第二章拉压

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

材料力学S02拉压

材料力学S02拉压

B
qx
l


C
F1
F1
23
第二章
轴向拉伸和压缩
拉压变形计算例题
例7: 支架,F=20kN, E=200GPa ,杆1截面d=0.022m, θ0=30°;杆2长度为l2=2m,截面为No.10工字钢, A2=1.435×10-3m2 。试计算结构中的最大应力和A点位 移。 d
B
(1)
FN 1
C
( 2)
l l
(a)
第二章
d
轴向拉伸和压缩
(b)
34
2. 低碳钢的拉伸力学性质
2.1 学习重点 材料的拉伸曲线(应力-应变或载荷-位移曲线) 重要参数 D 2.2 曲线 F 四个阶段: B 弹性,屈服 C 强化,颈缩 A
' '
轴向拉伸和压缩
F
b
b b
F
泊松比ν
第二章

l
20
拉压变形计算例题
F
例6: A 如图直径为d的圆截面的桩被外力F打入土中, 假设土对桩体的阻力为均匀分布,其线分布 B 集度为qx,土对桩头的阻力F1=0.3qxl,桩体 材料的弹性模量为E。试计算桩体最大应力 和总变形量。 q
F
O
x
x
该杆件上的载荷力系关于杆件中截面C反对称,FN的分 布关于杆件中截面C也是反对称的。
第二章 轴向拉伸和压缩 9
第三节
应力 拉压应力
Fi1
1. 应力 单位截面积上作用着的内力 平均应力 p ΔF
m
m
ΔA
ΔFn
ΔFt
一点应力
ΔA ΔF ΔF m n m t ΔA ΔA ΔF p lim ΔA 0 ΔA ΔF ΔF lim n lim t ΔA0 ΔA ΔA0 ΔA

第二章 轴向拉压应力分析

第二章 轴向拉压应力分析
A A0
剪应力—在截面内的应力
目录
注意点: •受力物体内各截面上每点的应力,一般是不相 同的,它随着截面和截面上每点的位置而改变。 因此,在说明应力性质和数值时必须要说明它所 在的位置。
•应力是一向量,其量纲是[力]/[长度]²,单位 为牛顿/米²,称为帕斯卡,简称帕(Pa).工程 上常用兆帕(MPa)=106 Pa,或吉帕(Gpa)= 109 Pa。
目录
拉伸与压缩时横截面上的应力
1
2
F
3 F
1
2
F
3
F dF Ad A
应力的合力=该截面上的内力
F
确定应力的分布 是静不定问题
F
目录
研究方法: 实验观察
作出假设
理论分析
实验验证
1、实验观察
F
a a b b
变形前: ab // cd
c c
F
d d
变形后:ab // cd // ab // cd
FN 1 2A
3F , 2A
3
FN 3 A
2F A
max
1 2
m
ax
F A
(在CD段与杆轴
成45°的斜面上)
目录
§2–3 材料的力学性能
材料的力学性能——材料受力以后变形和破坏的规律。
即:材料从加载直至破坏整个过程中表现出来的反映材 料变形性能、强度性能等特征方面的指标。比例极
限 p、杨氏模量E、泊松比、极限应力 0等。
O 1 B 2C
4F
3F
1
2
3D 2F
3
目录
解: 1、计算左端支座反力
FR
O
1B 4F
2C 3F
3D 2F

材料力学-第二章 拉压与剪切

材料力学-第二章 拉压与剪切

班级 学号 姓名1 试求图示杆件1-1、2-2、3-3横截面上的轴力,并作轴力图。

2、油缸盖与缸体采用6个螺栓连接,如图示。

已知油缸内径D=350mm ,油压p=1MPa 。

若螺栓材料许用应力[ ]=40MPa ,求螺栓的内径。

题1图140 kN 30 kN20 kN122 33班级 学号 姓名3 图示木制桁架受水平力P 作用。

已知P=80kN[][]MPa MPa 10,8==压拉σσ,试设计AB 、AD 两杆的横截面积。

4 图示结构,杆1、2的横截面均为圆形,直径分别为d 1=30mm , d 2=20mm 。

两杆材料相同,许用应力[σ]=160MPa ,在节点A 处受铅直力P=80kN 。

试校核结构的强度。

A B C D P60° 60° 30° 30°BC A P 12 30° 45°班级学号 姓名5、某铣床工作台进给油缸如图示,缸内油压p=2MPa ,油缸内径D=75mm ,活塞杆直径 d=18mm 。

