【高考领航】2016届高考数学二轮复习 限时训练16 空间几何体三视图、表面积及体积 文

合集下载

高三数学《空间几何体的三视图》专题复习题含答案

高三数学《空间几何体的三视图》专题复习题含答案

高三数学空间几何体的三视图专题复习题含答案1.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是.A .43πB .2πC .83πD .103π2.一几何体的三视图如图所示,则该几何体的体积为A .13πB .12πC .2πD .π3.某几何体的三视图如图所示,则该几何体的表面积为 A .54 B .60 C .66 D .724.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A .31B .32C .1D .34 俯视图侧视图正视图俯视图侧视图正视图21222俯视图左视图正视图32545.已知四棱锥P ABCD-的三视图如图所示,则四棱锥P ABCD-的四个侧面中的最大面积为A.3B.C.6D.86.某三棱锥的三视图如图所示,则该三棱锥的表面积是A.2B.4C.2+D.57.已知一个三棱柱的三视图如图所示,则该三棱柱的表面积为A.5B.52CD.38.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为.A.28 3B.3C.28D.22+222433侧视图俯视图正视图俯视图侧(左)视图正(主)视图11215212俯视图侧(左)视图正(主)视图222244229.一个几何体的三视图如图所示,其中正视图、俯视图中的圆以及侧视图中的圆弧的半径都相等,侧视图中的两条半径互相垂直,若该几何体的体积是π,则它的表面积是A.πB .4π3C.3πD.4π10.如图为某几何体的三视图,则该几何体的内切球的表面积为A.4πB.3πC.4πD.4 3π11.已知某几何体的外接球的半径为3,其三视图如图所示,图中均为正方形,则该几何体的体积为.A.16B.16 3C.8 3D.812.若某几何体的三视图如图所示,则该几何体的体积是A.15B.20C.25D.303 3侧视图2俯视图正视图13.如图所示,网格纸上小正方体的边长是1,粗实数及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为.A.8πB.25 2πC.12πD.41 4π14.某几何体的三视图如图所示,则该几何体的体积为A.BCD.315.某几何体的三视图,则该几何体体积是A.4B.4 3C.8 3D.2正视图俯视图俯视图侧(左)视图正(主)视图侧视图俯视图正视图16.某四面体的三视图如图所示,该四面体的六条棱中,长度最长的是 A.B. C. D.17.若四面体的三视图如右图所示,则该四面体的外接球表面积为 .18.一个几何体的三视图如图所示,则该几何体的体积为 .19.已知某几何体的三视图如图所示,则该几何体的表面积为 .正(主)视图俯视图侧视图俯视图正视图3侧视图俯视图正视图复习题详解1.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,则该几何体的体积是.A .43πB .2πC .83πD .103π解:由三视图可得该几何体是半径为1的半球,和底面半径为1, 高为2的圆锥的组合体,所以3314141122333V π=⨯π⨯+⨯π⨯⨯=.故选A .2.一几何体的三视图如图所示,则该几何体的体积为A .13πB .12πC .2πD .π解:分析知该几何体为圆柱的一半,故体积为()2122V =⨯π⨯1⨯=π.故选D . 3.某几何体的三视图如图所示,则该几何体的表面积为 A .54 B .60 C .66 D .72俯视图侧视图正视图侧视图正视图俯视图左视图正视图32542543解:该几何体的直观图如图所示,易知该几何体的表面积是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积()()25525411343535602222S +⨯+⨯=⨯⨯+⨯⨯+++⨯=.故选B . 4.已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A .31B .32C .1D .34解:由正三棱柱的三视图还原几何体,如图所示.据侧视图知,底面正三角形的高为3,则其边长为2,11123234ABC A B C ABC V S h h -=⋅=⨯⨯=△,1h =.故选C .5.已知四棱锥P ABCD -的三视图如图所示,则四棱锥P ABCD -的四个侧面中的最大面积为A .3B .25C .6D .8 解:由几何体的三视图,画出其立体图形P ABCD -,如图所示.由题可知,顶点P 在底面上的投影是边CD 的中点,底面是边长为4AB =,2BC =的矩形.PCD △的高为22325-=,所以侧面PCD △的面积为C 1B 1A 1CBA222433侧视图俯视图正视图D CBAP243322142⨯=. 两个侧面PAD △,PBC △的面积相等为12332⨯⨯=.侧面PAB △的面积为1462⨯=.所以四个侧面中的最大面积为6.故选C .6.某三棱锥的三视图如图所示,则该三棱锥的表面积是A .2B .4C .2+D .5 解:据三棱锥的三视图,还原几何体P ABC -,且PA ⊥平面ABC ,底面ABC △为等腰三角形,12222ABC S =⨯⨯=△,1122PAB PAC S S ==⨯=△△,122PBC S =⨯=△2222PAB PAC ABC PBC S S S S +++=+++=+△△△△.7.已知一个三棱柱的三视图如图所示,则该三棱柱的表面积为A.5B.52C.33D.3俯视图侧(左)视图正(主)视图11215212俯视图侧(左)视图正(主)视图2111P CB A解:由三视图可得该几何体是一个直三棱柱,如图所示. 解法一:3个侧面的面积为2(125)S =++侧,由余弦定理可以求得底面的钝角为34π,所以一个底面三角形的面积为13112sin 242S π=⨯⨯=底,所以总面积为2S 底+S 侧=122(125)322252⨯+++=++.故选D .解法二:侧面积同解法一.由左视图中的1得棱锥的底面三角形的高为1,所以一个底面三角形的面积为111122S =⨯⨯=底,所以总面积为2S 底+S 侧=32225++.故选D . 8.一个几何体的三视图及其尺寸如图所示,则该几何体的体积为. A .283B .2823C .28D .2263+ 解:由题意,还原的几何体ABC DEF -如图所示,上底面ABC △是直角边长为2的等腰直角三角形,下底面DEF △是直角边长为4的等腰直角三角形,高2CF =.则几何体ABC DEF -的体积为11112844422232323⨯⨯⨯⨯-⨯⨯⨯⨯=.故选A . 9.一个几何体的三视图如图所示,其中正视图、俯视图中的圆以及侧视图中的圆弧的半径都相等,侧视图中的两条半径互相垂直,若该几何体的体积是π,则它的表面积是 A .π22224422FEDCBAB .4π3C .3πD .4π 解:由三视图知,原几何体为球体挖去14的部分而形成的几何体,设球的半径为r ,334=43V r =⨯ππ,1r =,2234+=44S r r =⨯πππ.故选D .10.如图为某几何体的三视图,则该几何体的内切球的表面积为A .4πB .3πC .4πD .43π 解:由三视图可得几何体为如图所示的四棱锥,其中PA ⊥底面ABCD ,底面ABCD 是边长为3的正方形,4PA =,所以5PB PD ==,所以13462PAD PAB S S ==⨯⨯=△△,115=3522PCD PBC S S =⨯⨯=△△,239ABCD S ==,所以11491233P ABCD ABCD V PA S -=⋅⋅=⨯⨯=,1562+2+9=362P ABCD S -=⨯⨯.设内切圆半径为R ,则球心到棱锥各面的距离均为R ,所以13P ABCD P ABCD S R V --⋅=,所以1R =,所以内切球的表面积244S R =π=π.故选C .11,其三视图如图所示,图中均为正方形,则该几何体的体积为. A .16俯视图正视图PDABCB .163C .83D .8 解:为了便于理解,在正方体中还原此几何体,如图所示. 设正方体棱长为a ,则323a =,得2a =, 三棱锥的体积1182224222323V =⨯⨯-⨯⨯⨯⨯⨯=.故选C .12.若某几何体的三视图如图所示,则该几何体的体积是 A .15 B .20 C .25 D .30 解:该几何体的直观图如图所示,1134345520232V ⨯=⨯⨯⨯-⨯⨯=.故选B .13.如图所示,网格纸上小正方体的边长是1,粗实数及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为. A .8π B .252π C .12π D .414π 解:由三视图可知,该多面体是四棱锥S ABCD -,如图所示,四棱锥所在正方体的棱长为2,SC BC ==()222223cos 52SCB ⨯-∠==⨯,则4sin 5SCB ∠=,所以SBC △的外接圆的半径152sin 4SB r SCB =⋅=∠,所以四棱锥的外接球的半径4R ==,故外接球的表面积24144S R π=π=.故选D . 14.某几何体的三视图如图所示,则该几何体的体积为 A.BC.3 D.3解:体积为1(12)2×32+⨯=.故选B .15.某几何体的三视图,则该几何体体积是 A .4B .43C .83D .2正视图俯视图122PC BA俯视图侧(左)视图正(主)视图解:借助长方体,在长方体中构建几何体.据三视图分析可得,还原后的几何体如图所示,三棱锥P ABC -.该几何体的体积1142323V =⨯⨯⨯=.故选B .16.某四面体的三视图如图所示,该四面体的六条棱中,长度最长的是 A.B. C.D. 解:由三视图还原几何体四棱锥D ABC -,如图所示,由主视图知CD ABC ⊥平面,设AC 的中点为E ,则BE AC ⊥,BE =2AE CE ==,由左视图得4CD =,BE =Rt BCE △中,4BC ===,同理4AB =,在Rt BCD△中,BD == 在Rt ACD△中,AD ===综上,四面体的六条棱中,长度最长的是A .DCBA正(主)视图俯视图1侧视图俯视图正视图17.若四面体的三视图如右图所示,则该四面体的外接球表面积为 . 解:由三视图得四面体的直观图,如图所示为三棱锥A BCD -,且该四面体的外接球即为图中的长方体的外接球,得()222222219R =++=,则249S R =π=π表.18.一个几何体的三视图如图所示,则该几何体的体积为 .解:由几何体的三视图,在长为22的长方体中,还原其立体图形,如图中所示的AEF BCD -.故13V S h S h =-柱锥底底=11122212323⨯-⨯⨯=. 19.已知某几何体的三视图如图所示,则该几何体的表面积为 .DCBA 122侧视图俯视图正视图32侧视图俯视图正视图解:如图所示,还原该几何体为四棱锥B ACED -,其中CE ⊥底面ABC ,AD ⊥底面ABC ,且四边形ACED 为矩形,ABC △为等腰三角形,AC AB ⊥,2EC DA BC ===,AC AB ==则=ABC DAB ECB EDB ACED S S S S S S ++++△△△△四边形=21111222232222+⨯⨯⨯+=+故填3+.EDCBA。

