有理数的加法运算律(2)

合集下载

2.1.1 有理数的加法(第2课时 有理数的加法运算律)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第2课时 有理数的加法运算律)(课件)七年级数学上册(人教版2024)

=-25(km).
答:将最后一名老人送到目的地时,小王在出发点的西边,距离是25 km.
(2)若出租车耗油量为0.08 L/km,这天上午小王的出租车
共耗油多少升?
【解】|+15|+|-4|+|+13|+|-10|+|
-12|+|+3|+|-13|+|-17|=87(km),
0.08×87=6.96(L).
)
A. 5+(-3)=3+5
B. 8+(-5)+9=(-5)+8+9
C. [6+(-3)]+5=[6+(-5)]+3

D. +(-2)+











+(+2)
典例剖析
例1(新课本ห้องสมุดไป่ตู้2 )计算:
(1)8+(-6)+(-8);
(2)16+(-25)+24+(-35).
解:(1)8+(-6)+(-8)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第二课时) 有理数的加法运算律
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.能概括出有理数的加法交换律和结合律.
2.灵活熟练地运用加法交换律、结合律简化运算(重点、
难点)
情景导入


解: 原式=[(-2.125)+
=3+0=3.

+

]+[

+

+(-3.2)]
14. 出租车司机小张某天下午的营运全是在东西走向的大道上进行的,如果规

有理数的加法运算律 (2)

有理数的加法运算律 (2)

有理数加法的运算律知识技能目标1.进一步掌握有理数的加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.学会把知识运用于实践,灵活、合理地运用加法运算律简化运算.过程性目标1.经历有理数加法中运算律的探索,概括出有理数加法仍满足加法交换律和结合律;2.通过学生主动参与探索有理数加法运算律的数学活动,体会观察、实验、归纳、推理等活动在数学学习中的作用.情感态度目标通过运用加法运算律来简化运算,让学生体会有理数加法计算的多样化,培养学生理解的深刻性,扩大视野,拓展思维.重点和难点重点:有理数加法中运算律;难点:灵活运用运算律使运算简便.教学过程一.创设情境请同学们回顾小学里学习的加法交换律和结合律,猜想这些运算律对于有理数是否同样适用?二.探索归纳1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算结果:□+○和○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并且比较两个运算的结果:(□+○)+◇和○+(□+◇)2.你能发现什么?请评判自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.对于交换律和结合律不仅要会用文字表示,也要会用字母表示:加法交换律:两个数相加,交换加数的位置,和不变.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.说明:(1) 上面式中字母a、b、c分别表示任意的一个有理数,在同一个式子中,相同字母只能表示同一个数;(2) 加法的运算律可以推广到三个以上有理数相加的情况.三.实践应用1.例1计算:;.分析由学生独立思考而后交流解法,板演中在每一步骤中要求口述相应的运算律或运算法则.说明第(1)题是运用运算律将同号数先加,使计算简便;第(2)题是用运算律把同分母或易通分的分数先行相加,使运算简便.2.练习计算:;;3.例2 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.问这10筐苹果总共重多少?说明:⑴教学方法可让学生独立先算,然后选取两种不同的计算方法,请同学板书,教师在讲评时通过对不同方法的比较,训练学生思维的灵活性,并让学生养成选择最佳解题方法的良好学习习惯;⑵此例的实际算法有多种,如把同号的数结合起来分别相加,但这里把相加等于0的数结合起来相加,计算较为简便.4.练习利用有理数的加法计算:某天早晨气温是-3℃,到中午升高了5℃,晚上又降低了3℃,到午夜再降低了4℃,求午夜时的温度.四.交流反思1.本节课重点学习了加法运算律的应用.2.你能灵活、合理地使用运算律简化运算吗?你已经掌握了哪些技巧?学生思考后交流.五.检测反馈1.计算:;;;;.2.列式并计算:+1.2的相反数与-3.1的绝对值的和;.3.利用有理数加法解下列各题:⑴存折中原有550元,取出260元,又存入150元,现在存折中还有多少元?⑵潜水艇原停在海面下800米处,先上浮150米,又下潜200米,这时潜水艇在海面下多少米处?⑶仓库内原存某种原料3500千克,一周内存入和领出情况如下(存入为正,单位:千克):1500,-300,-650,600,-1800,-250,-200.问第七天末仓库内还存有这种原料多少千克?⑷某公路养护小组乘车沿南北向公路巡视维护,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,-9,+7,-14,-6,+13,-6,-8.问B地在A地何方,相距多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少升?。

