…………………………2分 ∴BNDN BC MD =,…………………………………………………………………………4分 ∵M 为AD 中点,∴BC AD MD 2121==,即21=BC MD , ∴21=BN DN ,即BN =2DN , 设OB =OD =x ,则有BD =2x ,BN =OB +ON =x +1,DN =x ﹣1,∴x +1=2(x ﹣1), ………………………………………………………………………5分 解得:x =3,∴BD =2x =6;………………………………………………………………………………7分(2)HOG ∆即为所求.……………………………………………………..10分26.解:(1)∵二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,∴对称轴是x =﹣1. ..............................................................................................................2分 又点C (0,3),点C 、D 是二次函数图象上的一对对称点,∴D (﹣2,3);.....................................................................................................................3分(2)设二次函数的解析式为y =ax 2+bx +c (a ≠0,a 、b 、c 常数),根据题意得, ...........................................................................................4分 解得,......................................................................................................................6分 所以二次函数的解析式为y =﹣x 2﹣2x +3;...........................................................................8分(3)如图,一次函数值大于二次函数值的x 的取值范围是x <﹣2或x >1................10分27.解 :(1)证明:连结OC ,如图,∵AC ⊥OB ,∴AM =CM ,∴OB 为线段AC 的垂直平分线,∴BA =BC ,在△OAB 和△OCB 中⎪⎩⎪⎨⎧===BC BA OB OB OC OA ,∴△OAB ≌△OCB , …………………………4分∴∠OAB =∠OCB ,∵OA ⊥AB ,∴∠OAB =90°,∴∠OCB =90°,∴BC 是⊙O 的切线; ……………………………………………………………………6分(2)解:在Rt △OAB 中,OA =1,AB =3,∴OB =22OA AB +=2,……………7分 ∴∠ABO =30°,∠AOB =60°,∵PB ⊥OB ,∴∠PBO =90°,……………………………8分 在Rt △PBO 中,OB =2,∠BPO =30°,∴323==OB PB ,………………………10分 在Rt △PBD 中,BD =OB ﹣OD =2﹣1=1,PB =32,∴PD =1322=+BD PB ,…11分∴sin ∠BPD =1313131==PD BD . ……………………………………………………….12分。

2015-2016学年度九年级上册数学期末考试试卷及答案(人教版)

2015-2016学年度九年级上册数学期末考试试卷及答案(人教版)

2015-2016学年度初三上学期数学期末试题(完卷时间:120分钟 满分:150分)一、选择题(每小题4分,共40分) 1.下列二次根式中,最简二次根式是A . 2B .8C .12D .182.一元二次方程x (x -1)=0的解是A .x =0B .x =1C .x =0或x =1D .x =0或x =-1 3.下列图形中,既是轴对称图形又是中心对称图形的是4.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,若∠A =15°,则∠BOC 的度数是A .15°B .300°C .45°D .75°5.下列事件中,必然发生的是 A .某射击运动射击一次,命中靶心 B .通常情况下,水加热到100℃时沸腾C .掷一次骰子,向上的一面是6点D .抛一枚硬币,落地后正面朝上 6.如图所示,△ABC 中,DE ∥BC ,AD =5,BD =10,DE =6,则BC 的值为A .6B .12C .18D .24 7.如图所示,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为 A .8cm 了 B .6cm C .5cm D .4cm8.若两圆的圆心距为5,两圆的半径分别是方程x 2-4x +3=0的两个根,则两圆的位置关系是A .相交B .外离C .内含D .外切9.将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于 A .1∶ 2 B .1∶2 C .1∶ 3 D .1∶310.已知二次函数y =x 2-x +18,当自变量x 取m 时,对应的函数值小于0,当自变量x取m -1、m +1时,对应的函数值为y 1、y 2,则y 1、y 2满足A .y 1>0,y 2>0B .y 1<0,y 2>0C .y 1<0,y 2<0D .y 1>0,y<0 二、填空题(每小题4分,共20分)11.二次根式x 2-1 有意义,则x 的取值范围是__________________.12.将抛物线y =2x 2向上平移3单位,得到的抛物线的解析式是____________. 13.如图所示,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落点在黑色石子区域内概率是_____________.A B C D 第4题图 AB CD E第7题图 ABO第9题图 D 第13题图14.某小区2011年绿化面积为2000平方米,计划2013年底绿化面积要达到2880平方米.