一元二次方程精选
一元二次方程100道计算题练习附答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
(完整版)一元二次方程计算题及答案
6X2-7X+1=06X2-7X=-1X2- ( 7/6)X+ ( 7/12 )2=-1 /6 +( 7/12 )2 (X-7 /12 )2=25 /144•••X-7 /12= ±5/12•••X1=1,X2=1/ 65X2-18=9X5X2-9X=18X2-1.8X=3.6(X-0.9 )2=4.41•••X-.9= ±2.1•••X1=3,X2=-1.24X 2-3X=52解:X2- ( 3/4 ) X=13(X-3 / 8 )2=13•••X-3 /8= ±29 /8•••X1=4,X2 =-13 / 45X 2=4-2X5X 2+2X=4X2+0.2X=0.8(X+0.1 )2 =0.81X+0.1= ±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x A2-9x+8=0 答案:x1=8 x2=1⑵ xA2+6x-27=0 答案:x1=3 x2=-9⑶ xA2-2x-80=0 答案:x仁-8 x2=10⑷ xA2+10x-200=0 答案:x1=-20 x2=10(5)xA2-20x+96=0 答案:x仁12 x2=8⑹xA2+23x+76=0 答案:x1=-19 x2=-4(7)xA2-25x+154=0 答案:x1=14 x2=11(8)xA2-12x-108=0 答案:x仁-6 x2=18(9)xA2+4x-252=0 答案:x1=14 x2=-18(10)xA2-11x-102=0 答案:x仁17 x2=-6(11)xA2+15x-54=0 答案:x1=-18 x2=3(12)xA2+11x+18=0 答案:x仁-2 x2=-9(13)xA2-9x+20=0 答案:x1=4 x2=5(14)xA2+19x+90=0 答案:x1=-10 x2=-9(15)xA2-x1=13 x2=1225x+156=0 答案:(16)xA2-22x+57=0 答案:x1=3 x2=19(17)xA2-5x-176=0 答案:x仁16 x2=-11(18)xA2-x1=7 x2=1926x+133=0 答案:(19)xA2+10x-11=0 答案:x1=-11 x2=1(20)xA2-3x-304=0 答案:x1=-16 x2=19(21)xA2+13x-x1=7 x2=-20140=0 答案:(22)xA2+13x-48=0 答案:x1=3 x2=-16(23)xA2+5x-176=0 答案:x1=-16 x2=11(24)x A2+28x+171=0 答案:x仁-9 x2=-19(25)x A2+14x+45=0 答案:x仁-9 x2=-5(26)xA2-9x-136=0 答案:x仁-8 x2=17(27)xA2-15x-76=0 答案:x仁19 x2=-4(28)xA2+23x+126=0 答案:x仁-9 x2=-14(29)xA2+9x-70=0 答案:x1=-14 x2=5(30)xA2-1x-56=0 答案:x1=8 x2=-7(31)xA2+7x-60=0 答案:x1=5 x2=-12(32)xA2+10x-39=0 答案:x1=-13 x2=3(33)xA2+19x+34=0 答案:x1=-17 x2=-2(34)xA2-6x-160=0 答案:x仁16 x2=-10(35)xA2-6x-55=0 答案:x仁11 x2=-5(36)xA2-7x-144=0 答案:x仁-9 x2=16(37)xA2+20x+5 仁0 答案:x仁-3 x2=-17(38)xA2-9x+14=0 答案:x1=2 x2=7(39)xA2-29x+208=0 答案:x1=16 x2=13(40)xA2+19x-20=0 答案:x1=-20 x2=1(41)xA2-13x-48=0 答案:x仁16 x2=-3(42)xA2+10x+24=0 答案:x仁-6 x2=-4(43)xA2+28x+180=0 答案:x1=-10 x2=-18(44)xA2-8x-209=0 答案:x1=-11 x2=19(45)xA2+23x+90=0 答案:x1=-18 x2=-5(46)x A2+7x+6=0 答案:x仁-6 x2=-1(47)x A2+16x+28=0 答案:x1=-14 x2=-2(48)xA2+5x-50=0 答案:x1=-10 x2=5(49)xA2+13x-14=0 答案:x1=1 x2=-14(50)xA2-23x+102=0 答案:x仁17 x2=6(51)xA2+5x-176=0 答案:x1=-16 x2=11(52)xA2-8x-20=0 答案:x仁-2 x2=10(53)xA2-16x+39=0 答案:x1=3 x2=13(54)xA2+32x+240=x1=-20 x2=-120 答案:(55)xA2+34x+288=x1=-18 x2=-160 答案:(56)xA2+22x+105=x仁-7 x2=-150 答案:(57)xA2+19x-20=0 答案:x1=-20 x2=1(58)xA2-7x+6=0 答案:x1=6 x2=1(59)xA2+4x-22 仁0 答案:x仁13 x2=-17(60)xA2+6x-9 仁0 答案:x1=-13 x2=7(61)xA2+8x+12=0 答案:x1=-2 x2=-6(62)xA2+7x-120=0 答案:x1=-15 x2=8(63)xA2-18x+17=0 答案:x1=17 x2=1(64)xA2+7x-170=0 答案:x1=-17 x2=10(65)xA2+6x+8=0 答案:x仁-4 x2=-2(66)x^2+13x+12=0 答案:x仁-1 x2=-12(67)xA2+24x+119=0 答案:x仁-7 x2=-17(68)x A2+11x-42=0 答案:x1=3 x2=-14(69)x A20x-289=0 答案:x仁17 x2=-17(70)xA2+13x+30=0 答案:x仁-3 x2=-10(71)xA2-24x+140=0 答案:x1=14 x2=10(72)xA2+4x-60=0 答案:x1=-10 x2=6(73)xA2+27x+170=0 答案:x1=-10 x2=-17(74)xA2+27x+152=0 答案:x1=-19 x2=-8(75)xA2-2x-99=0 答案:x仁11 x2=-9(76)xA2+12x+11=0 答案:x1=-11 x2=-1(77)xA2+17x+70=0 答案:x1=-10 x2=-7(78)xA2+20x+19=0 答案:x1=-19 x2=-1(79)xA2-2x-168=0 答案:x1=-12 x2=14(80)xA2-13x+30=0 答案:x1=3 x2=10(81)xA2-10x-119=0 答案:x仁17 x2=-7(82)xA2+16x-17=0 