已知活塞材料的许用应力[σ]=50MPa ,试校核活塞杆的强度。

6、简易吊车如图所示。

AB 为木杆,横截面积 21cm 100=A ,许用压应力[]MPa 71=σ。

BC 为钢杆,横截面积22cm 6=A ,许用拉应力[]MPa 1602=σ。

试求许可吊重F 。

F30°AB C木杆 钢杆第二章 拉伸、压缩和剪切班级 学号 姓名7、 图示拉杆沿斜截面m -m 由两部分胶合而成。

设在胶合面上许用拉应力[]MPa 100=σ,许用切应力[]MPa 50=τ,并设胶合面的强度控制杆件的拉力。

试问:为使杆件承受最大拉力F ,α角的值应为多少?若杆件横截面面积为4cm 2,并规定α≤60°,试确定许可载荷F 。

8、变截面杆如图所示。

已知:21cm 8=A ,22cm 4=A , GPa 200=E 。

试求杆的总伸长l ∆。

材料力学第2章-1拉压

材料力学第2章-1拉压
6 9 2
平方米) (牛顿/平方米)记作:Pa (帕斯 牛顿 平方米 记作: 记为: 记为:Mpa 记为: 记为:Gpa 矢量背离截面 矢量指向截面
返回
N/m N/m
2 2
兆帕 千兆帕
4、正应力的符号规定: 、正应力的符号规定: 与轴力相同,拉伸( ) 与轴力相同,拉伸(+) 压缩( 压缩(-)
5、应力的分布规律: dFN= σ dA
ε
返回
二、压缩曲线: 压缩曲线:
F D B A C
σp
σs
σb
E
O
ε=∆ L/L
1、低碳钢的压缩曲线
特点: 弹性模量E均与拉伸时相同 均与拉伸时相同, 特点:极限应力σS弹性模量 均与拉伸时相同,但得不 到强度极限。 到强度极限。
返回
铸铁压缩曲线
2、铸铁压缩曲线的特点: 铸铁压缩曲线的特点: 1)形状与拉伸时相似。 )形状与拉伸时相似。 2)抗压强度比抗拉强度高 )抗压强度比抗拉强度高4~5倍。 倍 3)在较小的变形下突然破坏,破坏断面与轴线大约成 )在较小的变形下突然破坏, 450~550角。 三、两类材料力学性能比较 塑性材料:1)破坏前变形大,有流动阶段。 塑性材料: 破坏前变形大,有流动阶段。 承受冲击的能力好。 2)承受冲击的能力好。 均相同。 3)拉压时E、 σs均相同。 脆性材料: 破坏前变形小,没有明显的流动阶段。 脆性材料:1)破坏前变形小,没有明显的流动阶段。 承受冲击的能力不好。 2)承受冲击的能力不好。 抗拉强度低,抗压强度高。 3)抗拉强度低,抗压强度高。 塑性材料适合做承拉构件,脆性材料适合做承压构件。 塑性材料适合做承拉构件,脆性材料适合做承压构件。
FN =
∫ dF
A
N

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

材料力学02拉压

材料力学02拉压

d h
2、试验仪器:万能材料试验机。
2、试验仪器:万能材料试验机工作原理图。
1上横梁 2立柱 3传感器 4移动横梁 5滚珠丝杠 变形测量 载荷测量
15光栅编码器
6上夹头
7试样 8下夹头 9工作平台 14引伸计 计算机
位移测量
12变压器
2、试验仪器:万能材料试验机工作原理图。
1. 变形规律试验及平面假设:
变形前
a c
b d
受载后
F
a´ c´
b´ d´
F
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。 均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
s
FN
FN s A
轴力引起的正应力 —— s : 在横截面上均布。 3. 危险截面及最大工作应力: 危险截面:内力最大的截面或截面尺寸最小的面。 危险点:应力最大的点。
A
A 简图
F
截开:
F
F
代替: 平衡:
F
FN
A
x
F
0 FN F 0
FN F
轴力——轴向拉压杆的内力,用FN 表示。
轴力的正负规定: FN 与外法线同向,为正轴力(拉力) FN FN FN FN FN >0 FN <0
FN 与外法线反向,为负轴力(压力)
轴力图—— FN (x) 的图象表示。
Fx 0 Fy 0
解得 : FAC
FAC sin 45o FBC sin 30o FAC cos 45o FBC cos30o P
2P 2 6 FBC 2 2P 2 6
FAC
AC : s AC
FAC 103MPa A1