有理数的加减运算

有理数的加减运算

一、有理数的加法1、有理数的加法法则:一般地,同号两数相加,取与加数相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数;2、有理数加法运算的步骤:先确定结果的符号,再计算结果的绝对值。

3、两个有理数相加符号确定:①两个正数;②两个负数;③一正一负,但正数的绝对值较大;④一正一负,但正数的绝对值较小;⑤零与正数;⑥零与负数;那么,(1)和为正数的是(填入代号,下同);(2)和为负数的是;(3)和的绝对值等于加数绝对值的和的是;(4)和的绝对值等于加数中较大绝对值与较小绝对值的差的是;(5)和等于其中一个加数的是;注:两个有理数相加,和不一定大于每一个加数例1:(口答)确定下列各题中的符号,并说明理由:(1)(+5)+(+7);(2)(-3)+(-10);(3)(+6)+(—5);(4)(+3)+(-7);(5)(-12)+(+12);(6)0+(-15);例2:计算下列各式:(1)(-11)+(-9)(2)(-3.5)+(+7)(3)(-1.08)+0(4)(+23)+(-23)(5)(-57)+(-27)(6)(+3)+(-12)(7)(—256)+(+313)(8)(-1.625)+(+158)(9)0+(-1.25)(10)(+1916)+(-11512)例3:在数轴上表示下列有理数的运算,并求出计算结果:(1)(-2)+(—4);(2)(-5)+4;例4:某家庭工厂一月份收支结余为-1200.50元,二月份收入为2000.70元,问二月底家庭工厂的收支结余情况如何?例5:冬天的某一天,哈尔滨的气温为-38℃,北京的气温比比哈尔滨高32℃,问当天北京的气温为多少度?4、有理数的加法运算律加法的交换律:两个有理数相加,交换加数的位置,和不变,即a b b a+=+;加法的结合律:三个有理数相加,先把前两个数相加,或者先把后两个数相加,和不变,即()()a b c a b c++=++;注:(1)一般地,多个有理数相加,可以把正数或负数分别结合在一起相加;(2)一般地,多个有理数相加,有相反数的先把相反数相加,能凑整的先凑整;(3)一般地,多个有理数相加,有分母相同的,先把同分母的数相加;例、计算:(1)(+14)+(-4)+(-1)+(+16)+(-5)(2)(-2.48)+4.33+(-7.52)+(-4.33)(3)5116 ()()() 6767 +-+-+-解:(1)原式=[(+14)+(+16)]+[(-4)+(-1)+(-5)]=(+30)+(-10)=+20 (注1)(2)原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=(—10)+0=-10 (注2)(3)原式=5116()()()6767+-+-+-=5116[()][()()]6677+-+-+-=2(1)3+-=13-(注3)例6、计算:(1)(-3.5)+[3+(-1.5)](2)(-18.65)+(-7.25)+(+18.15)+(+7.25)(3)53( 2.25)()()(0.125)84-+-+-++ (4)2111(4)(6)(3)(2)3234-+++-+-二、有理数的减法1、有理数的减法法则:减去一个数等于加上这个数的相反数。

【初+中数学】有理数的加法与减法(第2课时+有理数加法运算律)(教学课件)+七年级(苏科版2024)

【初+中数学】有理数的加法与减法(第2课时+有理数加法运算律)(教学课件)+七年级(苏科版2024)

( A )
5.(2024江苏宿迁期中)小红解题时,将式子(-8)+(-3)+8+(-4)先变成了[(-8)+8]+
[(-3)+(-4)],再计算结果,则小红运用了( B )
A.加法交换律
B.加法交换律和加法结合律
C.加法结合律
D.无法判断
解析
加数(-3)和8交换了位置,运用了加法交换律,先计算[(-8)+8]和[(-3)+(-4)],
工具)分别表示正数和负数(红色为正,黑色为负).图①表示的是(+2)+(-2),根
据这种表示法,可推算出图②所表示的算式是 ( B )
A.(+3)+(+6)
B.(+3)+(-6)
C.(-3)+(+6)
D.(-3)+(-6)
解析
题图②中有3个红色算筹,即为+3,6个黑色算筹,即为-6,表示的算式为
(+3)+(-6),故选B.
=[(-24)+(-16)+(+65)
=【(-2.6)+(-1.7)】+【(-3.8)+3.8】
=(-40)+(+65)
=-4.3+0
=+(65-40)
=-4.3
=25