答案:x1=1 x2=-17(83)xA2-1x-20=0 答案:x1=5 x2=-4(84)xA2-2x-288=0 答案:x仁18 x2=-16(85)xA2-20x+64=0 答案:x仁16 x2=4(86)xA2+22x+105=0 答案:x仁-7 x2=-15(87)xA2+13x+12=0 答案:x仁-1 x2=-12(88)x^2-4x-285=0 答案:x仁19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x A2-17x+16=0 答案:x1=1 x2=16(91)x A2+3x-4=0 答案:x1=1 x2=-4(92)xA2-14x+48=0 答案:x1=6 x2=8(93)xA2-12x-133=0 答案:x仁19 x2=-7(94)xA2+5x+4=0 答案:x仁-1 x2=-4(95)xA2+6x-9 仁0 答案:x1=7 x2=-13(96)xA2+3x-4=0 答案:x仁-4 x2=1(97)xA2-13x+12=0 答案:x1=12 x2=1(98)xA2+7x-44=0 答案:x1=-11 x2=4(99)xA2-6x-7=0 答案:x仁-1 x2=7 (100)xA2-9x-90=0 答案:x仁15 x2=-6(101)xA2+17x+72=x仁-8 x2=-9 0 答案:(102)xA2+13x-14=0 答案:x1=-14 x2=1 (103)xA2+9x-36=0 答案:x1=-12 x2=3 (104)xA2-9x-90=0 答案:x仁-6 x2=15(105)xA2+14x+13=x仁-1 x2=-13 0 答案:(106)xA2-16x+63=0 答案:x1=7 x2=9 (107)xA2-15x+44=0 答案:x1=4 x2=11 (108)xA2+2x-168=0 答案:x1=-14 x2=12 (109)xA2-6x-216=0 答案:x1=-12 x2=18 (110)xA2-6x-55=0 答案:x仁11 x2=-5(111)x A2+18x+32=0 答案:x1=-2 x2=-16。
一元二次方程10道例题
一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。
所以方程的解为x_1 = 7,x_2=-1。
二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。
2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。
3. 然后用直接开平方法,x+3=±4。
- 当x+3 = 4时,x=1。
- 当x + 3=-4时,x=-7。
所以方程的解为x_1=1,x_2 = - 7。
三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。
在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。
1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。
2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。
- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。
- 当取负号时,x=(5-1)/(4)=1。
所以方程的解为x_1=(3)/(2),x_2 = 1。
四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。
2. 则有x-1=0或者x - 2=0。
- 当x-1=0时,x = 1。
- 当x-2=0时,x=2。
所以方程的解为x_1=1,x_2=2。
例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。
一元二次方程100道计算题练习(附答案)
一元二次方程100 道计算题练习1、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)24、2x2 10x 35、(x+5)2=166、2(2x-1)-x(1-2x)=07、x2 =64 8、5x2 - 25=0 9、8(3 -x)2 –72=010、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x 2 + 2x + 3=0 13、x 2 + 6x-5=0 14、x 2 -4x+ 3=0 15、x 2 -2x-1 =0 16、2x 2 +3x+1=0 17、3x 2 +2x-1 =0 18、5x 2 -3x+2 =0 19、7x 2 -4x-3 =0 20、-x 2 -x+12 =0 21、x 2 -6x+9 =0122、(3x2)2( 2x3) 223、x 2-3=4x2-2x-4=0 24、x25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3) 2=x 2-9 29、-3x 2+22x-24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x+8=0 32、3(x-5)2=x(5-x) 33、(x+2) 2=8x34、(x-2) 2=(2x+3)2 35、7x 2 2x 0 36、4t 2 4t 1 04 x 3 x x 3 0 38、6x 2 31x 35 0 39、2x3121 0 37、 2240、2x 2 23x 65 02补充练习:一、利用因式分解法解下列方程(x-2) 2=(2x-3)2 x 2 4x 0 3x(x 1) 3x 3x2-2 3 x+3=0 58516 0x2 x二、利用开平方法解下列方程1 y 2(2 1) 2 154(x-3)2=25 (3x 2)224三、利用配方法解下列方程x x 3 2 6x 12 02 5 2 2 0 x x 2 7x 10 0四、利用公式法解下列方程-3x 2+22x-24=0 2x(x-3)=x-3.3x2+5(2x+1)=0五、选用适当的方法解下列方程3(x+1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 302 3 1 0 x x2 x1) ( 1)((x xx13 42)(3x 11)(x 2) 2 x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.43、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场地ABCD 上修建三条同样宽的 3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为 566 米2,问小路应为多宽?5、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少 10 千克,商店想在月销售成本不超过 1 万元的情况下,使得月销售利润达到 8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到 1999 年底,两年共获利润 56 万元,已知 1999 年的年获利率比 1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?5思考:1、关于x的一元二次方程2 4 0a 的一个根为0,则a的值为。