2016届高考数学理仿真押题专题12空间几何体的三视图﹑表面积及体积(解析版)

2016届高考数学理仿真押题专题12空间几何体的三视图﹑表面积及体积(解析版)

1.如右图放置的六条棱长都相等的三棱锥,则这个几何体的侧视图是()A.等腰三角形B.等边三角形C.直角三角形D.无两边相等的三角形【答案】 A2.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】 C【解析】由于C选项不符合三视图中“宽相等”的要求,故选C.3.一个正方体截去两个角后所得几何体的正(主)视图、侧(左)视图如图所示,则其俯视图为()【答案】 C 【解析】 由题意得正方体截去的两个角如图所示,故其俯视图应选C.4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )【答案】 C5.如图,用斜二测画法得到四边形ABCD 是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.【答案】 8 2【解析】:作DE ⊥AB 于E ,CF ⊥AB 于F ,则AE =BF =AD cos 45°=1,∴CD =EF =3.将原图复原(如图),则原四边形应为直角梯形,∠A ′=90°,A ′B ′=5,C ′D ′=3,A ′D ′=22,∴S 四边形A ′B ′C ′D ′=12×(5+3)×22=8 2.6.如图是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A .24B .12C .8D .4【答案】 B7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32 C .1 D. 3【答案】 B【解析】有三视图可以得到原几何体是以1为半径,母线长为2的半个圆锥,故侧视图的面积是32,故选B.8.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+16B.4π3+16C.2π6+16D.2π3+12【答案】 C9.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为( )A .92+24πB .82+24πC .92+14πD .82+14π 【答案】 C【解析】 该几何体是个半圆柱与长方体的组合体,直观图如图,表面积为S =5×4+2×4×4+2×4×5+2π×5+π×22=92+14π.10.四棱锥P -ABCD 的三视图如图所示,四棱锥P -ABCD 的五个顶点都在一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .12πB .24πC .36πD .48π【答案】 A11.用6根木棒围成一个棱锥,已知其中有两根的长度为 3 cm 和 2 cm ,其余四根的长度均为1 cm ,则这样的三棱锥的体积为________cm 3.【答案】 212【解析】 由题意知该几何体如图所示, SA =SB =SC =BC =1,AB =2,AC =3,则∠ABC =90°,取AC 的中点O ,连接SO 、OB ,则SO ⊥AC ,所以SO =SA 2-AO 2=12,OB =12AC =32,又SB =1,所以SO 2+OB 2=SB 2,所以∠SOB =90°,又SO ⊥AC ,所以SO ⊥底面ABC ,故所求三棱锥的体积V =13×22×12=212.12.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.【答案】 24 213.如图所示,E ,F 分别是正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是________.(要求:把可能的图的序号都填上)【答案】 ②③【解析】 由正投影的定义,四边形BFD 1E 在面AA 1D 1D 与面BB 1C 1C 上的正投影是图③;其在面ABB 1A 1与面DCC 1D 1上的正投影是图②;其在面ABCD 与面A 1B 1C 1D 1上的正投影也是②,故①④错误.14.用一个平行于圆锥底面的平面截这个圆锥,截得圆台的上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长.解 由圆台的上、下底面的面积之比为1∶16,设圆台上、下底面圆的半径分别为r 、4r ,圆台的母线长为l ,根据相似三角形的性质得33+l=r 4r ,解得l =9 cm.所以圆台的母线长为9 cm.15.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解(1)正六棱锥.16.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、右侧面均为底边长为6,高为h 2的等腰三角形,如图所示.(1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.17.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2, 则正棱锥侧面的斜高为12+(2)2= 3. ∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2 =92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .。

高考数学二轮复习专题三立体几何与空间向量第1讲空间几何体的三视图、表面积与体积课件新人教A版

高考数学二轮复习专题三立体几何与空间向量第1讲空间几何体的三视图、表面积与体积课件新人教A版

【归纳拓展】 (1)正棱锥:底面是正多边形,顶点在底面的射影是底面的中心. (2)正四面体:各条棱均相等的三棱锥为正四面体,其特点是所有面均为正三 角形.
2.三视图与直观图 (1)三视图 三视图包括正视图、侧视图、俯视图,分别从几何体的前方、左方、上方观察 几何体的轮廓所得. (2)直观图 几何体的直观图常用斜二测画法,即原图形中的x轴与y轴在直观图中成45度角.
1 h(S 上底+S + 下底 3
S上底 S下底 )
表中S表示面积,c′,c分别表示上、下底面周长,h表示高,h′表示斜高,l表 示侧棱长. (2)旋转体的表面积和体积公式
名称 S侧 S全
V
圆柱 2π rl 2π r(l+r)
π r2h(即π r2l)
圆锥 π rl π r(l+r)
1 π r2h 3
3.(2017·嘉兴一模)某几何体的三视图如图所示(单位:cm),则该几何体的表面
积是
cm2,体积是
cm3.
解析:根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,其底面是 正视图中的直角梯形,上底为 1,下底为 4,高为 4,由侧视图可知这个四棱柱的高是 4,所以可求得它的表面积是 S 表=42+ 4 1 ×4×2+4× 32 42 +1×4+4×4=76,体积

2015
填空题·13·4分 三棱锥内异面直线所成角

解答题·17·15分
线面垂直的判定、二面角的求法、 空间直角坐标系

选择题·3·5分 三视图,几何体的表面积

2014
填空题·17·4分
立体几何的实际应用、线面角的最 大值

高中数学高考复习《空间几何体的三视图》经典例题解析附习题答案

高中数学高考复习《空间几何体的三视图》经典例题解析附习题答案

3 32正视图侧视图俯视图图1空间几何体的三视图1..一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48 (B)32+8(C) 48+8(D) 80【答案】 C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。

故S 表【解题指导】:三视图还原很关键,每一个数据都要标注准确。

2.设图1是某几何体的三视图,则该几何体的体积为A.1229 B.1829 C. 429 D. 1836答案:B解析:由三视图可以还原为一个底面为边长是3的正方形,高为2的长方体以及一个直径为3的球组成的简单几何体,其体积等于233)23(3431829。

故选 B评析:本小题主要考查球与长方体组成的简单几何体的三视图以及几何体的体积计算.3.如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()b5E2RGbCAPA.63 B.93 C.123 D.183【解析】 B.由题得三视图对应的直观图是如图所示的直四棱柱,.ABCD EA 平面3931232hS VABCD平行四边形。

所以选 B4.某几何体的三视图如图所示,则它的体积是(A )283(B )83(C )82(D )23【答案】A【解析】:由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为3212123283故选A5.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是HGFEDCBA 3123A .8B .62C .10 D .82【答案】 C6.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.p1EanqFDPw答案:2323234aa ,解得解析:设正三棱柱的侧棱长和底面边长为a ,则由a=2,正三棱柱的左视图与底面一边垂直的截面大小相同,故该矩形的面积是322232.DXDiTa9E3d7.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________ 3m 【答案】6【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m,高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为1321363V V 长方体圆锥.8. 下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】 A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.9.若某几何体的三视图如图所示,则这个几何体的直观图可以是第一节10.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3 B.2 C.23 D.6【命题立意】本题考查三棱柱的三视图与直观图、表面积。

2016届高三数学二轮复习(新课标)第一部分:专题五立体几何(含解析)

2016届高三数学二轮复习(新课标)第一部分:专题五立体几何(含解析)