(3) +(- )+(





)+(+ )




解:原式= +(- )+(







有理数的加法运算律

有理数的加法运算律

1.计算:
(1).(-3)+40+(-32) +(-8) ; (2) . 13 + ( - 56 ) + 47 + ( - 34 ) (3). 43 + ( - 77 ) + 27 + ( - 43 )
课堂小结
交换律 a+b=_b_+_a__
有理数加法 的运算律
结合律 (a+b)+c=_a_+_(_b_+_c)____
31 +(-28)+ 28 + 69 16 + ( - 25 ) + 24 + ( - 32 )
新课讲解
小组讨论:你是抓住数的什么特点使计算简化的? 依据是什么?
常用的三个规律: 1.有相反数的可先把相反数相加,能凑整的可先凑整; 2.有分母相同的,可先把分母相同的数结合相加; 3.然后把正数或负数分别结合在一起相加.
应用
第二章 有理数及其运算
4 有理数的加法
第2课时 有理数加法的运算律
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简 化运算
自学指导
1.自学 P37“做一做”,完成“想一 想”,总结有理数的加法运算律. 2.自学P37 例2,例3,思考应用运算律 遵守原则可使计算简便. 8分钟后,看谁完过上面的计算和对比你能发现什么?
有理数的加法中,两 个数相加,交换加数 的位置和不变.
有理数加法中,三个数相加, 先把前两个数相加,或者先 把后两个数相加,和不变.
加法交换律: a+b=b+a
加法的结合律: (a+b)+c=a+(b+c)

人教版数学七上 有理数的加法(2)

人教版数学七上  有理数的加法(2)

体验收获
今天我们学习了哪些知识? 1.我们学习了哪些加法运算律? 2.进行有理数的加法运算时,哪些情况下考虑使用加法运 算律呢?
达标测试
1.计算(+16)+(-25)+(+24)+(-35),先把 ___正___数和_____负_数分别结合在一起相加,计算比较 简便,计算结果是_____-_.20
解: 16 + (-25) + 24+ (-35) = 16 + 24 + [ (-25) + (-35)] =40+ (-60) =-20.
把正数或负数分别相加,从而使计算简化.
新知探究2
[8+(-5)]+(-4)与8+[(-5)+(-4)],两次所得的和相同吗?
解: [8+(-5)]+(-4) =3+(-4) =-1 8+[(-5)+(-4)] =8+(-9) =-1 答:两次所得的和相同
(3)星期五全部股票出手共可卖多少钱?
答案: (1)28元;
(2)32元,28元;
(3)29000元.
布置作业 教材24页习题1.3第2题.
∴它们从小到大的顺序是b<-a<a<-b.
达标测试
6.一股民上周五收盘时以每股27元的价格买了 1000股股票,下表为本周内每日该股票的涨跌情况 (正数表示比前一天上涨,负数表示比前一天下跌):
星期
一二 三 四 五
涨跌(元) +2 +3 -1.5 -2.5 +1
(1)星期四收盘时,每股是多少元? (2)本周内每股最高价、最低价分别是多少元?
_绝__对__值__较__大__的__加__数__的__符__号___, _并__且__用__较__大__的__绝__对__值____ _减__去__较__小__的__绝__对__值_____. (3)互为相反数的两个数相加得___0__ . (4)一个数与0相加,仍得 ___这__个__数____.