(完整版)一元二次方程应用题精选(附答案)
一元二次方程应用题精选1、有两个连续整数,它们的平方和为25,求这两个数。
2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施。
经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案。
4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部,求小路宽的宽度.分作为耕地要使耕地的面积是540m210、如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?11、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?12、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。
一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、xx 4)1(2=+3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2=648、5x 2-52=09、8(3-x )2–72=010、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=012、x 2+2x +3=013、x 2+6x -5=014、x 2-4x+3=015、x 2-2x -1=016、2x 2+3x+1=017、3x 2+2x -1=018、5x 2-3x+2=019、7x 2-4x -3=020、-x 2-x+12=021、x 2-6x+9=022、22(32)(23)x x -=-23、x 2-2x-4=024、x 2-3=4x25、3x 2+8x -3=0(配方法)26、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3)2=x 2-929、-3x 2+22x -24=030、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=032、3(x-5)2=x(5-x)33、(x +2)2=8x34、(x -2)2=(2x +3)235、2720x x +=36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+=39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2)2=(2x-3)242=-x x 3(1)33x x x +=+x 2()()0165852=+---x x 二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=2524)23(2=+x三、利用配方法解下列方程25220x x -+=012632=--x x 01072=+-x x 四、利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1)2-3(x +1)+2=022(21)9(3)x x +=-2230x x --=21302x x ++=4)2)(1(13)1(+-=-+x x x x 2)2)(113(=--x x x (x +1)-5x =0.3x (x -3)=2(x -1)(x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6m,CD=4m,AD=2m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为。
一元二次方程50题 参考答案与试题解析
一元二次方程参考答案与试题解析一.解答题(共50小题)1.【分析】方程变形后,开方即可求出解.【解答】解:(2x﹣1)2﹣121=0,(2x﹣1)2=121,2x﹣1=±11,2x=±11+1.∴x1=6,x2=﹣5.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.2.【分析】根据直接开平方法可以解答此方程.【解答】解:∵(x﹣2)2﹣9=0,∴(x﹣2)2=9,∴x﹣2=±3,∴x﹣2=3或x﹣2=﹣3,解得,x1=5,x2=﹣1.【点评】本题考查解一元二次方程﹣直接开平方法,解答本题的关键是明确解一元二次方程的方法.3.【分析】(1)利用直接开平方法求解可得;(2)先整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵4(x﹣5)2=16,∴(x﹣5)2=4,∴x﹣5=2或x﹣5=﹣2,解得x1=7,x2=3;(2)将方程整理为一般式,得:x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.【分析】利用直接开平方法求解可得.【解答】解:∵(x﹣1)2=3,∴x﹣1=±,解得:,.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.【分析】首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.【解答】解:两边直接开平方得:2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,故x=4,x=﹣1.【点评】此题主要考查了直接开平方法解一元一次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.6.【分析】先两边开方得到2x﹣1=±(3﹣x),然后解两个一次方程即可.【解答】解:2x﹣1=±(3﹣x),2x﹣1=3﹣x或2x﹣1=﹣3+x,所以x1=,x2=﹣2.【点评】本题考查了解一元二次方程﹣直接开平方的方法:形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.