第1讲 空间几何体的三视图、表面积及体积1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )【解析】 由三视图的知识得B 正确. 【答案】 B2.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403cm 3 【解析】 该几何体为四棱柱和四棱锥的组合,所以其体积V =V 四棱柱+V 四棱锥,故V =23+13×22×2=323(cm 3). 【答案】 C3.(2015·山东高考)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C.22πD.42π【解析】由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=42π3.【答案】 B4.(2014·全国大纲高考)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9π D.27π4【解析】易知EF=4,AF=1222+22=2,在直角三角形AOF中,设球的半径为R,则(4-R)2+22=R2,∴R=94,∴S球=4πR2=81π4.【答案】 A考什么怎么考题型与难度1.空间几何体的三视图与直观图关系的确认主要考查空间几何体的三视图与直观图间对应关系题型:选择题难度:基础题2.空间几何体的表面积与体积主要考查以三视图为载体的空间几何体的表面积与体积的计算题型:选择题或填空题难度:中档题3.多面体与球的切、接问题主要考查多面体与球的结构特征及空间的点、线、面间的位置关系题型:选择题或填空题难度:中档题空间几何体的三视图与直观图关系的确认(自主探究型) 的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解析】将三视图还原为几何体即可,考查空间想象能力.由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱.故选B.【答案】 B2.(2014·湖北高考)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②【解析】根据正视图、俯视图的投影规则,找出它们各个顶点的坐标即可.在空间直角坐标系O —xyz 中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.【答案】 D【规律感悟】 1.由直观图确认三视图的策略根据空间几何体三视图的定义及画法规则和摆放规则确认. 2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.空间几何体的表面积与体积(多维探究型)【典例1】 (2015·新课标Ⅰ高考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【解析】 本题是一个实际应用问题,考查了圆锥的体积计算以及考生的理解与计算能力.由l =14×2πr =8得圆锥底面的半径r =16π≈163,所以米堆的体积V =14×13πr 2h =14×2569×5=3209,所以堆放的米有3209÷1.62≈22斛.故选B.【答案】 B命题角度二 根据三视图求空间几何体的表面积与体积【典例2】 (1)(2015·陕西高考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4(2)(2015·湖南高考)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.827π C.24(2-1)3πD.8(2-1)3π【解析】 (1)本题主要考查空间几何体的三视图与直观图的概念和性质,考查计算能力.由三视图知该几何体是半个圆柱,其表面积为S 表=2π×1×22+π×12+2×2=3π+4.故选D.(2)本题主要考查三视图、圆锥的体积及正方体的体积等知识,解答此题的关键是作出轴截面,利用比例关系求出正方体的棱长.由三视图知,原工件为圆锥,要使正方体新工件的体积最大,则正方体下底面在圆锥底面上,上底面是平行于圆锥底面的截面圆的内接正方形,过正方体的顶点作轴截面如图,且AB 为上底面正方形的对角线,设正方体的棱长为a ,则AB =2a ,又圆锥的高为32-12=22,所以2a2=22-a22,得a=223,正方体体积为V=a3=16227,圆锥的体积为13×π×12×22=22π3,故原工件的材料利用率为1622722π3=89π.故选A.【答案】(1)D (2)A【规律感悟】 1.求解几何体的表面积及体积的技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.2.根据几何体的三视图求其表面积与体积的三个步骤(1)根据给出的三视图判断该几何体的形状.(2)由三视图中的大小标示确定该几何体的各个度量.(3)套用相应的面积公式与体积公式计算求解.[针对训练]1.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3 B.1+2 2C.2+ 3 D.2 2【解析】在长、宽、高分别为2,1,1的长方体中,所求四面体即如图所示的三棱锥P—ABC,其表面积为12×2×1×2+34×(2)2×2=2+ 3.【答案】 C2.(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2【解析】 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =12×13×π×12×1+π×12×2=13π6.故选B. 【答案】 B多面体与球的切、接问题【典例3】 (1)(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4πC .2π D.4π3(2)(2015·新课标Ⅱ高考)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥OABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【解析】 (1)找出球心,求出球的半径代入体积公式求解.考查空间想象能力和运算求解能力.连接AC ,BD 相交于O 1,连接A 1C 1,B 1D 1,相交于O 2并连接O 1O 2,则线段O 1O 2的中点为球心.∴半径R =|OB |=|OO 1|2+|O 1B |2=⎝ ⎛⎭⎪⎪⎫222+⎝ ⎛⎭⎪⎪⎫222=1,∴V 球=43πR 3=4π3.故选D.(2)本题主要考查球的性质、三棱锥的体积、球的表面积等基础知识,意在考查考生的空间想象能力与运算求解能力、推理论证能力.三棱锥V O —ABC =V C —OAB =13S △OAB ×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O —ABC =V C —OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积S =4πR 2=144π.故选C.【答案】 (1)D (2)C [一题多变]若题(2)变为:已知正四棱锥O ­ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【解析】 V 四棱锥O ­ABCD =13×3×3h =322,得h =322,∴OA 2=h 2+(AC 2)2=184+64=6.∴S 球=4πOA 2=24π. 【答案】 24π【规律感悟】 多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,理清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[针对训练]1.(2015·长春模拟)在正三棱锥S ­ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S ­ABC 外接球的表面积是( )A.12πB.32πC.36πD.48π【解析】取AC的中点为D连结BD,SD,知BD⊥AC,SD⊥AC,∴AC⊥平面BDS,∴AC⊥BS,又MN⊥AM,∴BS⊥AM,∴BS⊥平面ACS,由S-ABC是正三棱锥知BS,AS,CS两两垂直,则4R2=3·(23)2,∴4R2=36,∴S表=4πR2=36π.故选C.【答案】 C2.(2015·河北唐山统考)如图,直三棱柱ABC­A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )A.2 B.1C. 2D.2 2【解析】连结BC1,B1C,交于点O,则O为面BCC1B1的中心.由题意知,球心为侧面BCC1B1的中心O,BC为截面圆的直径,所以∠BAC=90°,则△ABC的外接圆圆心N 位于BC的中点,同理,△A1B1C1的外接圆圆心M位于B1C1的中点,设正方形BCC1B1的边长为x,在Rt△OMC1中,OM=x2,MC1=x2,OC1=R=1(R为球的半径),所以⎝⎛⎭⎪⎫x22+⎝⎛⎭⎪⎫x22=1,即x=2,则AB=AC=1,所以侧面ABB1A1的面积为2×1= 2.故选C.【答案】 C转化与化归思想求解空间几何体的体积[思想诠释]空间几何体的体积用到转化与化归思想的常见题型:1.求某些三棱锥、四棱锥体积:求解过程中当高不易求时,常需转换顶点利用等体积法解决.2.不规则几何体的体积的求解:求解时, 常结合所给几何体的结构特征及条件,通过割、补等手段转化为规则几何体体积的和、差求解.[典例剖析]【典例】 (2015·烟台模拟)如图所示,四棱锥P ­ABCD 中 ,底面ABCD 为正方形,PD ⊥平面ABCD ,PD =AB =2,E ,F ,G 分别为PC ,PD ,BC 的中点.则(1)四棱锥E ­ABCD 的体积为________; (2)三棱锥P ­EFG 的体积为________.【审题策略】 (1)看到E 到平面ABCD 的距离不易求,想到转化与化归思想,EF ∥平面ABCD 转化为求V F ­ABCD ;(2)看到P 到平面EFG 的距离不易求,想到转化与化归思想转化为求V G ­PEF .【解析】 (1)因为E ,F 分别为PC ,PD 的中点,所以EF ∥DC ,又DC ⊂平面ABCD ,所以EF ∥平面ABCD ,又PD ⊥平面ABCD ,所以FD ⊥平面ABCD ,且FD =12PD =1,S 正方形ABCD =2×2=4,所以V E ­ABCD =V F ­ABCD =13×4×1=43.(2)因为PD ⊥平面ABCD ,GC ⊂平面ABCD , 所以GC ⊥PD .因为ABCD 为正方形,所以GC ⊥CD . 因为PD ∩CD =D ,所以GC ⊥平面PCD . 因为PF =12PD =1,EF =12CD =1,所以S △PEF =12EF ×PF =12.因为GC =12BC =1,所以V P ­EFG =V G ­PEF=13S △PEF ·GC =13×12×1=16.【答案】 (1)43 (2)16[针对训练](2015·哈尔滨模拟)一个空间几何体的三视图如图所示,该几何体的体积为12π+853,则正(主)视图中x 的值为( )A .5B .3C .4D .2【解析】 由三视图知,几何体是一个组合体,上面是一个正四棱锥,四棱锥的底面是一个对角线为4的正方形,侧棱长是3,根据勾股定理知正四棱锥的高是32-22=5,下面是一个圆柱,底面直径是4,母线长是x ,因为几何体的体积为12π+853,所以x ×4π+13×(22)2×5=12π+853,x =3.故选B.【答案】 B1.必记公式 (1)表面积公式表面积=侧面积+底面积,其中 ①多面体的表面积为各个面的面积的和.②圆柱的表面积公式:S =2πr 2+2πrh =2πr (r +h )(其中,r 为底面半径,h 为圆柱的高). ③圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中圆锥的底面半径为r ,母线长为l ). ④圆台的表面积公式:S =π(r l 2+r 2+r ′l +rl )(其中圆台的上、下底面半径分别为r ′和r ,母线长为l ).⑤球的表面积公式:S =4πR 2(其中球的半径为R ). (2)体积公式①V 柱体=Sh (S 为底面面积,h 为高).②V 锥体=13Sh (S 为底面面积,h 为高).③V 球=43πR 3(其中R 为球的半径).2.重要结论(1)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.(2)三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面. 3.易错提醒(1)未注意三视图中实、虚线的区别:在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.(2)不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差. 限时训练(十二)建议用时 实际用时错题档案40分钟一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱 【解析】 易知圆柱不论如何放置正视图不可能为三角形.故选A. 【答案】 A2.(2014·陕西高考)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【解析】 ∵圆柱侧面展开图为矩形,底面圆半径为1,S 侧=2πr ·l =2π×1×1=2π.故选C.【答案】 C3.(2015·北京高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1 B. 2 C. 3 D .2【解析】 由题中三视图知,此四棱锥的直观图如图所示,其中侧棱SA ⊥底面ABCD ,且底面是边长为1的正方形,SA =1,所以四棱锥最长棱的棱长为SC =3.故选C.【答案】 C4.(2015·新课标Ⅱ高考)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【解析】 由三视图可知,该几何体是一个正方体截去了一个三棱锥,即截去了正方体的一个角.设正方体的边长为1,则正方体的体积为1,截去的三棱锥的体积为V 1=13×12×1×1×1=16,故剩余部分的体积为V 2=56,所求比值为V 1V 2=15.【答案】 D5.