如果每年的增长率相同,那么这个增长率是__________________.15.如图所示,n +1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n +1D n C n 的面积为S n ,则S 1=________,S n =__________(用含n 的式子表示).三、解答题(共7小题,共90分) 16.计算:(每小题8分,共16分) (1) 27×50÷ 6 (2) 2 3 9x +6x 4-2x 1x 17.(12分)已知△ABC 在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A 和点C 的坐标;(2) 画出△ABC 绕点A 按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C 旋转到点C' 所经过的路线长(结果保留π).18.(11分)在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.19.(12分)如图所示,AB 是⊙O 的直径,∠B =30°,弦BC =6,∠ACB 的平分线交⊙O 于D ,连AD . (1) 求直径AB 的长;(2) 求阴影部分的面积(结果保留π).20.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y (件)与销售单价x (元)的关系符合一次函数y =-x +140. (1) 直接写出销售单价x 的取值范围.(2) 若销售该服装获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?(3) 若获得利润不低于1200元,试确定销售单价x 的范围.21.(13分)如图,在△ABC 中,AB =AC =5,BC =6,点D 为AB 边上的一动点(D 不与A 、B 重合),过D 作DE ∥BC ,交AC 于点E .把△ADE 沿直线DE 折叠,点A 落在点A'处.连结BA',设AD =x ,△ADE 的边DE 上的高为y . (1) 求出y 与x 的函数关系式;(2) 若以点A'、B 、D 为顶点的三角形与△ABC 相似,求x 的值; (3) 当x 取何值时,△A' DB 是直角三角形.A C 1 第15题图C 2 C 3 C 4 C 52 3 4 5 6 第17题图D第19题图 A BCDx A'第21题图E ABC第21题备用图22.(14分)已知抛物线y =ax 2+bx +c (a ≠0)经过A (-2,0)、B (0,1)两点,且对称轴是y 轴.经过点C (0,2)的直线l 与x 轴平行,O 为坐标原点,P 、Q 为抛物线y =ax 2+bx +c (a ≠0)上的两动点. (1) 求抛物线的解析式; (2) 以点P 为圆心,PO 为半径的圆记为⊙P ,判断直线l 与⊙P 的位置关系,并证明你的结论; (3) 设线段PQ =9,G 是PQ 的中点,求点G 到直线l 距离的最小值.数学试卷参考答案及评分标准一、选择题:1.A 2.C 3.D 4.B 5.B 6.C 7.A 8.B 9.D 10.A 二、填空题:11.x ≥1 12.y =2x 2+3 13.12 14.20% 15.14;n 2(n +1)三、解答题:16.(1)原式=33×52÷6 ………………………………………………4分 =3×53×2÷6 ………………………………………………6分 =15 ……………………………………………………………8分(2)原式=2 3 ×3x +6×12x -2x ·1x x ………………3分=2x +3x -2x ……………………………6分 =3x …………………………………8分 17.解:(1)A (1,3)、C (5,1); …………………………………4分(2)图形正确; ……………………………………………8分(3)AC =25, ……………………………………………10分弧CC'的长=90π·25180=5π. …………………12分18.解: 或第22题图列对表格或树状图正确, …………………………………………………6分 由上述树状图或表格知:P (小明赢)=59,P (小亮赢)=49. ……………………………………………10分∴此游戏对双方不公平,小明赢的可能性大. ………………………………11分 19.解:(1) ∵AB 为⊙O 的直径,∴∠ACB =90°, ……………………………………1分∵∠B =30,∴AB =2AC , ……………………………………3分 ∵AB 2=AC 2+BC 2,∴AB 2=14AB 2+62, …………………………………5分∴AB =43. ………………………………………6分 (2) 连接OD ,∵AB =43,∴OA =OD =23, …………………………………………………8分 ∵CD 平分∠ACB ,∠ACB =90°, ∴∠ACD =45°, ∴∠AOD =90°, …………………………………………………………………9分∴S △AOD =12OA ·OD =12·23·23=6, ……………………………………10分∴S 扇形△AOD =14·π·OD 2=14·π·(23)2=3π, ………………………………11分∴阴影部分的面积= S 扇形△AOD -S △AOD =3π-6. ……………………………12分20.解:(1) 60≤x ≤90; ……………………………………………………………………3分 (2) W =(x ―60)(―x +140), ……………………………………………………………4分 =-x 2+200x -8400,=―(x ―100)2+1600, ……………………………………………………………5分 抛物线的开口向下,∴当x <100时,W 随x 的增大而增大, …………………………6分 而60≤x ≤90,∴当x =90时,W =―(90―100)2+1600=1500. ………………………7分 ∴当销售单价定为90元时,可获得最大利润,最大利润是1500元. ……………………8分 (3) 由W =1200,得1200=-x 2+200x -8400,整理得,x 2-200x +9600=0,解得,x 1=80,x 2=120, ……………………………………11分 由图象可知,要使获得利润不低于1200元,销售单价应在80元到120元之间,而60≤x ≤90,所以,销售单价x 的范围是80≤x ≤90. ………………………………………………………12分21.