【分析】(1)利用直接开平方法求解可得;(2)先将方程整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵121x2﹣25=0,∴121x2=25,则x2=,∴x1=,x2=﹣;(2)将方程整理为一般式得x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.【分析】先把给出的方程进行整理,再利用直接开方法求出解即可.【解答】解:(y+2)2﹣6=0,(y+2)2=12,y+2=±2,y1=2﹣2,y2=﹣2﹣2.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握各种解法是解本题的关键.9.【分析】移项后利用直接开平方法求解可得.【解答】解:∵y2﹣4=0,∴y2=4,则y1=2,y2=﹣2.【点评】本题主要考查解一元二次方程﹣直接开平方法,形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.10.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)(x+1)2=5,x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)去分母得:3﹣(x+2)(1﹣x)=x2﹣4,整理得:3+x2+x﹣2=x2﹣4,即x=﹣5,经检验:x=﹣5是原方程的根.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.【分析】(1)利用直接开平方法解方程;(2)先去分母,把分式方程化为3+x﹣5(x﹣1)=﹣2x,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)x+1=±2,所以x1=1,x2=﹣3;(2)解方程两边同乘(x﹣1)得3+x﹣5(x﹣1)=﹣2x,解这个方程得x=4.检验:当x=4时,x﹣1≠0,所以x=4是原方程的解.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了解分式方程.12.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程利用完全平方公式变形,开方即可求出解.【解答】解:(1)两边都乘以(x+3)(x﹣1),得:(x﹣1)2﹣2(x+3)=(x﹣1)(x+3),整理得:x2﹣2x+1﹣2x﹣6=x2+2x﹣3解得,x=﹣,检验:当x=﹣时,(x+3)(x﹣1)≠0,所以,原分式方程的解为x=﹣;(2)方程两边同除以2,变形得x2﹣2x=,配方,得x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解分式方程,以及解一元二次方程,熟练掌握运算方法是解本题的关键.13.【分析】(1)先把各二次根式化为最简二次根式,然后进行二次根式的乘法运算即可;(2)利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程.【解答】解:(1)原式=4﹣2+×3=2+;(2)x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.14.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)去分母得:2x2﹣x+5=2x2﹣10x,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握各自的解法是解本题的关键.15.【分析】(1)方程利用直接开平方法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:x2=9,开方得:x=±3,解得:x1=3,x2=﹣3;(2)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】此题考查了解一元二次方程﹣配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.16.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1,即x1=1+,x2=1﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.【分析】首先展开化为x2﹣6x+9=0,再配方后开方计算即可求解.【解答】解:(x﹣4)(x﹣2)+1=0,方程化为x2﹣6x+9=0,(x﹣3)2=0,解得x1=x2=3.【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)去分母得:5x+10=6x﹣3,解得:x=13,经检验x=13是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握完全平方公式是解本题的关键.19.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣8x+11=0,∴x2﹣8x=﹣11,则x2﹣8x+16=﹣11+16,即(x﹣4)2=5,∴x﹣4=±,∴x=4±.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】(1)利用配方法求解可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)∵x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,即(x﹣4)2=15,则x﹣4=±,∴x=4;(2)两边都乘以x﹣2,得:3+1﹣x=x﹣2,解得x=3,经检验x=3是原分式方程的解.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【分析】(1)利用解一元二次方程的方法﹣直接开平方法解方程即可;(1)先移项得x2﹣4x=3,再把方程两边加上4得到x2﹣4x+4=3+4,即(x﹣2)2=7,然后利用直接开平方法求解;【解答】解:(1)(2x+3)2=9,∴2x+3=±3,∴2x+3=3或2x+3=﹣3,∴x1=0,x2=﹣3;(2)x2﹣4x﹣3=0,移项得,x2﹣4x=3,方程两边加上4得,x2﹣4x+4=7,配方得,(x﹣2)2=7,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】本题考查的是一元二次方程的解法,掌握配方法、因式分解法、公式法解一元二次方程的一般步骤是解题的关键.22.