平行四边形中常用辅助线的添法
平行线中添辅助线的方法
平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。
平行线可以用于解决许多几何问题。
有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。
这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。
方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。
这个方法可以在几何证明中使用,以创建所需的形状或角度。
下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。
然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。
这样,你就可以利用这个平行四边形来证明或解决其他几何问题。
方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。
这种方法通常用于证明几何性质。
例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。
然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。
方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。
通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。
然后,利用这些相似三角形的性质来解决几何问题。
例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。
通过观察,可以发现三角形ADE与三角形BCF相似。
这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。
方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。
中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。
这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。
例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。
通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。
数学初三平行四边形中常做的辅助线
数学初三平行四边形中常做的辅助线一、平行四边形的对角线平行四边形有两条对角线,我们可以通过引入对角线来研究平行四边形的性质。
首先,我们可以证明平行四边形的对角线互相平分。
具体证明如下:设平行四边形ABCD的对角线AC和BD相交于点O,连接OA、OB、OC 和OD。
由于平行四边形的两对边分别平行且相等,所以可以得到AO=CO,BO=DO。
又由于AO=CO,BO=DO,所以AOBO和CODA都是菱形。
因为菱形的对角线互相平分,所以AC和BD互相平分。
利用对角线平分的性质,我们可以得到平行四边形中很多有用的结论。
例如,当平行四边形的两对角线相等时,它是一个矩形;当平行四边形的两对角线垂直且相等时,它是一个正方形。
二、平行四边形的中位线平行四边形的中位线是连接相邻两边中点的线段。
通过引入中位线,我们可以研究平行四边形的对应边的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的中位线互相平行且相等;2. 平行四边形的中位线平分平行四边形的面积;3. 平行四边形的中位线长度等于对应边长度的平均值。
三、平行四边形的高线平行四边形的高线是从一个顶点到与对立边垂直相交的线段。
通过引入高线,我们可以研究平行四边形的高度和底边的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的高线互相平行;2. 平行四边形的高线长度相等;3. 平行四边形的高线长度等于底边长度乘以对应高度的比值。
四、平行四边形的角平分线平行四边形的角平分线是从一个内角的顶点到对立边上的一点并且与对立边相交的线段。
通过引入角平分线,我们可以研究平行四边形的内角之间的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的角平分线互相平行;2. 平行四边形的角平分线平分对立角,即对立内角的两个角平分线相交于对立边上的一点。
五、平行四边形的中心连线平行四边形的中心连线是连接两对对边中点的线段。
通过引入中心连线,我们可以研究平行四边形的对角线之间的关系。
做数学怎么懂得做辅助线方法
做数学怎么懂得做辅助线方法几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面给大家分享一些关于做数学怎么懂得做辅助线方法,希望对大家有所帮助。
一.三角形中常见辅助线的添加1. 与角平分线有关的(1) 可向两边作垂线。
(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °二.四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。
下面介绍一些辅助线的添加方法。
1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1) 利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线三.圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
初中数学辅助线常用做法
1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
初中数学中考几何如何巧妙做辅助线大全
人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学辅助线常用做法
初中数学辅助线常用做法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
几何证明例题及常见的添加辅助线方法