有理数的加法(er)

有理数的加法(er)

有理数的加法(二)学习目标1.理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题;2.通过师生互动,讨论与交流,提高学生分析问题和解决问题的能力.教学重点:有理数加法运算律,灵活运用加法运算律进行有理数加法运算.预习导学——不看不讲忆一忆:写出小学学过的加法交换律和结合律.知识点一:加法交换律学一学:阅读教材P22 的内容,并解决下列问题:1.计算:30+(-20),(-20)+30,你有什么发现?2.计算:(-30)+(-20),(-20)+(-30),你又有什么发现?说一说:1.两个加数不论是正数、负数还是0,都满足上面所说的规律吗?2.对所交换的数的符号需不需要一起交换?【归纳总结】两个有理数相加,交换加数的位置,和 .加法交换律: .选一选:下面等式使用加法交换律正确的是()A. (-3)+5=3+(-5)B. (-3)+5=(-3)+(-5)C. (-3)+5=(-5)+3D. (-3)+5=5+(-3)知识点二:加法结合律学一学:阅读教材P22 的内容并填空:计算:〔8+(-5)〕+(-4)=,8+〔(-5)+(-4)〕= .议一议:在三个数相加中,先将前两个数相加与先将后两个数相加,结果会一样吗?【归纳总结】三个数相加,先把前两个数相加,或者先把后两个数相加,和.加法结合律:(a+b)+c= .想一想:1.在“例3”的计算过程中为什么要把(-8)和(-4.37)的位置交换?依据是什么?2.在“例3”的计算过程中,用到了什么运算律?3.通过本题的计算,你发现运算律起到了什么作用?知识点三:加法运算律在实际中的应用学一学:阅读教材P23 “例4”的内容,并解决下列问题:1.如何表示“收入”和“支出”的量?2.计算过程中使用了哪些运算律?3.你还有其它方法解题吗?【归纳总结】为了计算方便,经常是把符号的数相加.互为的两数相加,分母相同的数相加.合作探究——不议不讲探究一:教材P22练习1T, 2T【解】探究二:下面等式正确的是()A. 〔3+(-2)〕+(-4)=3+〔(-2)+(-4)〕B. 〔3+(-2)〕+(-4)=3+〔2+(-4)〕C. 〔3+(-2)〕+(-4)=3+(2+4)D. 〔3+(-2)〕+(-4)=3+〔(-2)+4〕探究三:将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入下图的9个空格中,使得每行的3个数、每列的3个数、斜对角的3个数相加均为0.附加题:某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?【解】。

1.3.1 第2课时 有理数加法的运算律及运用

1.3.1 第2课时 有理数加法的运算律及运用

(3) ( 3 ﹢ -5 )﹢ -7 ﹦_-9_ 3 ﹢( -5 ﹢ -7 ) ﹦_-9_
(4) ( 8 ﹢ -4 )﹢ -6 ﹦_-2_ 8 ﹢( -4 ﹢ -6 ) ﹦_-2_
思考:(1)请用精炼的语言把你得到的结论概括出来. (2)你能用字母把这个规律表示在有理数加法中,两个数相加,交换 加数的位置,和不变.
=9+10+(-3)+(-5)+(-8)+(-3)+6+(-6) +4+(-4)=19+(-19)=0 (千米) 即又回到了出发地. (2)|+9|+|-3|+|-5|+|+4|+|-8|+|+6|+|-3| +|-6|+|-4|+|+10|
=9+3+5+4+8+6+3+6+4+10=58(千米) 所以,营业额为58×2.4=139.2(元).
拓展练习:课时练25页第12题
3 1 (2 1) (4 1)
4
3
4
当堂练习
1.计算: (1)23+(-17)+6+(-22)
=(23+6)+[(-27)+(-22)] =29-49 =-20
(2)(-2)+3+1+(-3)+2+(-4) =(3+1+2)+[(-2)+(-3)+(-4)] =6-9 =-5
用字母表示为:a+b=b+a
2.加法结合律:在有理数的加法中,三个数相加,先 把前两个数相加,或者先把后两个数相加,和不变.
用字母表示为:(a+b)+c=a+(b+c)
典例精析
例1 计算16+(-25)+24+(-35) 解: 16+(-25)+24+(-35)

2.1有理数的加法(2) 加法运算律

2.1有理数的加法(2) 加法运算律
5 3 3 2.25 0.125 8 4
3、婷婷家某星期各天的收支情况如下 (记收入为正,单位:元); +120,-27.6,-5,-74,+16.8, -31.9,+25 用有理数加法计算婷婷家这星期结余多少 元?
(1)
(2) (3)
(+2.5)+(-0. 5)+(-2.5)+(+0.5)
互为相反数先加(凑0)
(-46)+(+27)+(-54)+(-127)
能凑整的数先加
(-1.8) +(+0.5) +(-0.7)+(+3.5)
符号相同的数先加
5 1 1 6 (4)(+3 )+(-5 )+(-2 )+(-2 ) 6 7 6 7
2.1有 理 数 的 加 法 (2)