解:(1) 过A 点作AM ⊥BC ,垂足为M ,交DE 于N 点,则BM =12BC =3,∵DE ∥BC ,∴AN ⊥DE ,即y =AN .在Rt △ABM 中,AM =52-32 =4, …………………………………………………………2分 ∵DE ∥BC ,∴△ADE ∽△ABC , ……………………………………………………………………………3分∴ AD AB = AN AM , ∴x 5 =y 4, ∴y =4x 5(0<x <5). ………………………………………………………………………4分(2) ∵△A'DE 由△ADE 折叠得到,∴AD =A'D ,AE =A'E ,∵由(1)可得△ADE 是等腰三角形, ∴AD =A'D ,AE =A'E ,∴四边形ADA'E 是菱形, ………………………………5分 ∴AC ∥D A',∴∠BDA'=∠BAC ,又∵∠BAC ≠∠ABC ,∠BAC ≠∠C , ∴∠BDA'≠∠ABC ,∠BDA'≠∠C ,∴有且只有当BD =A'D 时,△BDA'∽△BAC , …………………………………………7分 ∴当BD =A'D ,即5-x =x 时,∴x =52. ………………………………………………………………………………8分(3) 第一种情况:∠BDA'=90°,∵∠BDA'=∠BAC ,而∠BAC ≠90°, ∴∠BDA'≠90°. ………………………………………………………………………9分 第二种情况:∠BA'D =90°,∵四边形ADA'E 是菱形,∴点A'必在DE 垂直平分线上,即直线AM 上,∵AN =A'N = y =4x5,AM =4,∴A'M =|4-85x |,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(4-85x )2,在Rt △BA'D 中,A'B 2=BD 2+A'D 2=(5-x )2-x 2,∴ (5-x )2-x 2=32+(4-85x )2,解得 x =3532,x =0(舍去). ……………………………………………………11分第三种情况:∠A'BD =90°,解法一:∵∠A'BD =90°,∠AMB =90°, ∴△BA'M ∽△ABM , 即BA' AB =BM AM ,∴BA'=154, ……………………………12分 在Rt △D BA'中,DB 2+A'B 2=A'D 2,(5-x )2+22516=x 2,解得:x =12532. ……………………………………………13分 解法二:∵AN =A'N = y =4x5 ,AM =4,∴A'M =|85x -4|,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(85x -4)2,在Rt △BA'D 中,A'B 2= A'D 2-BD 2=x 2-(5-x )2,∴ x 2-(5-x )2=32+(85x -4)2,解得x =5(舍去),x =12532. ………………………………………………………13分综上可知当x =3532、x =12532时, △A'DB 是直角三角形.22.解:(1) ∵抛物线y =ax 2+bx +c 的对称轴是y 轴,∴b =0. …………………………1分∵抛物线y =ax 2+bx +c 经过点A (-2,0)、B (0,1)两点,∴c =1,a =-14, ……………………………………3分∴所求抛物线的解析式为y =-14x 2+1. ……………4分(2) 设点P 坐标为(p ,-14p 2+1),如图,过点P 作PH ⊥l ,垂足为H ,∵PH =2-(-14p 2+1)=14p 2+1, …………………6分OP =p 2+(-14p 2+1)2 =-14p 2+1, ………………8分∴OP =PH ,∴直线l 与以点P 为圆心,PO 长为半径的圆相切. …………………………………9分 (3) 如图,分别过点P 、Q 、G 作l 的垂线,垂足分别是D 、E 、F . 连接EG 并延长交DP 的延长线于点K ,∵G 是PQ 的中点,∴易证得△EQG ≌△KPG ,∴EQ =PK , ………………………………………11分由(2)知抛物线y =-14x 2+1上任意一点到原点O 的距离等于该点到直线l :y =2的距离,即EQ =OQ ,DP =OP , …………………………………12分∴ FG =12DK =12(DP +PK )=12(DP +EQ )=12(OP +OQ ), ……13分∴只有当点P 、Q 、O 三点共线时,线段PQ 的中点G 到直线l 的距离GF 最小, ∵PQ =9,∴G F ≥4.5,即点G 到直线l 距离的最小值是4.5. …………………………………14分 (若用梯形中位线定理求解扣1分)。

2015-2016学年新课标人教版九年级数学第一学期期末数学试卷及答案

2015-2016学年新课标人教版九年级数学第一学期期末数学试卷及答案

2015-2016学年九年级(上)期末数学试卷一、选择题:每小题4分,共40分.四个选项中只有一项是正确的.1.已知2x=3y,则下列比例式成立的是()A.= B.= C.= D.=2.在函数y=(x+1)2+3中,y随x增大而减小,则x的取值范围为()A. x>﹣1 B. x>3 C. x<﹣1 D. x<33.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为()A. B. C. D.4.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C. D.5.有一多边形草坪,在市政建设设计图纸上的面积为300cm2,其中一条边的长度为5cm.经测量,这条边的实际长度为15m,则这块草坪的实际面积是()A. 100m2 B. 270m2 C. 2700m2 D. 90000m26.在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是()A. B. 2 C. D.7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B. x>5 C. x<﹣1且x>5 D. x<﹣1或x>58.