【分析】(1)利用配方法求解可得;(2)整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,则x﹣1=±,∴x=1;(2)方程整理为一般式,得:x2﹣4x﹣12=0,∵(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得x=﹣2或x=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.【分析】利用配方法求解可得.【解答】解:∵2x2﹣4x=8,∴x2﹣2x=4,则x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,则x1=+1,x2=+1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.25.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.26.【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:方程移项得:3x2﹣6x=﹣1,即x2﹣2x=﹣,配方得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.27.【分析】把常数项2移项后,应该在左右两边同时加上一次项系数﹣5的一半的平方.【解答】解:把方程x2﹣5x+2=0的常数项移到等号的右边,得x2﹣5x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣5x+(﹣)2=﹣2+(﹣)2,配方,得(x﹣)2=.开方,得x﹣=±,解得x1=,x2=.【点评】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.28.【分析】先进行移项,然后系数化1,再进行配方,即可求出答案.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方x2﹣x+()2=﹣+()2,(x﹣)2=,由此可得x ﹣=,x 1=1,x 2=.【点评】本题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.29.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:配方得x 2﹣4x +4=1+4,即(x ﹣2)2=5,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.30.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x 2﹣4x =3,配方得x 2﹣4x +4=3+4,即(x ﹣2)2=,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.31.【分析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.【解答】解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣﹣配方法,熟悉完全平方公式是解题的关键.32.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.【点评】本题考查了一元二次方程的解法﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.33.【分析】解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.然后利用直接开平方法即可求解.【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.34.【分析】先将已知方程转化为一般式,然后根据求根公式解答.【解答】解:由原方程,得x2+2x+2=0.这里a=1,b=2,c=2.∵△=b2﹣4ac=(2)2﹣4×1×2=0.∴x==﹣.即x1=x2=﹣.【点评】本题主要考查了解一元二次方程﹣公式法.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.35.【分析】整理后求出b2﹣4ac的值,再代入公式求出即可,也可以用因式分解法求解.【解答】解:方法一、整理得:x2+3x+2=0,b2﹣4ac=32﹣4×1×2=1,x=,x1=﹣1,x2=﹣2;方法二、整理得:x2+3x+2=0,(x+1)(x+2)=0,x+1=0,x+2=0,x1=﹣1,x2=﹣2.【点评】本题考查了解一元二次方程,能熟记公式是解此题的关键.36.【分析】(1)利用配方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.37.【分析】首先找出a、b、c的值,计算根的判别式,进一步利用求根公式求得答案即可.【解答】解:x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴△=b2﹣4ac=42﹣4×1×(﹣5)=36,则x==,解得x1=﹣5,x2=1.【点评】此题考查用公式法解一元二次方程,掌握用公式法解方程的步骤与方法是解决问题的关键.38.【分析】(1)直接开平方法求解可得;(2)根据公式法求解可得.【解答】解:(1)(x﹣1)2=4,x﹣1=±2,解得x1=﹣1,x2=3;(2)x2﹣x﹣1=0,∵a=1,b=﹣,c=﹣1,∴△=3﹣4×1×(﹣1)=7>0,x=,解得x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.39.【分析】先进行整理,再根据公式法求解可得.【解答】解:x2﹣4=6(x+2).整理得x2﹣6x﹣16=0,∵a=1,b=﹣6,c=﹣16,∴△=36﹣4×1×(﹣16)=100>0,x==3±5,解得x1=﹣2,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.40.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或x﹣1=﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x﹣1=0,∵a=1,b=﹣4,c=﹣1,∴△=(﹣4)2﹣4×1×(﹣1)=20>0,则x==2,解得:x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.41.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣4,c=﹣7,∴△=(﹣4)2﹣4×1×(﹣7)=44>0,则x==2,即x1=2+,x2=2﹣;(2)∵3x(2x+1)=2(2x+1),∴3x(2x+1)﹣2(2x+1)=0,则(2x+1)(3x﹣2)=0,∴2x+1=0或3x﹣2=0,解得x1=﹣,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.42.