有理数的加法法则:
同号两数相加,取与加数相同的符号,并把绝对值相加; 异号两数相加,取绝对值较大的加数的符号,并用较大的 绝对值减去较小的绝对值;
互为相反数的两个数相加得零;
一个数同零相加,仍得这个数。
有理数加法运算的步骤:
先确定结果的符号,再计算结果的绝对值。
分母相同的数先加
计算:
1 15 13 18 2 2.4 4.33 7.52 4.33
5 1 1 6 3 6 7 6 7
注意:
2.运用加法运算律有如下计算技巧: (四个先加) (1)互为相反数先加(凑0); (2)能凑整的数先加; (3)符号相同的数先加; (425 -20 -15 -10 -5

2022秋七年级数学上册 第2章 有理数的运算2.1 有理数的加法2有理数的加法运算律课件浙教版

2022秋七年级数学上册 第2章 有理数的运算2.1 有理数的加法2有理数的加法运算律课件浙教版

(2)该中心大楼每层高3 m,电梯每向上或向下1 m需 要耗电0.2度,根据王先生现在所处位置,请你算 算,他办事时电梯需要耗电多少度? 解:总路程为3×(|+6|+|-3|+|+10|+|-8|+|+ 12|+|-7|+|-10|)=3×(6+3+10+8+12+7+ 10)=3×56=168(m). 168×0.2=33.6(度). 故他办事时电梯需要耗电33.6度.
解:[(-4)+(-3)+(-2)+(-1)+0+1+2+3+4]÷3 =0÷3=0, 第1行的第3个数是: 0-(-1)-4=-3, 第3行的第2个数是: 0-3-1=-4, 第2行的第2个数是:0- (-4)-4=0, 第2行的第1个数是:0-0-2=-2.
探究培优·拓展练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四下午10时42分12秒22:42:1222.3.3
13 阅读下题的计算方法. 计算:-623+-812+1634+-256. 解 : 原 式 = (-6)+-23 + [( - 8) + -12 ] + 16+34 + (-2)+-56
=[(-6)+(-8)+16+(-2)]+[-23+-12+34+-56]
=0+-54
=-54. 上面这种解题方法叫做拆项法,按此方法计算:
第2章
有理数的运算
2.1. 有理数的加法运算律 2
习题链接
温馨提示:点击 进入讲评
1D 2A 3D 4D
5B 6C 7C 8C
答案呈现
9 10 11 12
习题链接
温馨提示:点击 进入讲评
13 14
答案呈现
1 两个负数与一个正数相加,其和( D ) A.一定为负数 B.一定为正数 C.一定为0 D.可能为正数、负数或0

1.3.1 有理数的加法(2)(含答案)

1.3.1 有理数的加法(2)(含答案)