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

工程力学第2章轴向拉伸压缩与剪切

工程力学第2章轴向拉伸压缩与剪切
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
F
N (+) N
F
F
N (-) N
F
轴力一般按正方向假设。
3、轴力图: 轴力沿轴线变化的图形
F
F
N
4、轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系;
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
1、低碳钢轴向拉伸时的力学性质 (四个阶段)
⑴、弹性阶段:OA
OA’为直线段; E
AA’为微弯曲线段。
p —比例极限; e —弹性极限。
一般这两个极限相差不大, 在工程上难以区分,统称为弹 性极限
低碳钢拉伸时的四个阶段
⑴、弹性阶段:OA, ⑵、屈服阶段:B’C。
s —屈服极限
屈服段内最低的应力值。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F FD= F 的力,方向如图,试求各段内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
N1
A
BC
D
FA
FB
FC
FD
解: 求OA段内力N1:设截面如图
X 0 FD FC FB FA N1 0
N4= F
FD
N1 2F , N2= –3F, N3= 5F, N4= F
N1 2F , N2= –3F, N3= 5F, N4= F
轴力图如下图示
OA
BC
D
FA
FB
FC
FD
N 2F
5F

材料力学第2章-拉压2

材料力学第2章-拉压2

第二章 轴向拉伸和压缩
拉、压杆件的变形分析
解:1. 作轴力图 由于直杆上作用有4个轴向 载荷,而且AB段与BC段杆横截 面面积不相等,为了确定直杆 横截面上的最大正应力和杆的 总变形量,必须首先确定各段 杆的横截面上的轴力。
应用截面法,可以确定AD、 DEB、BC段杆横截面上的轴力 分别为:
FNAD=-2FP= -120 kN; FNDE=FNEB=-FP= -60 kN; FNBC=FP=60 kN。
F

K
p
A
(a)
K
(b)
ΔF p ΔA
(1)应力定义在截面内的一点处; (2)应力是一个矢量。 正应力, 切应力
ΔF dF p lim Δ A 0 Δ A dA
单位:Pa (N/m2), MPa (106 N/m2)
第二章 轴向拉伸和压缩 上节回顾 轴向拉伸和压缩杆件横截面上只有正应力。
A A = cos
FP x= A
其中,x为杆横截面上的正应力; Aθ 为斜截面面积
第二章 轴向拉伸和压缩 上节回顾
= x cos
2
1 = xsin 2 2
由于微元取得很小,上述微元斜面上的应力, 实际上就是过一点处不同方向面的应力。因此,当 论及应力时,必须指明是哪一点处、哪一个方向面 上的应力。
第二章 轴向拉伸和压缩
拉、压杆件的变形分析
绝对变形
弹性模量
FPl FN l Δl EA EA
当拉、压杆有二个以上的外力作用时,需要 先画出轴力图,然后按上式分段计算各段的变形, 各段变形的代数和即为杆的总伸长量(或缩短量):
FNi li Δ l i EAi
第二章 轴向拉伸和压缩

第二章 强度条件、安全系数与许用应力

第二章 强度条件、安全系数与许用应力

= W
F
y
0, FN 2 sin 30 2W 0
F
x
0, FN 2 cos30 FN 1 0


FN 1 3.46W
FN 2 4W
例如图所示的简易起重设备,AB杆用两根70mm×70mm×4mm 等边角钢组成,BC杆用两根10号槽钢焊成一整体。材料均为 Q235钢, [σ]=170MPa。试求设备所许用的起重量W。
o
120kN 220kN 260kN