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A. 45° B. 60° C. 75° D. 90°9.如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD的长为()A. 2 B. C. D. 110.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A. B.C. D.二、填空题:每小题5分,满分20分.11.若点P1(1,m),P2(2,n)在反比例函数y=﹣的图象上,则m n(填“>”、“<”或“=”号)12.如图,已知直线l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则tanα= .13.如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为.14.已知抛物线C1:y1=a1x2+b1x+c1,C2:y2=a2x2+b2x+c2,且满足===k(k≠0,1),则称抛物线C1,C2互为“友好抛物线”.关于“友好抛物线”有以下说法:①C1,C2开口方向、开口大小相同;②C1,C2的对称轴相同;③如果y2的最值为m,则y1的最值为km;④如果C2与x轴的两交点间距离为d,则C1与x轴的两交点间距离也为d.其中正确的结论是(把所有正确结论的序号都填在横线上).三、解答题:每小题8分,满分90分.15.计算|tan60°﹣tan45°|+.16.观察下列算式:①1×3﹣22=﹣1;②2×4﹣32=﹣1;③3×5﹣42=﹣1;④;(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为第(2)小题中所写出的式子一定成立吗?并说明理由.17.桐城市某房产公司推出热气球观房活动,热气球的探测器显示,从热气球A处看某小区内一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,A处于高楼的水平距离为30m,求这栋高楼有多高?(结果精确到1m,参考数据:≈1.4,≈1.7)18.如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.19.如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:△BEA∽△CDA;(2)请猜想可能等于图中哪两条线段的比例?并证明你的猜想.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.22.桐城市某游乐场投资150万元引进了一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而改游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y万元,且满足y=ax2+bx;若将创收扣除投资和维修保养费用所得称为游乐场的纯收益W万元.(1)若维修保养费用第1个月为2万元,第2个月为4万元,分别求出y关于x的函数解析式以及W关于x的表达式;(2)问设施开放几个月时,游乐场的纯收益达到最大,最大收益多少万元?(3)几个月后,能收回投资?23.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值.(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明;(3)再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.2015-2016学年九年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题4分,共40分.四个选项中只有一项是正确的.1.已知2x=3y,则下列比例式成立的是()A.= B.= C.= D.=考点:比例的性质.专题:计算题.分析:把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.解答:解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选C.点评:本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.2.在函数y=(x+1)2+3中,y随x增大而减小,则x的取值范围为()A. x>﹣1 B. x>3 C. x<﹣1 D. x<3考点:二次函数的性质.分析:由条件可知二次函数的对称轴为x=﹣1,且开口向上,可得出答案.解答:解:∵y=(x+1)2+3,∴二次函数开口向上,且对称轴为x=﹣1,∴当x<﹣1时,y随x增大而减小,故选C.点评:本题主要考查二次函数的增减性及对称轴,掌握在y=a(x﹣h)2+k中二次函数的对称轴为x=h是解题的关键.3.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为()A. B. C. D.考点:反比例函数系数k的几何意义.专题:数形结合.分析:由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.解答:解:由题意得:|k|=2S△AOT=8;又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选D.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.4.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C. D.考点:相似三角形的判定.分析:由图可得∠A=∠A,又由有两角对应相等的三角形相似,即可得A与B正确,又由两边对应成比例且夹角相等的三角形相似,即可得C正确,利用排除法即可求得答案.解答:解:∵∠A=∠A,∴当∠ACP=∠B时,△ACP∽△ABC,故A选项正确;∴当∠APC=∠ACB时,△ACP∽△ABC,故B选项正确;∴当时,△ACP∽△ABC,故C选项正确;∵若,还需知道∠ACP=∠B,∴不能判定△ACP∽△ABC.故D选项错误.故选:D.点评:此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两边对应成比例且夹角相等的三角形相似定理的应用.5.