【分析】(1)利用直接开平方法求解可得;(2)整理为一般式,再利用公式法求解可得.【解答】解:(1)∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)将方程整理为一般式,得:x2﹣3x﹣1=0,∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.43.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣8,c=3,∴△=(﹣8)2﹣4×1×3=52>0,∴x==4,即x1=4+,x2=4﹣;(2)方程整理为一般式,得:2x2﹣7x=0,则x(2x﹣7)=0,∴x=0或2x﹣7=0,解得x1=0,x2=3.5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.44.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.45.【分析】(1)直接利用配方法解方程得出答案;(2)直接利用提取公因式法解方程进而得出答案.【解答】解:(1)x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,故(x﹣3)2=2x﹣3=±,解得:x1=3+,x2=3﹣;(2)x(x﹣2)=6﹣3xx(x﹣2)﹣3(2﹣x)=0,(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.【点评】此题主要考查了配方法以及因式分解法解方程,正确掌握解题方法是解题关键.46.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣9=0,∴x2=9,则x1=3,x2=﹣3;(2)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得x1=﹣1,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.47.【分析】(1)先整理为一般式,再利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.48.【分析】利用因式分解法或直接开平方法求解可得.【解答】解:方法一:∵(2x+3)2=(x﹣1)2,∴2x+3=x﹣1或2x+3=1﹣x,解得x1=﹣4,x2=﹣.方法二:∵(2x+3)2=(x﹣1)2,∴(2x+3)2﹣(x﹣1)2=0,则(2x+3+x﹣1)(2x+3﹣x+1)=0,∴3x+2=0或x+4=0,解得:x1=﹣4,x2=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x﹣8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2,∴x1=﹣2+2,x2=﹣2﹣2;(2)∵(x﹣3)2=5(x﹣3),∴(x﹣3)2﹣5(x﹣3)=0,则(x﹣3)(x﹣3﹣5)=0,∴x﹣3=0或x﹣8=0,解得x1=3,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.50.【分析】(1)先把方程化为整式方程3(x+3)=5(x+1),再解整式方程,然后进行检验确定原方程的解;(2)先把方程化为整式方程5﹣2(x+1)=2x,再解整式方程,然后进行检验确定原方程的解.(3)先利用配方法得到(x﹣2)2=5,然后利用直接开平方法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)去分母得3(x+3)=5(x+1),解得x=2,经检验,原方程的解为x=2;(2)去分母得5﹣2(x+1)=2x,解得x=,经检验,原方程的解为x=;(3)x2﹣4x+4=5,(x﹣2)2=5,x﹣2=±,所以x1=2+,x2=2﹣;(4)x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,所以x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程和解分式方程.。
一元二次方程计算题及答案120道
优质解析6X²-7X+1=06X²-7X=-1X²-﹙7/6﹚X+﹙7/12﹚²=-1/6﹢﹙7/12﹚²﹙ X-7/12﹚²=25/144∴X-7/12=±5/12∴X1=1,X2=1/65X²-18=9X5X²-9X=18X²-1.8X=3.6﹙ X-0.9﹚²=4.41∴X-.9=±2.1∴X1=3,X2=-1.24X²-3X=52解:X²-﹙3/4﹚X=13﹙ X-3/8﹚²=13∴X-3/8=±29/8∴X1=4,X2 =-13/45X²=4-2X5X²+2X=4X²+0.2X=0.8﹙X+0.1﹚² =0.81X+0.1=±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多 1)x^2-9x+8=0 答案:x1=8 x 2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(23)x^2+5x-176=0 答案:x1=-16 x2=11(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(45)x^2+23x+90=0 答案:x1=-18 x2=-5(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(67)x^2+24x+119=0 答案:x1=-7 x2=-17(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6 (101)x^2+17x+72=0 答案:x1=-8 x2=-9 (102)x^2+13x-14=0 答案:x1=-14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x-90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=-13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11(108)x^2+2x-168=0 答案:x1=-14 x2=12 (109)x^2-6x-216=0 答案:x1=-12 x2=18 (110)x^2-6x-55=0 答案:x1=11 x2=-5 (111)x^2+18x+32=0 答案:x1=-2 x2=-16。