1.3.1 有理数的加法(二)◆课堂测控知识点一加法运算律1.计算:(1)(-2)+(+5)+(-8)+7=______;(2)(-0.6)+0.3+(-0.4)+0.7=_____.2.(-12)+14+(-25)+(+310)运用运算律计算恰当的是()A.[(-12+14)]+[(-25)+(+310)] B.[14+(-25)]+[(-12)+(+310)]C.(-12)+[14+(-25)]+(+310) D.以上都不对3.下列计算运用运算律恰当的有()(1)28+(-18)+6+(-21)=[(-18)+(-21)]+28+6(2)(-12)+1+(-14)+13=[(-12)+(-14)]+1+13(3)3.25+(-235)+534+(-8.4)=(3.25+534)+[(-235)+(-8.4)]A.1个 B.2个 C.3个 D.都不恰当4.计算:(1)(-8)+3+(-2)+7 (2)(-12)+14+(-18)(3)0.75+(-234)+(+0.125)+(-1257)+(-418)知识点二加法交换律的应用5.8筐蔬菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:千克):1.5,3,2,-0.5,1,-2,-2,+1.5.则8筐蔬菜总重量为______kg.6.飞机飞行的高度是8000米,上升300米,又下降500米,又上升200米,•最后飞机的高度为______米.7.小于5的正整数与不小于-4的负整数的和是______.8.(教材变式题)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,•某天自A地出发到收工时所跑的路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.问收工时距A地多远?◆课后测控9.绝对值不小于5但小于7的所有整数的和是_____.10.计算:(-12)+5+(-10)+15=______.11.如图所示,则下列结论错误的是()A.b+c<0 B.a+b<0 C.a+b+c<0 D.│a+b│=a+bc o a12.下列运算正确的个数为()(1)(+34)+(-734)+(-6)=-13 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3 (4)1+(-3)+5+(-7)+9+(-1)=-4A.3个 B.4个 C.2个 D.1个13.用简便方法计算:(1)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7)(2)(-1)+2+(-3)+4+…+(-99)+100(3)(-23)+(+0.25)+(-16)+1214.阅读下列(1)题解法,计算(2)题(1)计算-556+(-923)+1734+(-312)[解]原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上述方法叫拆项法.(2)计算4.5+(-2.5)+913+(-1523)+213.◆拓展测控15.(经典题)股民吉姆上星期五买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况(单位:元).(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?答案:课堂测控1.(1)2 (2)0 2.A 3.C4.解:(1)原式=-8+(-2)+3+7=0(2)原式=-24+14+(-18)=-14+(-18)=-38(3)原式=34+(-234)+18+(-418)+(-1257)=-1857[总结反思](1)正数,负数分别相加;(2)分数,整数分别相加.5.204.5 6.8000 7.08.解:(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=10+4+2+13+12+8+5-3-8-2=41[解题技巧]正数一起加,负数一起加.课后测控9.0 10.-2 11.D 12.A13.解:(1)原式=(-6.8)+(-3.2)+425+635+(-5.7)+5.7=-10+11=1. (2)原式=50111+++个=50(3)原式=-23+(-16)+(+14)+12=-411264+++=-56+34=-10912-+=-112 [解题思路]运用交换律结合律进行计算.14.解:(2)原式=4+0.5+(-2)+(-0.5)+9+13+(-15)+(-23)+2+13=[4+(-2)+9+(-15)+2]+[0.5+(-0.5)+[13+(-23)+13] =-2+0+0=-2[解题思路]把各个数能拆项进行拆项,运用交换律结合律,将相反数,整数,分数分别相加.拓展测控15.解:(1)星期三收盘每股价为:27+4+4.5+(-1)=34.5(元);(2)本周内每股最高价是35.5元,最低价是每股28元;(3)星期五每股卖出价为:27+4+4.5+(-1)+(-2.5)+(-4)=28(元),共收益:•28•×1000×(1-1.5‰-1‰)-27×1000×(1+1.5‰)=889.5(元).所以吉姆收益889.5元.[解题思路](1)起始价为27元,把第一到三天的涨跌数相加再加上27得周三收盘价.(2)把一周每天计算出来.再比较.(3)收入减交易中的手续费及交易税,得利润.。

2.4.2 有理数的加法运算律

2.4.2 有理数的加法运算律
(1)小虫最后是否回到出发点 A?说明理由; (2)小虫在第几次爬行后离点 A 最远?此时距离点 A 多少厘米? (3)在爬行过程中,如果每爬行 1 厘米奖励一粒芝麻,那么小虫一共得到多少粒 芝麻?
课件目录
首页
末页
2.4.2 有理数的加法运算律
解:(1)∵(+5)+(-3)+(+10)+(-8)+(-6)+(+11)+(-9) =5-3+10-8-6+11-9 =5+10+11-3-8-6-9 =26-26 =0, ∴小虫最后回到出发点 A.
课件目录
首页
末页
2.4.2 有理数的加法运算律
解:原式=(-1)+-12+[(-2 019)+-56]+4 038+34+[(-2 018)+
-23]
=[(-1)+(-2 019)+4 038+(-2 018)]+-12+-56+34+-23
=0+-114
1 =-14.
课件目录
首页
末页
2.4.2 有理数的加法运算律
D.3.14+[(-8)+3.14]=-8
课件目录
首页
末页
2.4.2 有理数的加法运算律
分层作业
1.[2018 秋·新罗区校级月考]23+(-2.5)+3.5+-23=23+-23+[(-2.5)+ 3.5],计算中运用了( C )
A.加法的交换律
B.加法的结合律
C.加法的交换律和结合律
D.以上均不对
的千克数记为负数,记录如图.则这 4 筐杨梅的总质量是( C )
A.19.7 千克 C.20.1 千克
B.19.9 千克 D.20.3 千克
课件目录
首页
末页
2.4.2 有理数的加法运算律
4 . 计 算 : ( + 176) + ( - 125) + ( + 224) + ( - 275) = [_(_+__1_7_6_)_+ _(_+__2_2_4_)_]+ [_(_-__1_2_5_)_+_(_-__2_7_5_)_]=(+400)+(-400)=__0__.从中可知,先把__正__数和__负__数 分别结合在一起相加,计算比较简便.