有一多边形草坪,在市政建设设计图纸上的面积为300cm2,其中一条边的长度为5cm.经测量,这条边的实际长度为15m,则这块草坪的实际面积是()A. 100m2 B. 270m2 C. 2700m2 D. 90000m2考点:比例线段.专题:计算题;压轴题.分析:实际图形与设计图是相似图形,相似比是5:1500=1:300,相似多边形面积的比等于相似比的平方,就可求出这块草坪的实际面积.解答:解:设草坪的实际面积是x平方米,则有,解得x=2700m2.故选C.点评:实际图形与设计图是相似图形,本题实际就是考查相似多边形的性质.注意单位的转换.6.在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是()A. B. 2 C. D.考点:锐角三角函数的定义.专题:压轴题.分析:根据正弦的定义sinA=解答.解答:解:根据题意,AB==BC,sinA===.故选C.点评:本题主要考查角的正弦的定义,需要熟练掌握.7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B. x>5 C. x<﹣1且x>5 D. x<﹣1或x>5考点:二次函数与不等式(组).专题:压轴题.分析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.解答:解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.点评:此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.8.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A. 45° B. 60° C. 75° D. 90°考点:圆周角定理;正多边形和圆.分析:连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.解答:解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.点评:本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.9.如图,在等腰Rt△ABC中,∠C=90°,AC=3,D是AC上一点.若tan∠DBA=,则AD的长为()A. 2 B. C. D. 1考点:解直角三角形.分析:想要求AD的长,求CD的长即可,根据tan∠DBA=和tan45°=1,即可求得tan∠CBD的值,即可解题.解答:解:∵∠CBD+∠DBA=∠ABC=45°,∴tan∠ABC==1,∵tan∠DBA=,∴tan∠CBD=,∴CD=BC•tan∠CBD=2,∴AD=3﹣2=1.故选D.点评:本题考查了直角三角形中正切值的运用,考查了两角和的正切公式,熟练运用两角和的正切公式是解题的关键.10.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A. B.C. D.考点:动点问题的函数图象.专题:应用题;压轴题.分析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案.解答:解:DF=x,正方形ABCD与正方形EFGH重叠部分的面积为y①y=DF2=x2(0≤x<);②y=1(≤x<2);③∵BH=3﹣x∴y=BH2=x2﹣3x+9(2≤x<3).综上可知,图象是故选:B.图:①②③点评:解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.二、填空题:每小题5分,满分20分.11.若点P1(1,m),P2(2,n)在反比例函数y=﹣的图象上,则m <n(填“>”、“<”或“=”号)考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特得到1•m=﹣2,2•n=﹣2,然后分别解方程求出m和n的值,再比较大小即可.解答:解:∵点P1(1,m),P2(2,n)在反比例函数y=﹣的图象上,∴1•m=﹣2,2•n=﹣2,∴m=﹣2,n=﹣1,∴m<n.故答案为<.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,已知直线l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则tanα= .考点:全等三角形的判定与性质;正方形的性质;锐角三角函数的定义.分析:根据正方形的性质就可以得出AE=AD,由平行线的性质就可以得出∠α=∠ADE,就可以求出结论.解答:解:∵四边形ABCD是平行四边形,∴AD=AB,∠A=90°.∵l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,∴AE=AB,∠α=∠ADE.∴AE=AD.∴.∵tan∠ADE=,∴tanα=,∴tanα=.故答案为:点评:本题考查了平行线等分线段定理的运用,正方形的性质的运用,三角函数值的运用,解答时运用平行线等分线段定理求解是关键.13.如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为8π.考点:垂径定理;勾股定理;切线的性质.专题:计算题;压轴题.分析:过M作MG⊥AB于G,连MB,NF,根据垂径定理得到BG=AG=2,利用勾股定理可得MB2﹣MG2=22=4,再根据切线的性质有NF⊥AB,而AB∥CD,得到MG=NF,设⊙M,⊙N的半径分别为R,r,则z(x+y)=(CD﹣CE)(π•R+π•r)=(R2﹣r2)•2π,即可得到z(x+y)的值.解答:解:过M作MG⊥AB于G,连MB,NF,如图,而AB=4,∴BG=AG=2,∴MB2﹣MG2=22=4,又∵大半圆M的弦与小半圆N相切于点F,∴NF⊥AB,∵AB∥CD,∴MG=NF,设⊙M,⊙N的半径分别为R,r,∴z(x+y)=(CD﹣CE)(π•R+π•r),=(2R﹣2r)(R+r)•π,=(R2﹣r2)•2π,=4•2π,=8π.故答案为:8π.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧;也考查了切线的性质和圆的面积公式以及勾股定理.14.