(2015·福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+22 D .15【解析】 由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+2 2.故选B.【答案】 B6.(2015·山西康杰中学3月模拟)已知某锥体的正视图和侧视图如图所示,其体积为233,则该锥体的俯视图可能是( )【解析】由正视图得该锥体的高是h=22-12=3,因为该锥体的体积为233,所以该锥体的底面面积是S=23313h=23333=2,A项的正方形的面积是2×2=4,B项的圆的面积是π×12=π,C项的大三角形的面积是12×2×2=2,D项不可能是该锥体的俯视图.故选C.【答案】 C7.(2014·湖南高考)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1 B.2 C.3 D.4【解析】由题意知,几何体为三棱柱,设最大球的半径为R.∴2R=(6+8)-10=4,∴R=2.【答案】 B8.(2015·江西铁路中学二模)某几何体的三视图如图所示,则该几何体的体积为( )A.16π3B.20π3C.40π3D .5π【解析】 观察三视图可知,该几何体为一个球和一个圆锥的组合体,球半径为1,圆锥底面半径为2,圆锥高为3,所以该几何体的体积为43π×13+13π×22×3=16π3.故选A. 【答案】 A9.(2015·新课标Ⅰ高考)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【解析】 由题中的三视图可知,该几何体由一个半圆柱与一个半球拼接而成,其表面积为2r ×2r +2πr 2+2πr 2+πr 2=4r 2+5πr 2=16+20π,解得r =2.故选B.【答案】 B10.(2013·全国新课标Ⅰ高考)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3 cm 3【解析】利用球的截面性质结合直角三角形求解.如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=5003π(cm 3). 【答案】 A 二、填空题11.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【解析】 该几何体是一个组合体,中间是一个圆柱,左、右两侧是两个一样的圆锥,其体积为V =2×13×π×12×1+π×12×2=8π3(m 3).【答案】 8π312.(2015·山西运城教学检测)若一个空间几何体的三视图是三个边长为2的正方形,则以该空间几何体各个面的中心为顶点的多面体的体积为________.【解析】 由题意可知,该空间几何体为正方体,以正方体各个面的中心为顶点的多面体是两个相同的正四棱锥组成的几何体,如图,该四棱锥的高是正方体高的一半,底面面积是正方体一个面面积的一半,故所求多面体的体积V =2×13×1×2·2=43.【答案】 4313.(预测题)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥⑥圆柱【解析】 三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,其余的正视图均不是三角形.【答案】 ①②③⑤14.(2015·江苏高考)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.【解析】 底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π×r 2×4+π×r 2×8=28π3r 2=196π3,解得r =7.【答案】715.(2015·广西三市4月联考)三棱锥P ­ABC 中,PA ⊥AB ,PA ⊥AC ,∠BAC =120°,PA =AB =AC =2,则此三棱锥外接球的体积为________.【解析】 设△ABC 外接圆的半径为r ,三棱锥外接球的半径为R ,∵AB =AC =2,∠BAC =120°,∴BC =AB 2+AC 2-2AB ·AC cos ∠BAC=4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,∴2r =2332=4,∴r =2,由题意知PA ⊥平面ABC ,则将三棱锥补成三棱柱可得R =⎝ ⎛⎭⎪⎫PA 22+r 2=5,∴此三棱锥外接球的体积为43π·(5)3=2053π.【答案】 2053π第2讲 点、直线、平面之间的位置关系1.(2015·湖北高考)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】 两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件.故选A.【答案】 A2.(2013·安徽高考)在下列命题中,不是..公理的是( ) A .平行于同一个平面的两个平面相互平行 B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 【解析】 A .不是公理,是个常用的结论,需经过推理论证; B .是平面的基本性质公理; C .是平面的基本性质公理; D .是平面的基本性质公理. 【答案】 A3.(2014·浙江高考)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α【解析】 选项A ,若m ⊥n ,n ∥α,则m ⊂α或m ∥α或m ⊥α,错误;选项B ,若m ∥β,β⊥α,则m ⊂α或m ∥α 或m ⊥α,错误;选项C ,若m ⊥β,n ⊥β,n ⊥α,则m ⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m⊥α或m⊂α或m∥α,错误.故选C.【答案】 C4.(2015·江苏高考)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【证明】(1)由题意知,E为B1C的中点,又D为AB1的中点,因此BD∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.考什么怎么考题型与难度1.与空间位置关系有关的命题真假的判断主要考查线面平行、垂直与面面平行、垂直判定定理、性质定理的应用题型:选择题难度:中档题2.证明平行关系主要考查直线、线面、面面平行关系的证明题型:解答题难度:基础题或中档题3.证明垂直关系主要考查线线、线面、面面垂直关系的证明与应用题型:解答题难度:基础题或中档题与空间位置关系有关的命题真假的判断(自主探究型)β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【解析】本题主要考查线面位置关系,意在考查考生的空间想象能力和推理能力.对于面面垂直的判定,主要是两个条件,即l⊂α,l⊥β,如果这两个条件存在,则α⊥β.【答案】 A2.(2015·广东佛山二模)在空间中,有如下四个命题:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面α内有不共线的三点到平面β的距离相等,则α∥β;④过平面α的一条斜线有且只有一个平面与平面α垂直.其中正确的命题是( )A.①③B.②④C.①④D.②③【解析】①平行于同一个平面的两条直线,可能平行,相交或异面,不正确;②垂直于同一条直线的两个平面是平行平面,由面面平行的判定定理知正确;③若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知④正确.故选B.【答案】 B【规律感悟】判断与空间位置关系有关的命题真假的两大方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.证明平行关系(师生共研型)【典例1】(2015·陕西高考)四面体ABCD及其三视图如图所示,平行于棱AD,BC 的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.【解】 (1)以△BDC 为底面,AD 为高,利用体积公式求解;(2)先利用线面平行的性质定理证明四边形EFGH 为平行四边形,再证明为矩形.(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =CD =2,AD =1,∴AD ⊥平面BDC ,∴四面体体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH , 平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC , ∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. [一题多变] 若本例变为:如图,在四面体PABC 中,PC ⊥AB ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形.【证明】 (1)因为D ,E 分别为AP ,AC 的中点, 所以DE ∥PC .又因为DE ⊄平面BCP , 所以DE ∥平面BCP .(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.【规律感悟】 1.证明线线平行的常用方法(1)利用三角形中位线定理证明:即遇到中点时,常找中位线,利用该定理证明.(2)利用平行四边形对边平行证明:即要证两线平行,以两线为对边构造平行四边形证明.(3)利用平行公理证明:即要证两线平行,找第三线并证明其分别与要证两线平行即可.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证明线线平行.(2)利用面面平行的性质定理,把证明线面平行转化为证明面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个平面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.[针对训练](2015·河北石家庄二中一模)如图,在四棱锥P­ABCD中,PA⊥平面ABCD,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,F在AD上,且∠FCD=30°.(1)求证:CE∥平面PAB;(2)若PA=2AB=2,求四面体P­ACE的体积.【解】(1)证明:∵∠ACD=90°,∠CAD=60°,∴∠FDC=30°.又∠FCD=30°,∴∠ACF=60°,∴AF=CF=DF,即F为AD的中点.又E为PD的中点,∴EF∥PA,∵AP⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.又∠BAC=∠ACF=60°,∴CF∥AB,可得CF∥平面PAB.又EF∩CF=F,∴平面CEF∥平面PAB,而CE⊂平面CEF,∴CE ∥平面PAB .(2)∵EF ∥AP ,AP ⊂平面APC ,EF ⊄平面APC , ∴EF ∥平面APC .又∠ABC =∠ACD =90°,∠BAC =60°,PA =2AB =2, ∴AC =2AB =2,CD =ACtan 30°=23.∴V P ­ACE =V E ­PAC =V F ­PAC =V P ­ACF =13×12×S △ACD ·PA =13×12×12×2×23×2=233.证明垂直关系(多维探究型)命题角度一 利用线面垂直的性质证明线线垂直【典例2】 (2015·河北唐山一模)如图,在斜三棱柱ABC ­A 1B 1C 1中,侧面ACC 1A 1与侧面CBB 1C 1都是菱形,∠ACC 1=∠CC 1B 1=60°,AC =2.(1)求证:AB 1⊥CC 1; (2)若AB 1=6,求四棱锥A ­BB 1C 1C 的体积.【解】 本题主要考查线线垂直、线面垂直、四棱锥的体积等基础知识,意在考查考生的空间想象能力、逻辑推理能力、运算求解能力.(1)证明:连接AC 1,CB 1,则 △ACC 1和△B 1CC 1皆为正三角形. 取CC 1的中点O ,连接OA ,OB 1, 则CC 1⊥OA ,CC 1⊥OB 1, 则CC 1⊥平面OAB 1,则CC 1⊥AB 1. (2)由(1)知,OA =OB 1=3,又AB 1=6,所以OA 2+OB 21=AB 21,所以OA ⊥OB 1.又OA ⊥CC 1,OB 1∩CC 1=O ,所以OA ⊥平面BB 1C 1C .S ▱BB 1C 1C =BC ×BB 1sin 60°=23,故VA ­BB 1C 1C =13S ▱BB 1C 1C ×OA =2.命题角度二 证明线面垂直、面面垂直【典例3】 (2015·新课标Ⅰ高考)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.【解】 本题主要考查空间直线与平面、平面与平面垂直的性质与判定及三棱锥体积与侧面积的计算等基础知识,考查考生的推理论证能力、空间想象能力、运算求解能力.求解第(1)问时,根据菱形的性质,易知AC ⊥BD ,由直线BE ⊥平面ABCD ,得AC ⊥BE ,进而得到AC ⊥平面BED ,再根据面面垂直的判定定理得平面AEC ⊥平面BED ;求解第(2)问时,首先根据AE ⊥EC 、菱形的性质及三棱锥的体积求出菱形的边长,再求三棱锥的侧面积.(1)因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)证明:设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥EACD 的体积V EACD =13×12AC ·GD ·BE =624x 3=63.故x =2.从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+25.【规律感悟】 1.证明线线垂直的常用方法(1)利用特殊平面图形的性质:如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直.(2)利用勾股定理逆定理.(3)利用线面垂直的性质:即要证明线线垂直,只需证明一线垂直于另一线所在平面即可.2.证明线面垂直的常用方法(1)利用线面垂直的判定定理:把线面垂直的判定转化为证明线线垂直. (2)利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直.。