几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。
下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。
添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。
然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。
2.证明等腰梯形的对角线垂直。
添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。
通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。
3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。
添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。
通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。
4.证明正方形的对角线互相垂直。
添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。
通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。
5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。
添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。
通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。
以上是几个常见的几何证明例题及其对应的添加辅助线方法。
在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。
但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。
几何辅助线的常见做法
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册
《平行四边形》题型解读7 直角坐标系中的平行四边形【知识梳理】: 1.总体解题分析思路线:2.常见添辅助线方法:①过平行四边形顶点作坐标轴的垂线段,把点的坐标转化成线段长; ②连接对角线,利用中点坐标公式求解点的坐标;【典型例题】例1.已知如图,平行四边形ABCD 的边AB 在轴上,顶点D 在轴上,AD=4,AB=5,点A 的坐标为(-2,0),则 点B 的坐标为____________, 点C 的坐标为____________, 点D 的坐标为____________ 【解题过程】作CE ⊥x 轴,∵点A 的坐标为(-2,0),∴OA=2,∵四边形ABCD 是平行四边形,∴AD=BC=4,AB=CD=5,∴OB=3,∴BE=2,在Rt △OAD 中,由勾股定理可得OD=2√3,∵∠DAO=∠CBE,OA=BE=2,∠AOD=∠CEB=90º,∴△AOD ≌△BEC,∴CE=OB=2√3,∴B(3,0)、D(0,2√3)、C(5,2√3).例2.如图,在平面直角坐标系中,AB//OC ,A (0,12),B (a,12),C (b,0),且满足b =√a −21+√21−a +16. 动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒). (1)求B ,C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?请求出此时P ,Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.【解题过程】(1)∵b =√a −21+√21−a +16,∴√a −21≥0,√21−a ≥0,∴a=21,∴b=16,∴B(21,12)、C(16,0); (2)如图1,由题可知:AP=2t,PB=21-2t ,OQ=t,QC=16-t ,∵当四边形PQCB 是平行四边形时,∴PB=QC ,即21-2t=16-t ,解得t=5,此时AP=10,OQ=5,∵AB//OC ,∴点B 、P 的纵坐标相同,∴P(10,12)、Q(5,0)。
平行四边形中的辅助线
平行四边形中辅助线问题知识点一:平行四边形有关的辅助线作法第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等第二类:平移对角线,把平行四边形转化为梯形。
例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例3已知:如图,四边形ABCD 为平行四边形。
求证:222222DA CD BC AB BD AC +++=+第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。
例4:已知:如图,在正方形ABCD 中,F E ,分别是CD 、DA 的中点,BE 与CF 交于P 点,求证:AB AP =证明:第五类:延长一边上一点与一顶点连线,把平行四边形转化为平行线型相似三角形。
第六类:把对角线交点与一边中点连结,构造三角形中位线例5已知:如图,在平行四边形ABCD 中,BN AN =,BC BE 31=,NE 交BD 于F ,求BD BF :综上所述,平行四边形中常添加辅助线是:连对角线,平移对角线,延长一边中点与顶点连线等,这样可将平行四边形转化为三角形(或特殊三角形)、矩形(梯形)等图形,为证明解决问题创造条件。
