大学物理习题课
大学物理《光的偏振、衍射》习题课课件
( AC BD) (a b)(sin sin ) k (2).
水平线下方的角度取负号即可。
11
6. 以波长为 = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为
d = 2.10 mm、缝宽为a = 0.700 mm的光栅上,入射角为i = 30.0°,求能看
成的半波带数目为
(A) 2 个. (B) 4 个. (C) 6 个. (D) 8 个.
答案:(B)
根据半波带法讨论,单缝处波阵面可分成的半波带数
目取决于asin 的大小,本题中
ቤተ መጻሕፍቲ ባይዱ
a 4, 300.
a sin 2 4 ,
2
满足单缝衍射暗条纹的公式: a sin 2k , (k 1,2...)
到哪几级光谱线.
解:(1) 斜入射时的光栅方程
光栅 透镜
屏
G L2
C
d sin i
d sin d sin i k k = 0,±1,±2,…n
第k 级谱线
n
i
分析在900 < < 900 之间,可呈现的主极大:
i = 30°,设 = 90°, k = kmax1,则有
d sin
kmax1 (d / )(sin 90 d sin 30) 2.10
解: a b 1 mm 3.33μm 300
(1) (a + b) siny =k, ∴ k= (a + b) sin24.46°= 1.38 mm
∵ R=0.63─0.76 mm, B=0.43─0.49 mm,第二级开始会有谱线重叠。
对于红光,取k=2 , 则 R=0.69 mm; 对于蓝光,取k=3, 则 B=0.46 mm.
大学物理习题课2(1)
解: 两个载同向电流的长直导线在
I
I
b
如图坐标x处所产生的磁场为: B 0 (1 1 ) 2 x x r1 r2
r2
a
r1
O
x
选顺时针方向为线框回路正方向,则:
BdS
0
Ia
r1 b
(
d
x
r1 b
dx
)
2 r1 x
r1 x r1 r2
0 Ia ln( r1 b r2 b )
(C) 只适用于一个匝数很多,且密绕的螺绕环.
√ (D) 适用于自感系数L一定的任意线圈.
6 、两个质点各自作简谐振动,它们的振幅相同、周期相同.第
一个质点的振动方程为x1 = Acos(ωt + a).当第一个质
点从相对于其平衡位置的正位移处回到平衡位置时,第二个质
点正在最大正位移处.则第二个质点的振动方程为
之间的夹角.
16 (本题4分)如果从一池静水(n=1.33)的表面反射出
来的太阳光是线偏振的,那么太阳的仰角(见图)大致
等于______3_7_°________在这反射光中的矢量的
方向应_____垂_直__于_入__射_面________.
阳光
三、计算题:
17 (本题10分)AA‘和CC’为两个正交地放
初相一样为π/2。
合振动方程: y Acos(2t 1 )
2
(2) x =λl /4处质点的速度:
v d y /dt 2Asin(2t 1 )
2
2Acos(2t )
20 (本题10分)用波长为500 nm (1 nm=10-9 m)的单色光 垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反 射光的干涉现象中,距劈形膜棱边l = 1.56 cm的A处是从棱 边算起的第四条暗条纹中心. (1) 求此空气劈形膜的劈尖角q; (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光 的干涉条纹,A处是明条纹还是暗条纹? (3) 在第(2)问的情形从棱边到A处的范围内共有几条明纹? 几条暗纹?
第一章质点运动学习题课
质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课
大学物理习题课1
v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2
1 2
t
2 2 1
(B)
(C)
a g sin
a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理光学习题课
(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e
长江大学《大学物理》习题课2
3、有一半径为R的单匝圆线圈,通以电流I,若将 该导线弯成匝数N = 2的平面圆线圈,导线长度不 变,并通以同样的电流,则线圈中心的磁感强度 和线圈的磁矩分别是原来的
(A) (B) (C) (D) 4倍和1/8. 4倍和1/2. 2倍和1/4. 2倍和1/2.
4、如图所示的一细螺绕环,它由表面绝缘的导线 在铁环上密绕而成,每厘米绕10匝.当导线中的 电流I为2.0 A时,测得铁环内的磁感应强度的大小 B为1.0 T,则可求得铁环的相对磁导率 r 为(真空 7 1 磁导率 0 4 10 T m A ) (A) (B) (C) (D) 7.96×102 3.98×102 1.99×102 63.3
4、一根同轴线由半径为R1的长导线和套在它外面 的内半径为R2、外半径为R3的同轴导体圆筒组 成.中间充满磁导率为μ的各向同性均匀非铁磁绝
缘材料,如图.传导电流I沿导
线向上流去,由圆筒向下流回,
R3 R2 R 1 I
在它们的截面上电流都是均匀
分布的.求同轴线内外的磁感 强度大小B的分布.