2016年高考数学一、二轮复习微专题(理科):2016年高考数学微专题十六:三视图与直观图

2016年高考数学一、二轮复习微专题(理科):2016年高考数学微专题十六:三视图与直观图

2016年高考数学微专题十六:三视图、直观图的技巧、方法一、知识点解析1.空间几何体的三视图空间几何体的三视图是正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.常用结论(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.③水平放置的圆台的正视图和侧视图均为全等的等腰梯形.④水平放置的圆柱的正视图和侧视图均为全等的矩形.(2)斜二测画法中的“三变”与“三不变”横不变,纵减半,竖不变二.模拟试题精讲题型一空间几何体的三视图1、由空间几何体的三视图还原出几何体的形状例1(2015·海淀区期中测试)若某几何体的三视图如图所示,则这个几何体的直观图可以是()答案 D解析A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.2由空间几何体的直观图判断三视图例2(2015·陕西模拟)一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案 B解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.3由空间几何体的部分视图画出剩余部分视图例3已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是________(把你认为正确的图的序号都填上).答案①②③④解析直观图如图1的几何体(上部是一个正四棱锥,下部是一个正四棱柱)的俯视图为①;直观图如图2的几何体(上部是一个正四棱锥,下部是一个圆柱)的俯视图为②;直观图如图3的几何体(上部是一个圆锥,下部是一个圆柱)的俯视图为③;直观图如图4的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图为④.训练(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案(1)B解析由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.(2)在如下图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②答案 D解析如下图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.题型二空间几何体的直观图例4(2016·广州市模拟)(1)右图是水平放置的某个三角形的直观图,D′是△A′B′C′中B′C′边的中点且A′D′∥y′轴,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()答案(1)C(2)A解析(1)A′D′∥y′轴,根据斜二测画法规则,在原图形中应有AD⊥BC,又AD为BC 边上的中线,所以△ABC为等腰三角形.AD为BC边上的高,则有AB,AC相等且最长,AD最短.(2)由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.思维升华用斜二测画法画直观图的技巧训练在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C′D′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形答案 C解析如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2 cm.∴OC=OD2+CD2=(42)2+22=6(cm),∴OA=OC,∴四边形OABC是菱形.三.高考模拟试题精练1.(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2C. 3 D.2答案 C解析四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长P A=12+12+12= 3.2.(2015·豫晋冀上学期第二次调研)如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()答案 B解析由题意可以判断出两球在正方体的面AA1C1C上的正投影与正方形相切,排除C,D,把其中一个球扩大为与正方体相切,则另一个球全被挡住,由于两球不等,所以排除A,所以B正确.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .83cmB .123cmC .3233cm D .4033cm【答案】C4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A)123π+ (B)136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【考点】1.空间几何体的三视图;2.空间几何体的表面积.6.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )答案 B解析 由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故A 不正确.7.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正视图与侧视图的面积的比值为________.答案 1解析 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正视图与侧视图都是三角形,且面积都是12a 2,故面积的比值为1.8.某四棱锥的三视图如图所示,则最长的一条侧棱的长度是________.答案29解析该几何体为如图所示P-ABCD,最长侧棱为PB=22+52=29.9.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形(侧视图)的面积.解(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边间的距离,即BC =3a ,AD 是正六棱锥的高,则AD =3a ,所以该平面图形(侧视图)的面积为 S =12×3a ×3a =32a 2. 10.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,求a +b 的最大值. 解 如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C =7,则它的正视图投影长为A 1B =6,侧视图投影长为A 1D =a ,俯视图投影长为A 1C 1=b ,则a 2+b 2+(6)2=2·(7)2,即a 2+b 2=8,又a +b 2≤a 2+b 22,当且仅当“a =b =2”时等号成立.所以a +b ≤4,即a +b 的最大值为4.。

2016届高考数学理命题猜想专题12空间几何体的三视图﹑表面积及体积(解析版)

2016届高考数学理命题猜想专题12空间几何体的三视图﹑表面积及体积(解析版)

【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、(1)(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()【答案】(1)B(2)B【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】(1)D(2)D【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、(1)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+ 5 B.4+ 5C.2+2 5 D.5(2)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连接EF,FB,DE,BD则几何体EFC1-DBC的体积为()A.66 B.68C.70 D.72【答案】(1)C(2)A【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】(2015·四川)在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是________.【答案】1 24【命题热点突破三】多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例3、(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π(2)(2015·课标全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【答案】(1)C(2)【方法技巧】三棱锥P-ABC可通过补形为长方体求解外接球问题的两种情形:(1)P可作为长方体上底面的一个顶点,A、B、C可作为下底面的三个顶点;(2)P-ABC为正四面体,则正四面体的棱都可作为一个正方体的面对角线.【变式探究】在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为2 2,3 2,62,则三棱锥A-BCD的外接球体积为________.【答案】6π【解析】如图,以AB,AC,AD为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的对角线长.据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62.∴三棱锥外接球的体积为V =43π·(62)3=6π. 【高考真题解读】1.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5B .等于5C .至多等于4D .至多等于3 【答案】 C2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403 cm 3 【答案】 C【解析】 该几何体是棱长为2 cm 的正方体与一底面边长为2 cm 的正方形,高为2 cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323(cm 3).故选C.3.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【答案】 B4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【答案】 83π【解析】 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3.5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4【答案】 D6.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .22【答案】 B【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π 【答案】 C【解析】 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B. 23+π C.13+2π D.23+2π【答案】 A【解析】 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝⎛⎭⎫12×1×2×1=π+13,选A.10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.4(2-1)3πD.12(2-1)3π【答案】 A。

2016高考数学(理)二轮复习高效演练 2.5.1空间几何体的三视图、表面积及体积 含答案

2016高考数学(理)二轮复习高效演练 2.5.1空间几何体的三视图、表面积及体积 含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后.关闭Word文档返回原板块。

高效演练1.(考向一)如图中的三个直角三角形是一个体积为30cm3的几何体的三视图,则侧视图中的h为( )A。

5cm B。

6cm C.7cm D.8cm【解析】选B.原几何体是一个三棱锥,底面是直角三角形,直角边为5cm和6cm,三棱锥的高为h,所以××5×6×h=30,解得h=6cm.2.(考向二)某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为()A.12+πB。

6+πC。

12+2πD。

6+4π【解析】选C。

由三视图知几何体是个圆柱体,且母线长为3,底面半径为2,所以弧长为×2=π,所以几何体的侧面积S=×3=12+2π。

3.(考向三)某几何体的三视图如图所示,则该几何体外接球的表面积为()A。

π B.πC。

4πD。

16π【解析】选D。

由三视图知:几何体为圆锥,圆锥的高为1,底面半径为,设外接球的半径为R,如图:则(1—R)2+3=R2⇒R=2.所以外接球的表面积S=4π×22=16π.4.(考向三)已知E,F分别是矩形ABCD的边BC与AD的中点,且BC=2AB=2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A—FEC外接球的体积为()A.πB.πC.πD。

2π【解析】选B。

由题意,三棱锥A-FEC外接球是正方体AC的外接球,由此三棱锥A-FEC外接球的半径是,所以三棱锥A—FEC外接球的体积为π=π。

5.(考向二)(2015·重庆高考)某几何体的三视图如图所示,则该几何体的体积为( )A.+πB。

+π C.+2πD。

+2π【解析】选A。

由三视图可知,该几何体为三棱锥和半个圆柱构成的组合体.由图中数据可知,三棱锥的体积为V1=××1×2×1=,半个圆柱的体积为V2=×π×12×2=π,所以几何体的体积为+π。

【3年高考2年模拟】2016届人教版新课标高三数学(文)一轮复习课件§8.1空间几何体的结构、三视图和直观图

【3年高考2年模拟】2016届人教版新课标高三数学(文)一轮复习课件§8.1空间几何体的结构、三视图和直观图

1.由实物图画三视图或判断选择三视图,此时需要注意“长对正、高平 齐、宽相等”的原则; 2.由三视图还原实物图,这一题型综合性较强,解题时首先对柱、锥、台、 球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的; 其次,要明确三视图的形成原理,并能结合空间想象将三视图还原为实物 图.
1-1 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为
在原图形中,A'D'=1,A'B'=2,B'C'= 2 +1, 2
且A'D'∥B'C',A'B'⊥B'C',
∴这块菜地的面积S= 12 (A'D'+B'C')·A'B'
图②
= 12 ×11
2 2


×2=2+ 22 .
1.用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三
1.若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分 别为 ( )
A.2,2 3 B.2 2 ,2 C.4,2 D.2,4 答案 D 由三视图可知,正三棱柱的高为2,底面正三角形的高为2 3 ,
故底面边长为4.故选D.
2.已知正三棱柱(侧棱与底面垂直,底面是正三角形)的高与底面边长均为1, 其直观图和正视图如图,则它的侧视图的面积是 ( )
似 多边形.
(1)圆柱可以由⑦ 矩形 绕其任一边所在直线旋转得到. 旋 (2)圆锥可以由直角三角形绕其⑧ 任一直角边 所在直线旋转得到. 转 (3)圆台可以由直角梯形绕其⑨ 直角腰所在直线 或等腰梯形绕其 体 ⑩ 上、下底边中点的连线所在直线 旋转得到,也可由 平行于圆