已知抛物线C1:y1=a1x2+b1x+c1,C2:y2=a2x2+b2x+c2,且满足===k(k≠0,1),则称抛物线C1,C2互为“友好抛物线”.关于“友好抛物线”有以下说法:①C1,C2开口方向、开口大小相同;②C1,C2的对称轴相同;③如果y2的最值为m,则y1的最值为km;④如果C2与x轴的两交点间距离为d,则C1与x轴的两交点间距离也为d.其中正确的结论是②③④(把所有正确结论的序号都填在横线上).考点:二次函数的性质.专题:新定义.分析:当k<0时,可判断①;由=可得到=,可判断②;根据二次函数的最值,可分别求得y2和y1的最值,再结合条件可判断③;根据根与系数的关系求出与X轴的两交点的距离|g﹣e|和|d﹣m|,即可判断④.解答:解:由已知可知:a1=ka2,b1=kb2,c1=kc2,①根据友好抛物线的条件,a1、a2的符号不一定相同,所以开口方向、开口大小不一定相同,故①不正确;②由=可得到=,所以可知其对称轴相同,故②正确;③因为如果y2的最值是m,则y1的最值是=k•=km,故③正确;④因为设直线y1于x轴的交点坐标是(e,f),(g,h),则e+g=﹣,eg=,直线y2于x轴的交点坐标是(m,n),(d,p),则m+d=﹣,md=,可求得:d=|g﹣e|=====|d﹣m|,故④正确;故答案为:②③④.点评:本题主要考查二次函数的对称轴、开口方向、最值等,由条件得出a1=ka2,b1=kb2,c1=kc2是解题的关键.三、解答题:每小题8分,满分90分.15.计算|tan60°﹣tan45°|+.考点:特殊角的三角函数值.专题:计算题.分析:本题可分别解出tan60°与tan45°的值,比较它们的大小,再对原式去绝对值.而根号内的数可配成平方式,讨论平方内的数的大小,最后代入原式即可.解答:解:原式=|tan60°﹣tan45°|+|cos30°﹣1|=tan60°﹣tan45°+1﹣cos30°==.点评:本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.16.观察下列算式:①1×3﹣22=﹣1;②2×4﹣32=﹣1;③3×5﹣42=﹣1;④4×6﹣52=﹣1 ;(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为第(2)小题中所写出的式子一定成立吗?并说明理由.考点:规律型:数字的变化类.分析:(1)按照前3个算式的规律写出即可;(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可;(3)先利用单项式乘多项式的法则与完全平方公式分别计算第n个式子左边的第一项与第二项,再去括号、合并同类项,所得结果与﹣1比较即可.解答:解:(1)∵①1×3﹣22=﹣1,②2×4﹣32=﹣1,③3×5﹣42=﹣1,∴第4个算式为:④4×6﹣52=﹣1;故答案为:4×6﹣52=﹣1;(2)第n个式子是:n×(n+2)﹣(n+1)2=﹣1;(3)第(2)小题中所写出的式子一定成立.理由如下:∵左边=n×(n+2)﹣(n+1)2=n2+2n﹣(n2+2n+1)=n2+2n﹣n2﹣2n﹣1=﹣1,右边=﹣1,∴左边=右边,∴n×(n+2)﹣(n+1)2=﹣1.点评:此题主要考查了规律型:数字的变化类,观察出算式中的数字与算式的序号之间的关系是解题的关键.17.桐城市某房产公司推出热气球观房活动,热气球的探测器显示,从热气球A处看某小区内一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,A处于高楼的水平距离为30m,求这栋高楼有多高?(结果精确到1m,参考数据:≈1.4,≈1.7)考点:解直角三角形的应用-仰角俯角问题.分析:过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数即可求得BD和CD,即可求解.解答:解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=60°,AD=30m,∴BD=AD•tan60°=30×=30m,在Rt△ACD中,∵∠CAD=30°,AD=30m,∴CD=AD•tan30°=30×=10m,BC=30+10=40≈68(m).答:这栋楼高约为68m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据所给的仰角和俯角构造直角三角形,利用三角函数的知识求解直角三角形.18.如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.考点:待定系数法求反比例函数解析式;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:(1)把P的坐标代入直线的解析式,即可求得P的坐标,然后根据关于y轴对称的两个点之间的关系,即可求得P′的坐标;(2)利用待定系数法即可求得反比例函数的解析式,然后根据反比例函数的增减性即可求得x的范围.解答:解:(1)把P(﹣2,a)代入直线的解析式得:a=﹣2×(﹣2)=4,则P的坐标是(﹣2,4),点P关于y轴的对称点P′的坐标是:(2,4);(2)把P′的坐标(2,4)代入反比例函数y2=(k≠0)的解析式得:4=,解得:k=8,则函数的解析式是:y2=;在解析式中,当y=2时,x=4,则当y2<2时自变量x的取值范围是:x>4或x<0.点评:本题考查了待定系数法求函数的解析式,以及反比例函数的性质,容易出现的错误是在求x的范围时忽视x≠0这一条件.19.如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.考点:作图-位似变换;点的坐标.专题:作图题.分析:(1)延长BO,CO到B′C′,使OB′,OC′的长度是OB,OC的2倍.顺次连接三点即可;(2)从直角坐标系中,读出B′、C′的坐标;(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以﹣2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(﹣2x,﹣2y).解答:解:(1)(2)B′(﹣6,2),C′(﹣4,﹣2);(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以﹣2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(﹣2x,﹣2y).