有理数的加法运算律

有理数的加法运算律

=-1
[8+(-5)]+(-4) =8+[(-5)+(-4)]
我们能发现:有理数的加法满足结合律
即:(a+b)+c=a+(b+c)
例1
16+(-25)+24+(-35)
解:原式=16+24+(-25)+(-35)……加法交换律 =(16+24)+[(-25)+(-35)]
……加法结合律
=40+(-60) =-20
第一章
有理数
1.3.1 有理数的加法运算律
知识回顾
有理数的加法法则: 1、同号两数相加,取 相同 符号,并把绝对值 相加 ; 2、绝对值不相等的异号两数相加,取绝对值 较大 的加数 的符号,并用 较大 的绝对值减去 较小 的绝对值. 互为相反数 的两个数相加得0; 3、一个数同0相加,仍得 这个数 。
例2
3 2 2 2 (6 ) (5 ) (4 ) (1 ) 5 3 5 3
解:原式=
……加法交换 律 ……加法结合律
=11+(-4) =7
方法总结:在进行多个有理数相加时, 在下列情况下一般可以用加法交换律和加 法结合律简化运算: ①有些加数相加后可以得到整数时,可 以先行相加; ②有相反数可以互相消去,和为0,可以 先行相加; ③有许多正数和负数相加时,可以先把 符号相同的数相加,即正数和正数相加, 负数和负数相加,再把一个正数和一个负 数相加。
练一练
3+(-5)= -2 (-2)+3= 1 (-3)+(-8)= -11 8+(-3)= 5
探一探
20+(-30)= -10
(-30)+20= -10
20+(-30)=(-30)+20

第2课时 有理数的加法运算律

第2课时 有理数的加法运算律
两次所得的和相同吗?换几个加数再试一试. 从上述计算中,你能得出什么结论?
归纳
在有理数的加法中,三个数相加,先把前两个数相 加,或者先把后两个数相加,和不变.
加法结合律: (a + b)+ c = a +(b + c)
特别提醒: 根据加法交换律和结合律,多个有理数相加,可以 任意交换加数的位置,也可以先把其中的几个数相加.
加法交换律: a + b = b + a
有理数的加法中,三个数相加,先把前两个数 相加,或者先把后两个数相加,和不变.
加法结合律: (a + b)+ c = a +(b + c)
解法1:先计算 10 袋小麦一共多少千克: 50.5+50.5+50.8+49.5+50.6+50.7+49.2+49.4+50.9+50.4=502.5 再计算总计超过多少千克:
502.5 - 50×10 = 2.5.
解法2:把每袋小麦超过 50 kg 的千克数记作正数, 不足的千克数记作负数. 10 袋小麦对应的数分别为 +0.5,+0.5,+0.8,-0.5,+0.6,+0.7,-0.8,-0.6, +0.9,+0.4.
巩固练习
计算: 7.3 + (-13.7) + (-25.3) + 13.7. 解:原式 = [7.3 + (-25.3)] +[(-13.7) + 13.7].
= (-18) + 0 = - 18
例 题 【教材P29】
例 2 计算:
(1)8 + (-6) + (-8); (2)16 + (-25) +24 +(-35).