知识点二:和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例7 如图,在△ABC 中,∠ACB=90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,且AE=AC ,EF//BC 交AD 于点F ,求证:四边形CDEF 是菱形.分析:要证明四边形CDEF 是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD 是∠BAC 的平分线,AE=AC ,可通过连接CE ,构造等腰三角形,借助三线合一证明AD 垂直CE.求AD 平分CE.例8 如图,四边形ABCD 是菱形,E 为边AB 上一个定点,F 是AC 上一个动点,求证EF+BF 的最小值等于DE 长.分析:要证明EF+BF 的最小值是DE 的长,可以通过连结菱形的对角线BD ,借助菱形的对角线互相垂直平分得到DF=BF ,然后结合三角形两边之和大于第三边解决问题.说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.知识点三:与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例9如图,已知矩形ABCD 内一点,PA=3,PB=4,PC=5.求 PD 的长.分析:要利用已知条件,因为矩形ABCD ,可过P 分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD 与PA 、PB 、PC 之间的关系,进而求到PD 的长.知识点四:与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例10如图,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.求证:∠BCF=21∠AEB.分析:由BE//AC ,CF//AE ,AE=AC ,可知四边形AEFC 是菱形,作AH ⊥BE 于H ,根据正方形的性质可知四边形AHBO 是正方形,从AH=OB=21AC ,可算出∠E=∠ACF=30°,∠BCF=15°.说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO ,进一步得到菱形,借助菱形的性质解决问题.知识点五:与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4) 延长两腰构成三角形;(5)作两腰的平行线等.例11 已知,如图,在梯形ABCD 中,AD//BC ,AB=AC ,∠BAC=90°,BD=BC ,BD 交AC 于点0.求证:CO=CD.分析:要证明CO=CD ,可证明∠COD=∠CDO ,由于已知∠BAC=90°,所以可通过作梯形高构造矩形,借助直角三角形的性质解决问题.说明:在证明线段相等时,一般利用等角对等边来证明,本题作梯形的高将梯形转化为矩形和直角三角形,进而根据直角三角形知识解决.例12 如图,在等腰梯形ABCD 中,AD//BC ,AC ⊥BD ,AD+BC=10,DE ⊥BC 于E.求DE 的长.分析:根据本题的已知条件,可通过平移一条对角线,把梯形转化为平行四边形和直角三角形,借助勾股定理解决.说明:当有对角线或垂直成梯形时,常作梯形对角线的平行线,构造平行四边形,等腰三角形或直角三角形来解决.知识点六:和中位线有关辅助线的作法例13 如图,在四边形ABCD中,AC于BD交于点0,AC=BD,E、F分别是AB、CD 中点,EF分别交AC、BD于点H、G.求证:OG=OH.分析:欲证0G=OH,而OG、OH为同一个三角形的两边,又E、F分别是AB、CD 中点,所以可试想作辅助线,构造三角形中位线解决问题.说明:遇中点,常作中位线,借助中位线的性质解题.。
平行四边形辅助线的常见添法
平行四边形辅助线的常见添法1. 什么是平行四边形?在几何学中,平行四边形是一种特殊的四边形,它具有两对对立边分别平行。
一个平行四边形有以下特点: - 两对对立边分别平行 - 对立角相等 - 对角线互相平分在解决几何问题时,我们经常需要在平行四边形中绘制一些辅助线来帮助我们理解和解决问题。
接下来,我们将介绍一些常见的平行四边形辅助线的添法。
2. 垂直平分线垂直平分线是指通过一个角的顶点并垂直于对立边的直线。
在一个平行四边形中,通过任意一个内角的顶点作垂直于对立边的直线可以将该对立边等分为两个相等部分。
3. 中位线中位线是指连接两个相邻顶点并且与对立边中点重合的直线。
在一个平行四边形中,通过连接两个相邻顶点并且与对立边中点重合的直线可以将该平行四边形分成两个面积相等的三角形。
4. 对角线对角线是指连接两个非相邻顶点的直线。
在一个平行四边形中,通过连接两个非相邻顶点的直线可以将该平行四边形分成两个对角线互相平分的三角形。
5. 高线高线是指从一个顶点到对立边的垂直距离。
在一个平行四边形中,通过从一个顶点到对立边的垂直距离可以找到该平行四边形的高。
6. 平行四边形的性质除了上述常见的添法外,平行四边形还具有一些其他重要性质: - 相邻内角互补- 对立内角互补 - 相邻外角互补 - 对立外角互补 - 内角和为180度 - 外角和为360度这些性质使得我们在解决几何问题时可以利用平行四边形的特性来简化问题或者得出结论。
7. 总结通过本文介绍,我们了解了常见的平行四边形辅助线的添法。
这些辅助线可以帮助我们更好地理解和解决平行四边形相关的几何问题。
同时,我们也了解到平行四边形具有一些重要的性质,这些性质在解决几何问题时起到了关键作用。
希望通过本文的介绍,读者对于平行四边形辅助线的常见添法有了更深入的理解,并能够在实际问题中灵活运用。
初中数学几何题解题技巧
初中数学几何题解题技巧一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中数学关于添加辅助线的方法总结
初中数学关于添加辅助线的方法总结 辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
添加辅助线的几种方法。
添辅助线有二种情况:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
▌2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此〝添线〞应该叫做〝补图〞!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边那么要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时那么添中位线,当有中位线三角形不完整时那么需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点那么可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,那么可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初中数学辅助线常用做法