点评:本题综合考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:△BEA∽△CDA;(2)请猜想可能等于图中哪两条线段的比例?并证明你的猜想.考点:相似三角形的判定与性质.分析:(1)由三角形外角的性质及条件可得到∠AEB=∠ADC,结合条件可得到∠DAC=∠EAB,可证得结论;(2)利用(1)的结论可证得△ADE∽△ACB,再利用相似三角形的性质可得出=或解答:(1)证明:∵∠BAC=∠DAE,∴∠DAE+∠EAC=∠BAC+∠EAC,即∠BAE=∠DAC,∵∠DAE=∠BDC,∴∠DAE+∠ADE=∠BDC+∠ADE,即∠AEB=∠ADC,∴△BEA∽△CDA;(2)解:=或,证明如下:由(1)可知△ADE∽△ACB,∴=,且∠DAE=∠BAC,∴△ADE∽△ACB,∴==,∴=或.点评:本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键,即①两个三角形的三边对应成比例、②两个三角形有两组角对应相等、③两个三角形的两组对边成比例且夹角相等,则这两个三角形相似.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)根据垂径定理和圆的性质,同弧的圆周角相等,又因为△AOC是等腰三角形,即可求证.(2)根据勾股定理,求出各边之间的关系,即可确定半径.解答:(1)证明:连接OC,∵AB为⊙O的直径,CD是弦,且AB⊥CD于E,∴CE=ED,.(2分)∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)点评:本题考查垂弦定理、圆心角、圆周角的应用能力.22.桐城市某游乐场投资150万元引进了一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而改游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y万元,且满足y=ax2+bx;若将创收扣除投资和维修保养费用所得称为游乐场的纯收益W万元.(1)若维修保养费用第1个月为2万元,第2个月为4万元,分别求出y关于x的函数解析式以及W关于x的表达式;(2)问设施开放几个月时,游乐场的纯收益达到最大,最大收益多少万元?(3)几个月后,能收回投资?考点:二次函数的应用.分析:(1)将x=1,y=2及x=2,y=6代入关系式y=ax2+bx求出a、b的值进而求出y与x 的关系式,再由利润=收入﹣投资﹣维修保养费用就可以得出W与x的关系式;(2)由(1)的W与x的关系式变为顶点式就可以求出结论;(3)由函数的解析式可以得出0<x≤16时y随x的增大而增大,当W=0时求出x的值即可求出结论.解答:解:(1)由题意,得,解得:,y=x2+x.W=33x﹣150﹣(x2+x),W=﹣x2+32x﹣150.答:y关于x的函数解析式为y=x2+x,W关于x的表达式为W=﹣x2+32x﹣150;(2)∵W=﹣x2+32x﹣150,W=﹣(x﹣16)2+106.∵a=﹣1<0,∴x=16时,W最大=106万元.答:设施开放16个月时,游乐场的纯收益达到最大,最大收益106万元;(3)由题意,得0=﹣x2+32x﹣150,解得:x1=16+,x2=16﹣,∵16+>16﹣,∴x=16﹣.∵x为整数,∴x=5时,W<0,当x=6时,W>0,∴6个月后,能收回投资.点评:本题考查了二次函数的顶点式的运用,利润=收入﹣投资﹣维修保养费用的数量关系的运用,一元二次方程的运用,解答时求出函数的关系式是关键.23.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值.(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明;(3)再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.考点:相似形综合题.分析:(1)由已知得BK=KC,由CD∥AB可证△KCD∽△KBA,利用=求值;(2)AB=BC+CD.作△ABD的中位线,由中位线定理得EF∥AB∥CD,可知G为BC的中点,由平行线及角平分线性质,得∠GEB=∠EBA=∠GBE,则EG=BG=BC,而GF=CD,EF=AB,利用EF=EG+GF求线段AB、BC、CD三者之间的数量关系;(3)当AE=AD(n>2)时,EG=BG=BC,而GF=CD,EF=AB,EF=EG+GF可得BC+CD=(n﹣1)AB.解答:解:(1)∵BK=KC,∴=1,又∵CD∥AB,∴△KCD∽△KBA,∴=1;(2)当BE平分∠ABC,AE=AD时,AB=BC+CD;证明:取BD的中点为F,连接EF交BC于G点,由中位线定理,得EF∥AB∥CD,∴G为BC的中点,∠GEB=∠EBA,又∵∠EBA=∠GBE,∴∠GEB=∠GBE,∴EG=BG=BC,而GF=CD,EF=AB,∵EF=EG+GF,即:AB=BC+CD;∴AB=BC+CD;(3)由(2)同理可得:当AE=AD(n>2)时,EF∥AB,同理可得:==,则BG=•BC,则EG=BG=•BC,==,则GF=•CD,==,∴+•CD=•AB,∴BC+CD=(n﹣1)AB,故当AE=AD(n>2)时,BC+CD=(n﹣1)AB.点评:本题考查了平行线的性质,三角形中位线定理,相似三角形的判定与性质,角平分线的性质,正确的作出辅助线构造平行线利用三角形的中位线定理解决问题是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1cm,B.2 cm,C.4cm,D.2 cm或4cm
11、如图,在 中,D,E分别是AB,AC边上的中点,连接DE,那么 与 的面积之比是( )
A.1:16B.1:9C.1:4D.1:2
12、已知反比例函数 的图象如图甲所示,那么二次函数 的图象大致是图( )
二、填空:
13、地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为_______千米。
(1)如图①,若 , ,求 的长(结果保留根号);
(2)如图②,若 为 的中点,求证:直线 是⊙ 的切线.