2.1.1.2有理数的加法运算律(RJ版)

2.1.1.2有理数的加法运算律(RJ版)

解法2:把每袋小麦超过50kg的千克数记作正数,不足的千克数记作负数. 10袋小麦对应的千克数分别为:+0.5,+0.5,+0.8,-0.5,+0.6,+0.7,-0.8,-0.6,+0.9,+0.4.
0.5+0.5+0.8+(-0.5)+0.6+0.7+(-0.8)+(-0.6)+0.9+0.4 =[0.5+(-0. 5)]+[0.8+(-0.8)]+[0.6+(-0.6)]+(0.5+0.7+0.9+0.4) =2.5. 50x10+2.5=502.5. 答:10袋小麦一共502.5kg,总计超过2.5kg.
解:450+(-80)+150=(450+150)+(-80)=600+(-80)=520. 答:储蓄卡中还存有人民币520元.
3.一架飞机从9 000m的高度先下降300m,再上升500m.这时飞机的飞 行高度是多少米?
解:9000+(-300)+500=9000+[(-300)+500]=9000+200=9200. 答:储蓄卡中还存有人民币520元.
(2) 5 ( 6) ( 1) . 67 6
(2)
反思:将怎样的数结合在一起相加可使运算简便?
1.有相反数的可先把相反数相加,能凑整的可先凑整; 2.有分母相同的,可先把分母相同的数结合相加.
跟踪训练
1. 计算:(1) 23+(-17)+6+(-22);(2) (-2)+3+1+(-3)+2+(-4);

【说课稿】 有理数的加法运算律(2)

【说课稿】 有理数的加法运算律(2)

有理数的加法运算律今天我授课的课题是“有理数的加法运算律"。

下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

一、教材分析与处理有理数的加法运算律在整个知识系统中的地位和作用是很重要的。

初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。

根据教学大纲的要求,来确定本节课的教学目标。

教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。

具体从以下三方面而言:一、知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。

二、过程方法:培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。

三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

教学重点:有理数的加法运算律的理解与掌握。

教学难点:灵活运用加法运算律使运算简便。

二、教学方法和数学手段在教学过程中,我注重体现教师的导向作用和学生的主体地位。

本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。

教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

三、教学过程的设计1、回顾:回顾上节课的内容—有理数的加法法则。

让同学回忆之前的内容,渐渐进入学习状态。

2、引入:在引入上,让同学们运用加法法则进行计算,并提出问题,引导学生进行观察和思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学校导学案
课题内容 课型
上课时间
有理数的加法运
算律
预习、展示、反馈
一.学习目标
1.使学生会使用加法的运算律实行有理数的加法运算。

2.能用字母表示加法的运算律。

二.学习重点:有理数的加法运算
三.自主预习
1.复习有理数加法法则要点:
(1)同号两数相加,取 。

(2)异号两数相加,取 , 互为相反数的两数相加得 。

(3)一个数同零相加仍得 。

2.计算: A (1)(-10)+(-8)= (2)(-6)+(+6)= (3)(-37)+0= (4)=++-)5
1()52
( B (1)(-843)+(-557)= (2)(-3.86)+(+3.86)=
(3)(-416)+0= (4)=++-)2
11()612( 四.合作探究
1.在小学里我们学过加法的交换律,例如,5+3.5=3.5+ 。

我们还学过加法的结合律, 如,(5+3.5)+2.5=5+ 引进了负数后,这些运算律是否还成立呢?
2.请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数)。

算出各算式的结果,比较左、右两边算式的结果是否相同呢?
请同学们说说自己的结果,你发现了什么? 概括:
加法交换律: 两个数相加,交换加数的位置, 不变。

表示成:a+b= 加法结合律: 三个数相加,先把 相加,或者先把 相加,和不变。

表示成:(a+b )+c=a+
任意若干个数相加,无论各数相加的先后次序如何,其和不变。

五.巩固反馈(当堂检测)
★【基础知识练习】
★【提升拓展练习】
★【中考考点链接】
4.计算
()()
()()()())05.3(
33
.5
52
.9
33
.5
48
.3
2
)
35
(
24
25
16
1
.2
-
+
-
+
-
+
+
-
-
+
+
-
+
()⎪




-
+





+
+





-
+





-
+





-
3
1
1
4
3
2
5
2
3
4
1
3
5
3
2
3
计算
解题策略:
(1)把正数和负数分别结合在一起相加
(2)把互为相反数的结合,能凑整的结合
(3)把同分母的数结合相加。

相关文档
最新文档