B
FN / kN 120

C

160
160kN
A
D
BC段: 100 3 FN 2 100 10 N 160 106 Pa 160MPa(压应力) 2 A2 625 106 m2 CD段: FN 3 160 103 N (拉应力) 177.8 106 Pa 177.8MPa 3 6 2 A3 900 10 m
确定结构的许可载荷为
分析讨论:
[ F ] 36 KN
[F ]
和 [ FN ] 是两个不同的概念。因为结构中各杆
并不同时达到危险状态,所以其许可载荷是由最先 达到许可内力的那根杆的强度决定。
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
圆截面等直杆沿轴向受力如图示,材料为 铸铁,抗拉许用应力 t =60Mpa,抗压许用 应力 c =120MPa,设计横截面直径。
2杆:
5 2 103 9.8 FN 2 2 4 A2 a2
2.5MPa [ ]2
因此结构安全。
Ⅱ拉(压)杆的强度计算/三 拉压杆的强度条件/例题
3、F 未知,求许可载荷[F]

材料力学第二章+拉压

材料力学第二章+拉压

FN4
20kN
第二章 轴向拉伸和压缩
§2.2 内力计算
40kN A B 300 50
55kN 25kN C 500 D 400
20kN E
FN
(kN) 10
FN1=10kN (拉力) FN2=50kN (拉力) FN3= - 5kN (压力) FN4=20kN (拉力)
+
20
+
5
FNmax 50( kN ) 发生在BC段内任一横截面上
寸。)
第二章 轴向拉伸和压缩 圣维南原理:
§2.3 拉压杆的应力
在静力等效条件下,不同的加载方式只对加载处附近区 域的应力分布有影响,离开加载处较远的部分,其应力分布 并没有显著的差别。
第二章 轴向拉伸和压缩
§2.3 拉压杆的应力
例题2-3 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
FN
O
x
第二章 轴向拉伸和压缩
§2.2 内力计算
例题1
一等直杆其受力情况如图所示, 作杆的轴力图.
40kN A 600 B 300
55kN 25kN C 500 D 400
20kN E
第二章 轴向拉伸和压缩
40kN
§2.2 内力计算
55kN 25kN
300
20kN D 400
E
A
600
B
C
500
§2.2 内力计算
1、截面法
截开 在求内力的截面m-m 处, 假想地将杆截为两部分. 代替 取左部分为研究对象。弃去 右部分。弃去部分对研究对 象的作用,以截开面上的内 m F m FN m
F
m

材料力学第02章 拉伸、压缩与剪切

材料力学第02章 拉伸、压缩与剪切


Ⅰ - ○ 20 kN

F
x
0
FN1
Ⅰ 80kN Ⅱ
FN2 60 80 0
FN2 20kN
FN2 第三段:

30kN
60kN
F
x
0

FN3 30 0
FN3 30kN
FN3

例2
3kN
画图示杆的轴力图
2kN 2kN 10 kN 4kN 8kN
A
3kN
B
C
D
脆性材料 u ( bc) bt

u
n

n —安全因数 —许用应力

塑性材料的许用应力
脆性材料的许用应力
s
ns
bt
nb
p 0.2 n s bc n b
§2-6
§2-7 失效、安全因数和强度计算
解: A 轴力图
A1 B
○ -
A2 60kN 20 kN C D 20 kN ⊕
AB
BC
CD
FN AB 40 103 20MPa A1 2000 FN BC 40 103 40MPa A2 1000 FN CD 20 103 20MPa A2 1000
3、轴力正负号:拉为正、 F 压为负
0 FN F 0 FN F
F
§2-2
x
4、轴力图:轴力沿杆件轴 线的变化
目录
例1
60kN
画图示杆的轴力图

80kN

Ⅲ 50kN
30kN
第一段:

材料力学 第二章 轴向拉压应力PPT课件

材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N

×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0

x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有

材料力学(长学时)_2-拉压、剪切

材料力学(长学时)_2-拉压、剪切

第二章 拉伸、压缩与剪切2-1 求图示各杆指定截面的轴力,并作轴力图。

2-2图示杆的横截面面积为A ,弹性模量为E 。

作轴力图,并求杆的最大正应力及伸长。

N(x)=x lP21l l l ∆+∆=∆ =⎰+l 0lEA PxdxEA 2Pl =EAPl.2-3 图示一正方形截面的阶梯形混凝土柱。

设重力加速度g=9.8m/s 2, 混凝土的密度为33m /kg 1004.2⨯=ρ,P=100kN ,许用应力[]MPa 2=σ。

试根据强度条件选择截面宽度a 和b 。

选a :62233102a4a 8.91004.210100⨯=⨯⨯⨯+⨯ a=0.2283m. 选b:6223233102bb8.91004.242283.08.91004.24101003⨯=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ b=0.3980m.2-4 图示一面积为100mm ⨯200mm 的矩形截面杆,受拉力P=20kN 的作用,试求:(1)6π=θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。