33、如图所示的直面直角坐标系中, 的三个顶点坐标分别为O(0,0),A(1, )B(3, )。
(1)将 绕原点O逆时针旋转 画出旋转后的 ;
(2)求出点B到点 所走过的路径的长。
34已知二次函数
6、如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=900,OA=1,BC=6,则⊙O的半径为()
A、 B. C. D.
6题图
7、如图,四边形OABC为菱形,点B、C在以点O为圆心的 上,
若OA=1பைடு நூலகம்∠1=∠2,则扇形OEF的面积为()
A. B. C. D.
8、若二次函数 配方后为 则 、 的值分别为()
25、计算: .
26、解分式方程
27.如图,AB是⊙O的直径,BC是弦,∠ABC=30°,点D在BA的延长线上,且CD=CB,.
(1)求证:DC是⊙O的切线;
(2)若DC=2 ,求⊙O半径.
28、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.
图6
23、如图,在平面直角坐标系中,已知点A( ,0),B(0,3),对 连续作旋转变换,依次得到三角形(1),(2),(3),(4),…,那么第(7)个三角形的直角顶点的坐标是_______,第(2011)个三角形的直角顶点坐标是________
三、解答题:
24、先化简,再求值: ,其中a= +1.
(1)用配方法将 化成 的形式;
(2)在所给的平面直角坐标系中,画出这个二次函数的图象;
(3)根据图象回答:当自变量 的取值范围满足什么条件时, ?
35、某区为发展教育事业,加强了对教育经费的投入,2008年投入1000万元,2010年投入了1210万元,若教育经费每年增长的百分率相同,
(1)求每年平均增长的百分率;
(2)此年平均增长率,预计2011年该区教育经费应投入多少万元?
36、如图,矩形ABCD的长、宽分别为3和2, ,点E的坐标为(3,4)连接AE、ED。
(1)求经过A、E、D三点的抛物线的解析式。
(2)以原点为位似中心,将五边形ABCDE放大。
①若放大后的五边形的边长是原五边形对应边长的2倍,请在网格中画出放大后的五边形 ,并直接写出经过 、 、 三点的抛物线的解析式:______________;
(1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)求抽出的两张牌都是偶数的概率.
31.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).
32、已知 是⊙ 的直径, 是⊙ 的切线, 是切点, 与⊙ 交于点 .
A.等边三角形B.矩形C.等腰梯形D.平行四边形
4、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )
A.4个B.3个C.2个D.1个
5、若 为实数,且 ,则 的值为( )
A.-1 B.0 C.1 D.2010
云南省2015-2016学年度上学期九年级数学期末复习题
一、选择题
1、设 、 ,则下列运算中错误的是( )
A. B.
C. D.
2、关于x的方程(a-5)x2-4x-1=0有实数根,则a满足()
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a>1
3、以下图形中,既是轴对称图形,又是中心对称图形的是( )
20、它们是按一定规律排列的,依照此规律,第9个图形中共有个★.
21、如图,将矩形纸片 折叠,
使点 与点 重合,点 落在点 处,折痕为 ,
若 ,那么 的度数为度.
22、如图6所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距________米。
②若放大后的五边形的边长是原五边形对应边长的 倍,请你直接写出经过 、 、 三点的抛物线的解析式:______________(用含 的字母表示)。
A.0、5 B.0、1 C.—4、5 D.—4、1
9、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
A、4个B、3个C、2个D、1个
10、⊙O的圆心到直线l的距离为3cm,⊙O的半径为1cm,将直线l向垂直于l的方向平移,使l与⊙O相切,则平移的距离是()
(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;
(Ⅱ)求摸出的两个球号码之和等于5的概率.
29、已知一抛物线与x轴的交点是 、B(1,0),且经过点C(2,8)。
(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.
30、小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
14.计算: =.
15、不等式-3x+1>4的解集是__________
16、若二次根式 有意义,则 的取值范围是____________
17.圆锥的底面半径为4cm,母线长为12cm,则该圆锥的侧面积为cm2.
18、若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b=.
19、在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是
相关文档
最新文档