1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
平行四边形辅助线的常见添法
平行四边形辅助线的常见添法平行四边形是一种特殊的四边形,其对边平行且相等。
在平面几何中,我们常常需要绘制平行四边形,而平行四边形的绘制又离不开辅助线。
本文将介绍平行四边形的常见添法及其应用。
一、基础概念1. 平行四边形:对边分别平行且相等的四边形。
2. 辅助线:在图形中引入的额外直线,以便更容易地进行计算或绘制。
二、常见添法1. 中点法中点法是最简单也是最基础的添法之一。
它的原理是在两条对角线上各取一个中点,然后连接这两个中点即可得到平行四边形。
步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线;(3)在AC和BD上各取一个中点E和F;(4)连接EF即可得到平行四边形。
2. 三角形法三角形法也是一种简单易懂的添法。
它的原理是在原来图形上构造一个与之相似但比例不同的三角形,然后通过旋转或移动这个三角形,使其与原来的图形组成平行四边形。
步骤如下:(1)在原来的四边形ABCD上选择一个顶点A;(2)连接AC和AD两条边;(3)以A为顶点,做一个与△ACD相似但比例不同的三角形AEF;(4)将三角形AEF沿着AD旋转或移动到AB上,得到平行四边形ABFE。
3. 重心法重心法是一种比较常用的添法。
它的原理是在四边形的对角线交点处作一条平行于其中一条边的直线,然后将这条直线延长至四边形另一侧,再将这两条直线分别延长至与四边形相交即可得到平行四边形。
步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线,并求出它们的交点O;(3)在O点处作一条平行于CD的直线EF,并延长至BC上;(4)将EF和BD分别延长至与AC相交,即可得到平行四边形ABFE。
4. 中垂线法中垂线法也是一种比较实用的添法。
它的原理是在任意一侧边上取一点,然后分别连接这个点与对角线的中点,再将这两条线段延长至另一侧边上即可得到平行四边形。
步骤如下:(1)画出任意一个四边形ABCD;(2)在AB上取一点E,并连接EC和AD的中点F;(3)在BC上取一点G,并连接AG和BD的中点H;(4)将EF和GH分别延长至CD上,即可得到平行四边形EFGH。
平行四边形辅助线的方法
平行四边形辅助线的方法利用一组对边平行且相等构造平行四边形例1如图,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE 是平行四边形求证:OE与AD互相平分(说明:当已知条件中涉及到平行且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线够建平行四边形)利用两组对边平行构造平行四边形例2如图,在△ABC中,E、F为AB上两点AE=BF,ED∥AC,FG∥AC,交BC分别为D、G求证:ED+FG=AC(说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题)利用对角线互相平分构造平行四边形例3如图,已知AD是△ABC的中线,BE交AC于E,交AD于F且AE=EF,求证:BF=AC(说明:本题通过利用对角线互相平分构建平行四边形,实际上是采用了平移法构建平行四边形。
当已知中点或中线应思考这种方法)1、如图,在平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10。
求平行四边形的面积。
2、如图,在△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC3、如图,在等边△ABC中,D、E分别为CB,BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1) △ACD≌△CBF(2)四边形CDEF为平行四边形4、已知平行四边形ABCD中,AE⊥BC于E,DF平分∠ADC交线段AE于F(1)如图1,若AE=AD, ∠ADC=60°,直接写出CD与AF+BE之间的数量关系(2)如图2,若AE=AD,你在(1)中得到的结论是否依然成立?若成立,加以证明:若不成立,请说明理由。
5、如图,△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM 与BN相交于点P,求证:∠BPM=45°6、如图,在RT△ABC中, ∠ABC=90°CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE.求证:FK∥AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
一、连对角线或平移对角线:
例 1 如图1,E是平行四边形ABCD中AB延长线上一点,ED交BC于F,求证:。
例2 如图2,平行四边形ABCD中,对角线AC、BD交于O,AC=a+b,BD=a+c(),AB=m,求m的取值范围。
二、过顶点作对边的垂线构造直角三角形
例3 如图3,平行四边形ABCD中,∠DBC=,DE⊥DB交BC的延长线于E,AD=a,DE=b,求。
例4 如图4,平行四边形ABCD的周长为40,∠ABC=,E、F是BD上的三等分点,AE的延长线交BC于M,MF的延长线交AD于N,设,,试求y与x的函数关系。
三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
例5 如图5,平行四边形ABCD中,N是AB中点,BE=,NE与BD交于F,求的值。
例6 如图6,平行四边形ABCD中,O是对角线交点,F是AB延长线上一点,OF交BC于E,AB=a,BC=b,BF=c。
求BE长。
四、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
例7 如图7,正方形ABCD中,E、F分别为CD、DA的中点,BE、
CF交于P,求证AP=AB。
例8 如图8,平行四边形ABCD中,E、F分别是DC、DA上一点,AE=CF,AE与CF交于P,求证PB平分∠APC。
五、过顶点作对角线的垂线,构成线段平行或三角形全等
例9 如图9,E是平行四边形ABCD对角线BD上一点,EF⊥BC,EG⊥BA,垂足分别为F、
G,求证:。
例10 如图10,ABCD是正方形,BE∥AC,AE=AC,CF∥AE,求证:∠AEB=2∠BCF。