max 3MPa 12.01.01020σ==⨯⨯=σMPa 75.030cos 1o 6=⨯=σπMPa 433.060sin 21o 6==τπ MPa 5.0121045max =⋅=τ=τ.2-5 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。

BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。

为使杆系使用的材料最省,试求夹角θ的值。

;sin PN 1θ-= θ=cot P N 2 材料最省时,两杆可同时达到许用应力 [];cot P A 1σθ=[]σθ=sin PA 2 结构的总体积为[]⎪⎪⎭⎫⎝⎛θθθ+⋅σ=+=cos sin cos 1Pl l A l A V 22211 0d dV=θ0cos 2sin 22=θ-θ ∴ o 73.54=θ.2-6 图示一三角架,在结点A 受P 力作用。

材料力学第2章-拉压4

材料力学第2章-拉压4

Ab s =
h——平键高度 l——平键长度
hl 2
F
b
l
F
h
拉伸与压缩/连接部分的强度计算 2、柱面接触(如铆钉):挤压面面积为实际的承压面积在其直径 平面上的投影。 挤压强度条件:

bs

Fb A bs
F
[
bs
]
F
Ab s = d d
d——铆钉或销钉直径,
——接触柱面的长度
拉伸与压缩/连接部分的强度计算

l2 l3
物理关系
l3 F N 3 l3 E 3 A3 l1 l 2 F N 1 l1 E 1 A1
FP
,
拉伸与压缩/拉压超静定问题
将物理关系代入变形协调条件得到补充方程为:
解:地桩所受外载为轴载,且在F和摩擦力共同 作用下平衡。 即:

F y ky d y F k
2 0
l
l
3
F 0
3
则:
FN ( y )
k
3F l
3
f
y 0
3F l
3
y
2
轴力方程为: 求地桩的缩短量δ:
l
FN ( y )
f dy
Fy l
3
3
y
l AB l AC 整理得 A y A A tan 3 0 co s 4 5 co s 3 0
1 tan 3 0 1 .3 6 6 m m

2-9 图示为打入土中的混凝土地桩,顶端承受载荷F,并由作用于地桩的摩擦力所支持。设沿 地桩单位长度的摩擦力为 f,且 f =k y2,式中,k为常数。试求地桩的缩短量δ 。已知地桩的 横截面面积为A,弹性模量为E,埋入土中的长度为l。

第二章轴向拉压与剪切

第二章轴向拉压与剪切
斜拉桥承受拉力的钢缆
力学模型
F
FF
F
受力特点:直杆受到一对大小相等,作用线与 其轴线重合的外力F作用。
变形特点:杆件发生纵向伸长或缩短。
此类受轴向外力作用的等截面直杆称为拉杆或 压杆(Bar)。
Ⅰ、内力
内力——由于物体受外力作用而引起的其内 部各质点间相互作用的力的改变量。
F
FF
F
根据可变形固体的连续性假设可知,物体内部 相邻部分之间的作用力是一个连续分布的内力系, 我们所说的内力是该内力系的合成(力或力偶)
0 cos
0 为拉(压)杆横截面上( )的0正应力。
总应力又可分解为斜截面上的正应力和切应力:
p
p cos 0 cos2
p
sin
0 cos
sin
0
2
sin 2
p
0 cos2
0
2
sin 2
通过一点的所有不同方位截面上应力的全部情况, 成为该点处的应力状态。
对于拉(压)杆,一点处的应力状态由其横截面上 一点处正应力即可完全确定,这样的应力状态称为 单向应力状态。
Ⅲ、拉(压)杆斜截面上的应力
F
k
F
k
F
k k
F
由静力平衡得斜截面上的
内力: F F
F
k p F
p ?
k
F
F
变形假设:两平行的斜截面在杆件发生拉(压) 变形后仍相互平行。
推论:两平行的斜截面之间所有纵向线段伸长 变形相同。
即斜截面上各点处总应力相等。
F
k A
F
A
k
F
k p F
k
p
F A
F F cos A / cos A