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

课时巩固过关练十二空间几何体的三视图、表面积及体积(25分钟50分)一、选择题(每小题5分,共20分)1.(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )【解析】选B.由题意得截去的是长方体前右上方顶点.【方法技巧】三视图往往与几何体的体积、表面积以及空间线面关系、角与距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征.2.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.1【解析】选A.通过三视图可还原几何体为如图所示的三棱锥,则通过侧视图得高h=1,底面积S=×1×1=,所以体积V=Sh=.3.(2016·广州一模)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A.20πB.C.5πD.【解析】选D.由题意知六棱柱的底面正六边形的外接圆半径r=1,其高h=1,所以球半径为R===,所以该球的体积V=πR3=×·π=.【加固训练】已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3, AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B.2 C. D.3【解析】选C.因为直三棱柱中AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=.二、填空题(每小题5分,共10分)4.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.【解析】底面为平行四边形,面积为2×1=2,高为3,所以V=×2×1×3=2. 答案:25.(2016·大连一模)如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为________.【解题导引】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解析】由三视图知,该几何体是三棱锥S-ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示:由三视图的数据可得OA=OC=2,OB=OS=4.建立空间直角坐标系O-xyz,如图所示:则A(0,-2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,解得x=z=;所以外接球的半径R=|BI|==.所以该三棱锥外接球的表面积S=4πR2=4π×=34π.答案:34π三、解答题(6题12分,7题13分,共25分)6.(2016·南阳一模)如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥平面CBB1.(1)证明:DE∥平面ABC.(2)求四棱锥C-ABB1A1与圆柱OO1的体积比.【解析】(1)连接EO,OA,因为E,O分别为B1C,BC的中点,所以EO∥BB1.又DA∥BB1,且DA=BB1=EO,所以四边形AOED是平行四边形,即DE∥OA.又DE⊄平面ABC,AO⊂平面ABC,所以DE∥平面ABC.(2)由题意知DE⊥平面CBB1,且由(1)知DE∥AO,因为AO⊥平面CBB1,所以AO⊥BC,所以AC=AB. 因为BC是底面圆O的直径,所以CA⊥AB,且AA1⊥CA,又AB∩AA1=A,所以CA⊥平面AA1B1B,即CA为四棱锥C-ABB1A1的高.设圆柱的高为h,底面圆半径为r,则=πr2h,=h(r)·(r)=hr2.所以∶=.7.(2016·南宁一模)如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.(1)求证:AC⊥A1B.(2)求三棱锥C1-ABA1的体积.【解题导引】(1)转化为证明直线AC垂直于直线A1B所在的平面即可.(2)由=,转化为求,关键求点B到平面AA1C1的距离.【解析】(1)取AC的中点O,连接A1O,BO.因为AA1=A1C,所以A1O⊥AC,又AB=BC,所以BO⊥AC,因为A1O∩BO=O,所以AC⊥平面A1OB,又因为A1B⊂平面A1OB,所以AC⊥A1B.(2)三棱柱ABC-A1B1C1中,所以侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,OB⊥AC,所以OB⊥平面AA1C1C,易求得OB=1,=,所以==··OB=.(20分钟50分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最短和最长的棱长分别等于( )A.4,B.4,C.3,5D.3,2【解析】选C.由三视图可判断该几何体为三棱锥,形状如图,其中SC⊥平面ABC,AC⊥AB,所以最短的棱长为AC=3,最长的棱长为SB=5.2.如图是某几何体的三视图,正(主)视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧(左)视图是直角梯形,则该几何体的体积等于( )A.12πB.16πC.20πD.24π【解析】选A.由三视图知:r=1,R=4,S1=π×12=π,S2=π×42=16π,所以V=×-π×12×4=×21π-2π=12π.【加固训练】某几何体的三视图如图所示,若该几何体的体积为3,则侧(左)视图中线段的长度x的值是( )A. B.2 C.4 D.5【解析】选C.分析题意可知,该几何体为如图所示的四棱锥P-ABCD,故其体积V=××4×CP=3,所以CP=,所以x==4.3.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上.当三棱锥Q -BMN的俯视图如图2所示时,三棱锥Q-BMN的正(主)视图面积等于( )A.a2B.a2C.a2D.a2【解析】选B.由俯视图知,点M为AD1的中点、N与C重合、Q与D1重合,所以三棱锥Q -BMN的正(主)视图为△CD1P,其中点P为DD1的中点,所以三棱锥Q -BMN 的正(主)视图面积为×a×=a2.【加固训练】如图,三棱锥V-ABC,VA⊥VC,AB⊥BC,∠VAC=∠ACB=30°,若侧面VAC⊥底面ABC,则其正(主)视图与侧(左)视图面积之比为( )A.4∶B.4∶C.∶D.∶【解题导引】正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高为一条直角边,△ABC中AC边的高为另一条直角边的直角三角形.【解析】选A.过V作VD⊥AC于点D,过B作BE⊥AC于点E,则正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高VD为一条直角边,△ABC中AC边的高BE为另一条直角边的直角三角形.设AC=x,则VA=x,VC=x,VD=x,BE=x,则S正(主)视图:S侧(左)视图=∶(·x·x)=4∶.【误区警示】解答本题易出现如下两种错误:一是对正(主)视图、侧(左)视图的形状判断不准确,造成结论错误;二是运算错误,造成结论错误.二、填空题(每小题5分,共10分)4.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是________.【解题导引】设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值.【解析】设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα.所以圆柱的侧面积为:32πsin2α.当且仅当α=时,sin2α=1,圆柱的侧面积最大,所以圆柱的侧面积的最大值为:32π.答案:32π5.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,PA=2,E为AB的中点,则点E到平面PBC的距离为________.【解题导引】利用V P-BCE=V E-PBC求.【解析】由于四边形ABCD是菱形,所以以EB为底边的△CBE的高h=AD·sin 60°=2×=,从而四面体P-BCE的体积V P-BCE=V E-PBC=××1××2=,AC==2.在Rt△PAB中PB==2,在Rt△PAC中PC===4,cos∠PBC==-,所以sin∠PBC==.S△PBC=PB·BC·sin∠PBC=×2×2×=.设点E到平面PBC的距离为d,则有S△PBC·d=,所以d===.答案:三、解答题(6题12分,7题13分,共25分)6.如果一个几何体的正(主)视图与侧(左)视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.【解析】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64(cm2).(2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线为d,球的半径为r,d===6(cm),所以球的半径r=3cm,因此球的体积V=πr3=×27π=36π(cm3).所以外接球的体积是36πcm3.7.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(1)证明:平面BDM⊥平面ADEF.(2)判断点M的位置,使得三棱锥B-CDM的体积为.【解题导引】证明BD⊥平面ADEF,即可证明平面BDM⊥平面ADEF.(2)在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,利用三棱锥的体积计算公式求出MN,可得结论.【解析】(1)因为DC=BC=1,DC⊥BC,所以BD=.因为AD=,AB=2,所以AD2+BD2=AB2,所以∠ADB=90°,所以AD⊥BD,因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD.BD⊂平面ABCD,所以BD⊥平面ADEF,因为BD⊂平面BDM,所以平面BDM⊥平面ADEF.(2)如图,在平面DMC内,过M作MN⊥DC,垂足为N,又因为ED⊥AD,平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD,所以ED⊥CD,所以MN∥ED,因为ED⊥平面ABCD,所以MN⊥平面ABCD.因为V B-CDM=V M-CDB=MN·S△BDC=,所以××1×1×MN=,所以MN=.所以===,所以CM=CE,所以点M在线段CE的三等分点且靠近C处.。

立体几何三视图专题(理科)(2016高考真题分专题复习)

立体几何三视图专题(理科)(2016高考真题分专题复习)
(A)1 (B)2 (C)4 (D)8
8.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为
A、 B、 C、 D、
9.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是()
A. B. C. D.5
10.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是( )
12.A.分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为 , , ,长方体上底面截圆锥的截面半径为 ,则 ,如下图所示,圆锥的轴截面如图所示,则可知 ,而长方体的体积
,当且仅当 , 时,等号成立,此时利用率为 ,故选A.
13.C.由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,∴体积 ,
(A) (B) (C) (D)
3.(2016年高考北京理数)某三棱锥的三视图如图所示,则该三棱锥的体积为()
A. B. C. D.
4.(2016高考新课标3理数)如上图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()
(A) (B) (C)90(D)81
5.(2016高考山东理数)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()
考点:1.三视图;2.空间几何体体积计算.
4.B由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积 ,故选B.
考点:空间几何体的三视图及表面积.
5.C由三视图可知,上面是半径为 的半球,体积为 ,下面是底面积为1,高为1的四棱锥,体积 ,故选C.
6.D由三视图知:该几何体是半个圆柱,其中底面圆的半径为 ,母线长为 ,所以该几何体的表面积是 ,故选D.

高考数学二轮复习 第1部分 小题速解方略—争取高分的先机 专题五 立体几何 1 空间几何体的三视图、

高考数学二轮复习 第1部分 小题速解方略—争取高分的先机 专题五 立体几何 1 空间几何体的三视图、
类型一 类型二 限时速解训练
专题五 立体几何
必考点一 空间几何体的三视图、表面积与体积
[高考预测]——运筹帷幄 1.以三视图为背景的几何体的识别问题. 2.空间几何体与三视图相结合,计算几何体的表面积和体积. 3.球及有关组合体的表面积与体积.
[速解必备]——决胜千里 1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧(左)视图 放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯 视图的宽度一样,即“长对正、高平齐、宽相等”.
A.5030πcm3
1 C.
[速解方略]——不拘一格 类型一 有关几何体的三视图的计算
[例 1] (1)一个正方体被一个平面截去一部分后,剩余部分的三视 图如下图,则截去部分体积与剩余部分体积的比值为( )
1
1
A.8
B.7
1
1
C.6
D.5
解析:基本法:由已知三视图知该几何体是由一个正方体截去了 一个“大角”后剩余的部分,如图所示,截去部分是一个三棱 锥.设正方体的棱长为 1,则三棱锥的体积为
速解法:设球的半径为 r, 则 VO-ABC=13×12×r2h≤16r3=36,故 r= 6.故 S 球=4πr2=144π. 答案:C
方略点评:基本法Βιβλιοθήκη 根据直观图,找到 C 点位置.,速解法是利用 VO-ABC 的表达式的代数关系≤16r3直接求得 r.
(2)正四棱锥的顶点都在同一球面上.若该棱锥的高为 4,底面边
速解法:由几何体特征可知,球的表面积,圆的面积,圆柱侧面 积都含有“π”,只有圆柱的轴截面面积不含“π”,∴即 2r·2r= 16,∴r=2,故选 B. 答案:B
方略点评:1基本法是具体计算出几何体的表面积的表达式.速解 法是根据几何体特征想出表面积表达式特征由部分几何体求 r. 2此类题关键是将三视图恢复为直观图,并找清几何体的标量, 代入公式计算.