(完整版)一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
一元二次方程50道题
一元二次方程50道题一、基础形式类(1 - 10题)1. 解方程x^2+3x + 2 = 0。
这个方程就像是一个小迷宫,我们得找到让这个等式成立的x的值哦。
2. 求解方程x^2-5x + 6 = 0。
这就好比是给x找一个合适的家,让这个等式舒舒服服的。
3. 解一元二次方程x^2+x - 6 = 0。
这个方程像是一个小谜题,x是那个神秘的答案呢。
4. 求方程x^2-3x - 4 = 0的解。
感觉就像在数字的森林里找宝藏,宝藏就是x的值。
5. 解方程x^2+2x - 3 = 0。
这个方程是一个等待我们破解的小密码,密码就是x 的正确数值。
6. 求解x^2-4x + 3 = 0。
这就像是一场数字的捉迷藏,x躲在某个地方,我们要把它找出来。
7. 解一元二次方程x^2+4x + 3 = 0。
这个方程像是一个数字的小盒子,我们要打开它找到x。
8. 求方程x^2-2x - 8 = 0的解。
就像是在数字的海洋里捞针,针就是x的值。
9. 解方程x^2+5x - 14 = 0。
这个方程是一个数字的小挑战,看我们能不能征服它找到x。
10. 求解x^2-6x + 8 = 0。
这就像给x安排一个合适的位置,让这个等式完美成立。
二、含系数类(11 - 20题)11. 解2x^2+3x - 2 = 0。
这个方程里2就像是x的一个小跟班,我们要一起找到合适的x。
12. 求解3x^2-5x + 2 = 0。
3在这儿可有点小威风,不过我们可不怕,照样能找到x。
13. 解一元二次方程 - x^2+2x + 3 = 0。
这个负号就像个小捣蛋鬼,但我们能搞定它找到x。
14. 求方程4x^2-4x + 1 = 0的解。
4这个家伙让方程看起来有点复杂,不过没关系。
15. 解方程 - 2x^2-3x + 1 = 0。
这个负2就像个小乌云,我们要拨开乌云见x。
16. 求解5x^2+2x - 3 = 0。
5在这里就像个大力士,不过我们要指挥它来找到x。
(精选版)一元二次方程难题集锦
(精选版)一元二次方程难题集锦一元二次方程是数学中的重要概念,它的解决涉及到方程理解与解题能力的培养。
下面是一些精选的一元二次方程难题,供大家练和思考。
题目一已知一元二次方程 $ax^2 + bx + c = 0$ 的解为 $x_1 = 2$,$x_2 = -3$,求方程的系数 $a$,$b$,$c$。
题目二一块田地的面积为 $45$ 平方米,它的长是宽的 $5$ 倍。
假设长和宽都增加 $x$ 米,那么田地的面积将增加 $20x + 25x^2$ 平方米。
请问这块田地的长和宽各是多少米?题目三设一元二次方程的两个根为 $x_1$ 和 $x_2$,已知 $x_1^2 + x_2^2 = 10$,$x_1 + x_2 = 3$,求该方程的表达式。
题目四已知一元二次方程的一个根为 $x = 1$,且方程的系数 $a$,$b$,$c$ 满足 $a+b+c = 5$,$a-b+c = 3$,求方程的另一个根。
题目五已知一元二次方程的两个根为 $x_1 = 2 - \sqrt{3}$,$x_2 = 2 + \sqrt{3}$,求该方程的表达式。
题目六一元二次方程 $ax^2 + bx + c$ 的图像是一个抛物线,如果$a>0$,则抛物线开口朝上;如果 $a<0$,则抛物线开口朝下。
请问,对于下列方程,它们的图像是开口朝上还是开口朝下?1. $2x^2 - 3x + 1 = 0$2. $-x^2 + 2x - 3 = 0$3. $3x^2 + 2x + 1 = 0$题目七一元二次方程 $ax^2 + bx + c$ 的判别式定义为 $\Delta = b^2 - 4ac$。
请问,对于下列方程,它们的判别式是否大于 $0$?1. $x^2 - 6x + 1 = 0$2. $2x^2 + 3x + 1 = 0$3. $3x^2 + 4x + 1 = 0$以上是一些精选的一元二次方程难题,希望能够帮助你提高解题能力和对方程的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程精选(1)
一、选择题
1. 一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm 2
,则对角线所用竹条至少需( )
A.cm B.30cm C.60cm D. 2. 下列方程中,无论b取什么实数,总有两个不相等实数根的是( )
A .210x bx ++=
B .221x bx b +=+
C .20x bx b ++=
D .22
x bx b +=
3. 若一元二次方程22630x x -+=的两根为αβ,,那么2()αβ-的值是( )
A.15 B.3-
C.3 D.以上答案都不对 二、填空题 4. 已知2x y +=,1xy =,则x y -=____________;
5. 已知12x x ,是方程01932=+-m x x 的两个根,且3
1m x =,则=m . 6. 已知x 为实数,且满足015)32(2)32(222=-+++x x x x ,则x x 322+的值为___.
三、应用题
7. 某超市销售一种饮料,平均每天可售出100箱,每箱利润120元。
为了扩大销售,增加利润,超市准备适当降价。
据测算,若每箱降价1元,每天可多售出2箱。
如果要使每天销售饮料获利14000元,问每箱应降价多少元?
12. 实践应用:某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪.如图1,四边形CDEF ,CD CF <,已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元.(1)若计划修建费为150元,能否完成该草坪围栏修造任务?
(2)若计划修建费为120元,能否完成该草坪围坪修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由.
14. 经营一批进价为2元一件的小商品,•在市场营销中发现此商品的日销售单价x (元)与日销售量y (件)之间关系为y=-2x+24,而日销售利润P (元)与日销售单价x (元)之间的关系为P=xy-2,当日销售单价为多少时,每日获得利润48元,且保证日销售量不低于10件?
15. 不解方程,求作一个新方程,使它的两根分别是方程2
2510x x -+=两根的倒数。
17. 已知关于x 的一元二次方程034)12(2=-++-k x k x .
(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt ABC △的斜边31=a ,且两条直角边的长b 和c 恰好是这个方程的两个根时,求k 的值.
19. 用24m 长的篱笆围成一面靠墙(墙长12m),大小相等且彼此相连的三个矩形鸡舍(如图).