材料力学02(第二章 轴向拉压应力与材料的力学性能)

材料力学02(第二章 轴向拉压应力与材料的力学性能)
F 1= A1 sin F 2=A2 tan
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin

A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14
第二章
拉伸、压缩与剪切
第二章
拉伸、压缩与剪切
2-3 横截面上的应力
15
第二章
拉伸、压缩与剪切
2
例2-2:画轴力图 16kN 聚集度高
1
10KN
A
FN(KN)
B
C D
16 6
E
x
? AB破坏
16
第二章
拉伸、压缩与剪切
2-3 横截面上的应力
1.应力的定义:由外力引起的内力集度,表示截面
上一点受力的大小和方向。
n
E为弹性摸量, 单位:GPa EA为杆件抗拉(压)刚度
31
第二章
拉伸、压缩与剪切
2-5
3. 横向变形 横向绝对变形 横向应变 泊松比
拉压杆的变形
F
胡克定律(P32)
F b1
l l1
b
b b1 b b b ( σ≤ σp)

E, μ 都是材料的弹性常数。钢材的E约为200GPa
特点:作用在杆件上的外力合力的作用线与杆件轴线重 合,杆件变形是沿轴线方向的伸长或缩短。 拉伸 压缩
F
F
F
A B C D
F
F1
F2
F3
F4
F
6
x
0
第二章
拉伸、压缩与剪切
讨论题:
下例杆件中,哪些是轴向拉压杆?
F
(A)
(C )
7
F
拉伸、压缩与剪切
第二章
2-2 内力
1.内力:
截面法
轴力图
指当受到外力作用而发生变形时,物体内相邻部分之间产 生的附加相互作用力,称为“附加内力”,简称“内力”。 P
a c
d
s
o p

e
g
f
h

σs — 标志着材料出现了显著的塑性变形 σb — 标志着材料将失去承载能力 δ,Ψ —标志材料承受塑性变形 的能力 E — 表示材料抵抗弹性变形的能力
δ
σp — 在σp以内,材料服从虎克定律
41
第二章
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能

d
e
b
e
2
ζ ζ α ζcos α , η α sin2α 2
分析最大应力: ① α = 0o , σ max =σ, σ max产生在横截面上;
45 0 的斜截上;
② α = 45o,τmax =σ /2 , τ max 产生在
③ α= 90o ,σ90o= τ90o=0, 纵向截面上没有应力.
F
9
x
0
FN F 0
FN F
第二章
拉伸、压缩与剪切
2-2 内力
截面法
轴力图
3.轴力:拉压横截面上的内力 4.轴力正负号规定:拉力为正;压力为负 5.轴力图: 轴力沿杆件轴线变化的曲线图
1 18KN
8K N 2 4KN 3
A
1
8KN
B
2 C
3 D
FN
+
-10KN 10
-
-6KN
x
第二章
Pα F pα A ζcosα Aα cosα
A——横截面面积
σ—横截面上正应力
25
第二章
拉伸、压缩与剪切
2-4 斜截面上的应力
pα ζcosα ζ α pα cosα ζcos α
2ห้องสมุดไป่ตู้
ζα
α

ζ η α pα sinα cos sin sin2α 2
1MPa=106Pa=1N/mm2
18
第二章
拉伸、压缩与剪切
2-3 横截面上的应力
2.轴向拉压时横截面上的应力
a c
变形前 P
b a´ d
受载后
c´ 横截面