【3年高考】2016届高考数学专题练习8.2空间几何体的三视图和直观图

【3年高考】2016届高考数学专题练习8.2空间几何体的三视图和直观图

【3年高考】(新课标)2016版高考数学8.2空间几何体的三视图和直观图A组2012—2014年高考·基础题组1.(2014湖北,5,5分)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②2.(2014北京,7,5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( ) A.S1=S2=S3 B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S13.(2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm24.(2013重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为( )A. B. C.200 D.2405.(2013广东,5,5分)某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.C.D.66.(2012福建,4,5分)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方体D.圆柱7.(2012课标全国,7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(2012安徽,12,5分)某几何体的三视图如图所示,该几何体的表面积是.9.(2012浙江,11,4分)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.B组2012—2014年高考·提升题组1.(2014湖南,7,5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.42.(2014安徽,7,5分)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+B.18+C.21D.183.(2013湖南,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A.1B.C.D.4.(2013课标全国Ⅰ,8,5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π5.(2012湖北,4,5分)已知某几何体的三视图如图所示,则该几何体的体积为( )A. B.3π C. D.6π6.(2013湖北,8,5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V47.(2012辽宁,13,5分)一个几何体的三视图如图所示,则该几何体的表面积为.8.(2013福建,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.9.(2012天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.A组2012—2014年高考·基础题组1.D 设A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2).∵B,C,D在平面yOz上的投影的坐标分别为(0,2,0),(0,2,1),(0,2,2),点A(0,0,2)在平面yOz上,又点C的横坐标小于点B和D的横坐标,∴该几何体的正视图为题图④.∵点A,C,D在平面xOy上的投影的坐标分别为(0,0,0),(1,2,0),(2,2,0),点B(2,2,0)在平面xOy上,∴该几何体的俯视图为题图②.故选D.2.D三棱锥D-ABC如图所示.S1=S△ABC=×2×2=2,S2=×2×=,S3=×2×=,∴S2=S3且S1≠S3,故选D.3.D 由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2××4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).4.C 由三视图可知该几何体是直四棱柱,底面是等腰梯形.底面面积S=×(2+8)×4=20,几何体的体积V=S·h=20×10=200.选C.5.B 由四棱台的三视图可知该四棱台的上底面是边长为1的正方形,下底面是边长为2的正方形,高为2.由棱台的体积公式可知该四棱台的体积V=(1+4+2)×2=,故选B.6.D ∵球的三视图均为圆,正方体的三视图均可以为正方形,∴排除A、C.而三条侧棱两两垂直且相等的正三棱锥的三视图可以为全等的直角三角形,排除B.故选D.7.B由三视图可得,该几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且BA=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.8.答案92解析由三视图,画出几何体的直观图易求得基本量,如图所示,其表面积S=×2+4×(2+4+5+5)=28+64=92.9.答案 1解析由三视图可知,该三棱锥底面是两条直角边长分别为1 cm和3 cm的直角三角形,一条侧棱垂直于底面,垂足为直角顶点,故高为2 cm,所以体积V=××1×3×2=1(cm3).B组2012—2014年高考·提升题组1.B 由三视图知该石材表示的几何体是一个直三棱柱,该直三棱柱的底面是两直角边长分别为6和8的直角三角形,其高为12.要得到最大球,则球与三个侧面相切,从而球的半径应等于底面直角三角形的内切圆的半径,故半径r==2,其中S为底面直角三角形的面积.故选B.2.A 根据题意作出直观图如图,该多面体是由正方体切去两个角而得到的,根据三视图可知其表面积为6+2××()2=6×+=21+.故选A.3.C 若该正方体的放置方式如图所示,当正视图的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视图的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为,由于正视图的方向不同,因此正视图的面积S∈[1,].故选C.4.A 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积为V=4×2×2+π×22×4=16+8π.故选A.5.B 由题意,画出几何体的直观图(如图),利用对称性补形,可补形成高为6的圆柱体,则所求几何体的体积为×(π×12×6)=3π.故选B.6.C V1表示一个圆台的体积,底面直径分别为2,4,高为1,故V1=(4π+2π+π)·1=π.V2表示圆柱的体积,底面直径为2,高为2,故V2=2π.V3表示正方体的体积,棱长为2,故V3=23=8.V4表示一个棱台的体积,上、下底面分别为边长是2、4的正方形,高为1,故V4=(4+16+8)·1=.比较大小可得V2<V1<V3<V4.7.答案38解析如图所示:该几何体是长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱.∴S表=2×(4×3-π)+2×(3×1)+2×(4×1)+2π=24-2π+6+8+2π=38.8.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为2,即为球的直径.所以球的表面积为S=4π=12π.9.答案18+9π解析由三视图知原几何体是两个半径均为 m的球体相切放置,上面放长、宽、高分别是6 m、3 m、1 m的长方体,直观图如图.该几何体的体积V=2V球+V长方体=2×π+6×1×3=(18+9π)m3.。

【高考领航】2016届高考数学二轮复习 限时训练16 空间几何体三视图、表面积及体积 理

【高考领航】2016届高考数学二轮复习 限时训练16 空间几何体三视图、表面积及体积 理

【高考领航】2016届高考数学二轮复习限时训练16 空间几何体三视图、表面积及体积理(建议用时30分钟)1.(2014·高考新课标卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B.将三视图还原为几何体即可.如图,几何体为三棱柱.2.如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A.3 B.2C.1 D.0解析:选 A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S­ABC,底面为等腰三角形,其底边AB的中点为D,BC的中点为E,侧面SAB上的斜高为SD,且CB=AB=SD=SE,顶点S在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.3.(2016·杭州质检)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A .24 cm 3B .40 cm 3C .36 cm 3D .48 cm 3解析:选 B.由三视图可知,该几何体是由一个三棱柱截去两个全等的与三棱柱等底面且高为2的三棱锥形成的,故该几何体的体积V =12×4×3×8-2×13×12×4×3×2=40(cm 3),故选B.4.如图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为( )A.3+π6B.3+43πC .33+43πD .33+π6解析:选D.由三视图知该几何体是由直径为1的球与底面边长为2、高为3的正三棱柱组合的几何体.则该几何体的体积V =V 正三棱柱+V 球=12×2×3×3+43×π×⎝ ⎛⎭⎪⎫123=33+π6.5.如图是一个几何体的三视图,则这个几何体的体积为( )A.572 B .27 C .26D .28解析:选 A.由几何体的三视图可知,该几何体是一个正方体与一个三棱锥的组合体,因此其体积V =33+13×12×32×1=27+32=572.6.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .3 3C .2 3D .3解析:选 B.由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以几何体的体积V =S ·h=⎝ ⎛⎭⎪⎫12×2×3×3=3 3.7.(2014·高考新课标卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C.由侧视图可知切割得到的几何体是两个圆柱的组合体.由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4 cm ,底面半径为2 cm ,右面圆柱的高为2 cm ,底面半径为3 cm ,则组合体的体积V 1=π×22×4+π×32×2=16π+18π=34π(cm 3),原毛坯体积V 2=π×32×6=54π(cm 3),则所求比值为54π-34π54π=1027.8.(2016·南昌市高三模拟)如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥PBCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A.根据题意,三棱锥P ­BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P ­BCD 的正视图与侧视图的面积之比为1∶1.9.(2015·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3D .2π解析:选C.画出旋转体并判断该旋转体的形状,再利用体积公式求解.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3,故选C.10.已知某几何体的三视图如图所示,其中,正视图、侧视图均由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16D.2π3+12解析:选C.由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×⎝ ⎛⎭⎪⎫12×1×1×1+⎣⎢⎡⎦⎥⎤43π⎝ ⎛⎭⎪⎫223×12=16+2π6,故选C.11.(2015·高考安徽卷)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2解析:选B.先根据三视图还原几何体,再根据几何体的结构特点求解.根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.故选B.12.(2015·大连市高三测试)6个棱长为1的正方体在桌面上堆叠成一个几何体,该几何体的主视图与俯视图如图所示,则其左视图不可能为( )解析:选D.由已知6个棱长为1的正方体在桌面上堆叠成一个几何体,结合该几何体的主视图与俯视图,①当正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除A ;②当正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除B ;③正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除C.选D.13.(2015·高考江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 解析:利用圆锥、圆柱的体积公式,列方程求解. 设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7. 答案:714.已知A ,B ,C ,D 四点在半径为292的球面上,且AC =BD =13,AD =BC =5,AB =CD ,则三棱锥D ­ABC 的体积是________.解析:依题意得,可将该三棱锥D ­ABC 补形成一个长方体,设该长方体的长、宽、高分别是a 、b 、c ,则有⎩⎪⎨⎪⎧a 2+b 2+c 2=4×294=29,a 2+b 2=13,b 2+c 2=25,由此解得a =2,b =3,c =4,结合图形可知,三棱锥D ­ABC 的体积是13abc =8.答案:815.在半径为5的球面上有不同的四点A ,B ,C ,D ,若AB =AC =AD =25,则平面BCD 被球所截得图形的面积为__________.解析:过点A 向平面BCD 作垂线,垂足为M ,则M 是△BCD 的外心,外接球球心O 位于直线AM 上,设△BCD 所在截面圆半径为r ,∵OA =OB =5,AB =25,∴在△ABO 中,BO 2=AB 2+AO 2-2AB ×AO ×cos∠BAO ,∴cos ∠BAO =55,∴sin ∠BAO =255.在Rt △ABM 中,r =25sin ∠BAO =4,∴所求面积S =πr 2=16π. 答案:16π16.已知直三棱柱ABC ­A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC ­A 1B 1C 1外接球表面积的最小值为__________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC ­A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝ ⎛⎭⎪⎫BC 22+⎝ ⎛⎭⎪⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC ­A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π。