(1)鸡场的面积能够达到32m 2吗?若能,给出你的方案?若不能,请说明理由;
(2)鸡场的面积能够达到80m 2吗?若能,给出你的方案?若不能,请说明理由.
一元二次方程精选(2)
一、选择题
1. 方程2
210x ax a ++-=的根的情况是( )
A.有两个相等实数根 B.没有实数根 C.有两个不等实数根D.有两个实数根
2. 一元二次方程2240y y +-=的根的情况是( )
A .有两个相等的实数根 B.有两个不相等的实数根,且两根同号
C.有两个不相等的实数根,且两根异号 D.没有实数根
3. 若c 小于0,则关于x 的一元二次方程2530x x c ++=的根的情况是( )
A.两根一正一负,且正根的绝对值大于负根的绝对值
B.两根一正一负,且负根的绝对值大于正根 C.无实根 D.有两个负根
5. 方程260x x q -+=配方成2()7x p -=的形式,那么262x x q -+=可以配方成下列的( )
A .2()5x p -=
B .2()9x p -=
C .2(2)9x p -+=
D .2(2)5x p -+= 6. 如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( )
A .(20-x)(32-x)= 540
B .(20-x)(32-x)=100
C .(20+x)(32-x)=540
D .(20+x)(32-x)= 540
7. 小明用配方法解下列方程时,只有一个配方有错误,请你确定小明错的是( )
A .22990x x --=化成 2(1)100x -=
B .2
890x x ++=化成2(4)25x +=
32
20
C .22740t t --=化成2781416t ⎛⎫-= ⎪⎝⎭
D .23420y y --=化成2
21039y ⎛⎫-= ⎪⎝⎭ 8. 已知:问题1,某厂用2年时间把总产值增加了原来的b 倍,•求每年平均增长的百分数;
问题2,总产值用2年的时间在原来a 万元的基础上增加了b 万元,•求每年平均增长的百分数,问题3,某厂用2年的时间把总产值增加到原来的b 倍,求每年平均增长的百分数.
设每年平均增长的百分数x ,那么下面的三个方程:①(1+x )2=b ,②a (1+x )2=a+b ,③(1+x )2=b+1,按问题1、2、3的序号排列,相对应的是( )
A .①②③
B .③②①
C .①③②
D .②①③
12. 关于x 的方程0)()(=---x b b x ax 的解为 ( )A. b a , B. b a
,1 C. b a ,1- D. b a -, 15. 已知210x x --=,则32
22003x x -++的值为 .
16. 解方程2214133x x x x -+=-时,设21x y x =-,则化成关于y 的整式方程是 . 17. 一元二次方程20(0)px qx r p ++=≠的两根为0和1-,则a p
= .
20. 已知:a b c ,,是ABC △的三条边,方程23())()04
b c x a c x a c +---=有两个相等的实数根,则ABC △的形状为 .
21. 若x 2y 2-2xy+1=0,那x 与y 的关系是_______.
23.解方程0223)12(22=-+-+x x 24. 方法证明:231x x --+的值不大于1312
.
28. 解某关于y 的一元二次方程时,学生甲看错了方程的常数项,解得两根为8和2;学生乙看错了方程的一次项系数,解得两根为9-和1-,若原来方程的二次项系数为1,求出这个方程.
30. 在等腰三角形ABC 中,A ∠,B ∠,C ∠的对边分别为a b c ,,,已知3a =,b 和c 是关于x 的方程21202
x mx m ++-=的两个实数根,求ABC △的周长.
12小明用一根长为30厘米的铁丝围成一个直角三角形,使斜边长为13厘米,
则该三角形的面积等于【 】.A .15厘米2 B .30厘米2 C .45厘米213.放铅笔的V 形槽如图4,每往上一层可以多放一支铅笔,
现有190支铅笔,则要放多少层 ?
14、换元法解下列分式方程061512=-⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-x x x x
图
27. 某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若银行存款的利率不变,到期后得本金和利息共1155元,求这种存款方式的年利率.
19. 根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台宽20 米,如果你是文娱会演时主持人,那么你应该站在距舞台前沿端点约米(精确到0.1米).
7. 一容器中盛满60升纯酒精,倒出若干升后用水加满,然后倒出比上一次多14升的溶液,再用水加满,若此时容器里纯酒精和水各占一半,问第一次倒出液体多少升?
9. 某工厂制造一种产品,原来每件的成本价是500元,销售价是625元,经市场预测,现在该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为使两个月后的原销售利润不变,该产品的成本价平均每月应降低百分之几?
18. 小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.
(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?
(3)小球滚动到5m时约用了多少时间(精确到0.1s)?。