P

平面假设:横截面在变形后仍保持为平面,且仍垂 直于轴线。 a´ c´ P P
b´ d´
19
第二章
拉伸、压缩与剪切
2-3 横截面上的应力
12
第二章
拉伸、压缩与剪切
例2-1: 绘轴力图。
解: 1.分段
1 18KN 8KN A 1
4KN 2 2 C
3 D 6KN
AB:FN 1=8(拉力) BC:FN 2 =-18+8
B
3
=-10 K(压力)
CD:FN 3=-6KN(压力)
FN
8KN
+ -6KN -10KN 13
x
3.绘轴力图
第二章
拉伸、压缩与剪切
2-9 拉(压)杆的的应变能 2-10 应力集中的概念 2.11
2
剪切和挤压的实用计算 第二章 拉伸、压缩与剪切
实例
2-1 拉伸与压缩的概念
拉伸压缩工程实例
3
第二章
拉伸、压缩与剪切
拉伸压缩工程实例
实例
P
P
Q
4
第二章
拉伸、压缩与剪切
拉伸压缩工程实例
实例
5
第二章
拉伸、压缩与剪切
2-1 拉伸与压缩的概念
FN dA A
A
正应力计算公式:
FN ζ A
P
拉应力为正,压应力为负。
FN
ζ
轴力和截面连续变化时:
20
FN (x) ζ A(x)
拉伸、压缩与剪切
书P14例2.2自学
第二章
1
2
3
例2-3
D
16kN
A
16KN 18KN
B C
1 100
2
100 3 100
已知:AAB=100mm2 ABC=300mm2 ACD=600mm2 求: ζ max 2、求各段的应力
28
第二章
拉伸、压缩与剪切
破坏原因分析:
塑性材料:

① 45 (max)
0
45
0

2
F
-450
2

抗拉=抗压>抗剪
所以出现450滑移线而破坏。 脆性材料:

F

F
ζmax
② 抗压>抗剪>抗拉 所以沿横截面拉断。
29
第二章
拉伸、压缩与剪切
例2-4 直径为d =1 cm 杆受拉力P =10 kN的作用,试求最大剪 应力,并求与横截面夹角30°的斜截面上的正应力和剪应力。
P 410000 0 127 .4MPa 2 A 3.1410
max 0 /2127.4/263.7MPa
127 .4 (1cos 2 ) (1cos 60)95.5MPa 2 2
0
127 .4 sin 2 sin6055.2MPa 2 2
二. 低碳钢的拉伸 (含碳量0.3%以下)
第二章
拉伸、压缩与剪切
37
2-6 材料拉伸时的力学性能
二、 低碳钢的拉伸

e
b
e P
b
f
a c
s
o
ζP —
38

p δ
f’
e
h
2、屈服阶段bc(失去抵抗 变形的能力) s — 屈服极限(失效应力) 3、强化阶段ce(恢复抵抗 变形的能力) b — 强度极限 4、局部变形阶段ef

d g
f h

1、弹性范围内卸载、再加载 原路径不变 2、过弹性范围卸载、再加载 卸载定律:卸载过程中,应力变 应按直线规律变化
40
第二章
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能
四个阶段:弹性、屈服、强化、颈缩

d
总结
e
b
e
P
b
f
强度指标:σs,σb 塑性指标:δ,Ψ 刚度指标:E,μ(G)
第二章
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能 四、铸铁拉伸时的力学性质
没有屈服和颈缩现象,试件突然拉断。δ=0.5%。为典 型的脆性材料。

E tan 割 线 斜 率
σbt—铸铁拉伸强度极限
正应力: ζ α ζcos 2 α
ζ 切应力: η α sin2α 2
26
第二章
拉伸、压缩与剪切
2-4
斜截面上的应力
ζ α 正负规定:
拉应力为正; 压应力为负。
ζα
α

α正负规定:τα对体内一点之矩为顺时针,取正号。
τα(+)
27
τα(-)
第二章 拉伸、压缩与剪切
2-4
斜截面上的应力
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能
力学性能:在外力作用下材料在变形和破坏方面所表现出的 特性 一. 试件和实验条件 国家标准《金属拉伸试验方法》(GB228-2002) 标 准 试 件
常 温 、 静 载
35
第二章
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能
36
第二章
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能
39
为塑性材料
5%
为脆性材料
δ 20 — 30%
第二章
60%
拉伸、压缩与剪切
2-6 材料拉伸时的力学性能
卸载定律及冷作硬化 e d
b
b
f
d点卸载后,短期内再加载, 应力应变关系沿卸载时的斜直 线变化。 冷作硬化:比例极限增高,延 伸率降低的现象
e
P
a c
s
o p e
相关文档
最新文档