2016届高考数学二轮复习 5.12 空间几何体课件

2016届高考数学二轮复习 5.12 空间几何体课件

故该几何体的表面积
1
2
S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2× ×3×4=138(cm2).故选 D.
答案:D
点评:该题所选模型较常规,解决的关键是明确其为组合体,要具有先部
分,再整体的思维模式.
能力突破点一

能力突破点二
能力突破点三
能力突破方略
能力突破模型
能力迁移训练
【例 4】 一个几何体的三视图如图所示(单位:m),则该几何体的体积
空间几何体⇒直观图(只比平面图形的直观图多画了一个 z 轴且其长
度不变)
能力突破点一
能力突破点二
能力突破点三
能力突破方略
能力突破模型
能力迁移训练
【例 1】 (2014 课标全国Ⅰ高考,理 12)如图,网格纸上小正方形的边长
为 1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱
的长度为(
往会蕴含于这些特殊几何体中.
思考 2:平面图形与立体图形的实物图与直观图有何关系?
提示:
图形
平面
图形
立体
图形
实物图⇒直观图
①水平放置的平面图形⇒直观图(斜二测画法,即平行于 x 轴的线段长
度不变,而平行于 y 轴的线段长度变为原来长度的一半)
2
②设其面积为 S⇒直观图的面积为 S
4
③由直观图求原图形元素间的关系,利用逆向思维,寻求突破口
2
综上,S2=S3,S3≠S1.故选 D.
能力突破点一
能力突破点二
图①
能力突破点三
能力突破方略
图②
能力突破模型

【精编】高优指导2016高考数学二轮复习 专题六 立体几何 第一讲 空间几何体及三视图课件 理-精心整理

【精编】高优指导2016高考数学二轮复习 专题六 立体几何 第一讲 空间几何体及三视图课件 理-精心整理
湖北,10;辽 宁,16;广东,6
1234
1.三视图 三视图是从一个几何体的正前方、正左方、正上方三个不同的方向 看此几何体,描绘出的三张视图,分别称为正视图(主视图)、侧视图(左视 图)、俯视图.
1234
2.几何体的表面积 (1)棱柱、棱锥、棱台的表面积就是各个面的面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环;圆柱、 圆锥、圆台的表面积等于侧面积与底面面积之和.
B.27
C.26
D.28
考点1 考点2 考点3 考点4
解析:由几何体的三视图知,该几何体是一个正方体与一个三棱锥的组 合体,其体积 V=33+13 × 12×32×1=27+32 = 527.
答案:A
考点1 考点2 考点3 考点4
(2014 云南昆明三中、玉溪一中统考,5)一个几何体的 三视图如图所示,则这个几何体的体积为( )
A.4π
B.12π
C.16π
D.64π
解析:取 SC 的中点 E,连接 AE,BE,依题意,BC2=AB2+AC2-2AB·ACcos
60°=3. 由于 AC2=AB2+BC2,故 AB⊥BC.
∵SA⊥平面 ABC,∴SA⊥BC.
又 SA∩AB=A,∴BC⊥平面 SAB,BC⊥SB. ∵AE=12SC=BE,∴点 E 是三棱锥 S-ABC 的外接球的球心,即点 E 与点 O 重合,OA=12SC=12 ������������2 + A������2=2,球 O 的表面积为 4π×OA2=16π.故选 C. 答案:C
12345
方法二:由四棱台的三视图,可知原四棱台的直观图如图所示.
在四棱台 ABCD-A1B1C1D1 中,四边形 ABCD 与四边形 A1B1C1D1 都为正 方形,AB=2,A1B1=1,且 D1D⊥平面 ABCD,D1D=2.分别延长四棱台各个侧棱 交于点 O,设 OD1=x,因为△OD1C1∽△ODC,所以������������������������1 = ���������1���������������1,即������+������2 = 12,解得 x=2.������������������������������ -������1������1������1������1 =V 棱锥 O-ABCD-������棱锥������-������1������1������1������1 = 13×2×2×4-13×1×1×2=134. 答案:B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考领航】2016届高考数学二轮复习限时训练16 空间几何体三视图、表面积及体积文(建议用时30分钟)1.(2014·高考新课标卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B.将三视图还原为几何体即可.如图,几何体为三棱柱.2.如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A.3 B.2C.1 D.0解析:选A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S­ABC,底面为等腰三角形,其底边AB的中点为D,BC的中点为E,侧面SAB上的斜高为SD,且CB=AB=SD=SE,顶点S在底面上的射影为AC的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.3.(2016·杭州质检)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A .24 cm 3B .40 cm 3C .36 cm 3D .48 cm 3解析:选 B.由三视图可知,该几何体是由一个三棱柱截去两个全等的与三棱柱等底面且高为2的三棱锥形成的,故该几何体的体积V =12×4×3×8-2×13×12×4×3×2=40(cm 3),故选B.4.如图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为( )A.3+π6B.3+43πC .33+43πD .33+π6解析:选D.由三视图知该几何体是由直径为1的球与底面边长为2、高为3的正三棱柱组合的几何体.则该几何体的体积V =V 正三棱柱+V 球=12×2×3×3+43×π×⎝ ⎛⎭⎪⎫123=33+π6.5.如图是一个几何体的三视图,则这个几何体的体积为( )A.572 B .27 C .26D .28解析:选A.由几何体的三视图可知,该几何体是一个正方体与一个三棱锥的组合体,因此其体积V =33+13×12×32×1=27+32=572. 6.某几何体的三视图如图所示,则该几何体的体积为( )A .6B .3 3C .2 3D .3解析:选 B.由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以几何体的体积V =S ·h=⎝ ⎛⎭⎪⎫12×2×3×3=3 3. 7.(2014·高考新课标卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C.由侧视图可知切割得到的几何体是两个圆柱的组合体.由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4 cm ,底面半径为2 cm ,右面圆柱的高为2 cm ,底面半径为3 cm ,则组合体的体积V 1=π×22×4+π×32×2=16π+18π=34π(cm 3),原毛坯体积V 2=π×32×6=54π(cm 3),则所求比值为54π-34π54π=1027.8.(南昌市2016届高三模拟)如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥PBCD 的正视图与侧视图的面积之比为( ) A .1∶1 B .2∶1 C .2∶3 D .3∶2解析:选A.根据题意,三棱锥P ­BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P ­BCD 的正视图与侧视图的面积之比为1∶1.9.(2015·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3C.5π3 D .2π解析:选C.画出旋转体并判断该旋转体的形状,再利用体积公式求解.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3,故选C.10.已知某几何体的三视图如图所示,其中,正视图、侧视图均由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16 D.2π3+12解析:选C.由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×⎝ ⎛⎭⎪⎫12×1×1×1+⎣⎢⎡⎦⎥⎤43π⎝ ⎛⎭⎪⎫223×12=16+2π6,故选C.11.(2015·高考安徽卷)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2解析:选B.先根据三视图还原几何体,再根据几何体的结构特点求解.根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.故选B.12.(2015·大连市高三测试)6个棱长为1的正方体在桌面上堆叠成一个几何体,该几何体的主视图与俯视图如图所示,则其左视图不可能为( )解析:选D.由已知6个棱长为1的正方体在桌面上堆叠成一个几何体,结合该几何体的主视图与俯视图,①当正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除A;②当正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除B;③正方体的摆放如下图所示时,(格中数字表示每摞正方体的个数)几何体的左视图如下图所示,故排除C.选D.13.(2015·高考江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析:利用圆锥、圆柱的体积公式,列方程求解.设新的底面半径为r,由题意得1 3×π×52×4+π×22×8=13×π×r2×4+π×r2×8,∴r2=7,∴r=7. 答案:714.已知A,B,C,D四点在半径为292的球面上,且AC=BD=13,AD=BC=5,AB=CD,则三棱锥D­ABC的体积是________.解析:依题意得,可将该三棱锥D­ABC补形成一个长方体,设该长方体的长、宽、高分别是a、b、c,则有⎩⎪⎨⎪⎧a 2+b 2+c 2=4×294=29,a 2+b 2=13,b 2+c 2=25,由此解得a =2,b =3,c =4,结合图形可知,三棱锥D ­ABC的体积是13abc =8.答案:815.在半径为5的球面上有不同的四点A ,B ,C ,D ,若AB =AC =AD =25,则平面BCD 被球所截得图形的面积为__________.解析:过点A 向平面BCD 作垂线,垂足为M ,则M 是△BCD 的外心,外接球球心O 位于直线AM 上,设△BCD 所在截面圆半径为r ,∵OA =OB =5,AB =25,∴在△ABO 中,BO 2=AB 2+AO 2-2AB ×AO ×cos∠BAO ,∴cos ∠BAO =55,∴sin ∠BAO =255.在Rt △ABM 中,r =25sin ∠BAO =4,∴所求面积S =πr 2=16π. 答案:16π16.已知直三棱柱ABC ­A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC ­A 1B 1C 1外接球表面积的最小值为__________. 解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC ­A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝ ⎛⎭⎪⎫BC 22+⎝ ⎛⎭⎪⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC ­A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π。

相关文档
最新文档