I
B
A R O C D E
cos36°=0.8090)
2、如图所示,一无限长直导线通有电流I =10 A,在
一处折成夹角θ =60°的折线,求角平分线上与导线
的垂直距离均为r =0.1 cm的P点处的磁感强度.
( 0 4 107 T m A1 )
r P r
3、半径为R的无限长圆筒上有一层均匀分布的面电 流,这些电流环绕着轴线沿螺旋线流动并与轴线方向 成 角.设面电流密度(沿筒面垂直电流方向单位长 度的电流)为i,求轴线上的磁感强度
(A) 21 212
(B) 21 12 (C) 21 12 1 (D) 21 12 2
大学物理习题课答案
A O V1
B1 B2 B3
V2
A→B1等压过程 A→B2等温过程 V A→B3绝热过程
绝热过程:dQ0,T1V11
1
T2V2
V2 V1
6.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A的温度为TA= 300 K,求
(1) 气体在状态B、C的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).
循环中,传给低温热源的热量是从高温热源吸取热量的
[(C)]
(A) n 倍.
(B) n-1倍.
(C) 1 倍. n
(D) n 1 倍. n
高温热源的热力学温度为T1,高温热源的热力学温度为T2,则T1 nT2,
从高温热源吸收的热量为Q1
M Mmol
RT1
lnV2 V1
传给低温热源的热量为Q2
M Mmol
2p1 A
3 2
p 1V
p1
B
O V1 2V1 V
AB过程中系统作功,即是体积功:A=p1V112p1V1 32p1V
状态方程:pV= M RT,理想气体的内能为E= M i RT
Mmol
Mmol 2
E0
6. 0.02 kg的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积
Q=
M M mol
CP
(T2
T1 )
1.04103 J
理想气体的内能为E= M i RT,E 623J, M mol 2
A=Q E 417J
(3)绝热过程Q 0
E
M M mol
CV
(T2
T1)
623J
大学物理 习题课(刚体)
J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
大学物理 力学习题课
i j y My k z Mz
4、基本概念:
1)质心:
2)惯性力: 3)力矩:
F惯 ma0
M r F
m
rc
i
M r F x Mx
4)角动量: 5)功:
L r P x
i
j y Py
k z Pz
表示速度, a
表示加速度,S表示路程,a t 表示切向加速度,下列表达式中, (1) dv / dt at (2) dv / d t a
[D (4) dr / dt v (B) 只有(2)、(4)是对的. (D) 只有(3)是对的.
]3、某人骑自行车以速率V源自正西方向行驶,遇到由北向南刮的 风(设风速大小也为V),则他感到的风是从 [C] A)东北方向吹来 B)东南方向吹来 C)西北方向吹来 D)西南方向吹来
dA F dr
b
Px
b F dr F cosds
a
A dA a 6)保守力: F dr 0
7)势能:
E p (r )
r0
r
F dr
0 z
①重力势能:
EP (m gdz m gz )
大学物理刚体力学习题课
l 1 1 2 mg sin mgl sin ( ml ml 2 ) 2 2 2 3 9g 3 2 sin g sin / l 4l 2
m m
9 g cos 16l
角加速度对应于该位置的力矩
l 1 2 mg cos mgl cos ( ml ml 2 ) 2 3
12. 一长为l ,质量为 M的均匀木棒,可绕水平轴O在 竖直平面内转动,开始时棒自然地竖直下垂,今有 一质量m、速率为v的子弹从A点射入棒中,假定A点 与O点的距离为3l/4,求:(1)棒开始运动时的角速度; (2)棒的最大偏转角。
解:对题中非弹性碰撞,角动量守恒,
3 3 2 1 mv l J J m( l ) Ml2 4 4 3 36ml (27m 16 M )l
mg T ma
O
Tr J
J m( g a)r 2 / 2
2 gt J mr 2 ( 1) 2s
a r
由已知条件v0 = 0, 得
1 2 s at a 2 s / t 2 2
m
9. 如图所示,滑轮为质量均匀分布的圆柱体,其质 量为m轮,半径为r,在绳与轮缘的摩擦力作用下旋转。 忽略桌面与物体间的摩擦。设m1=50 kg, m2=200 kg, m轮=15 kg, r=0.1 m,计算该系统中物体m1和m1的加 速度。
解:细杆由初始位置竖直位置,机械能守恒
1 1 L 2 2 J 0 J1 mg (1 cos ) 2 2 2
0
60
v0
碰撞前后角动量守恒, 取为角 动量正向 mv0 L J1 (J mL2 )2 系统竖直位置由初始位置
1 L 1 2 ( J mL2 )2 Mg (1 cos ) mgL(1 cos ) ( J mL2 ) 2 2 2 2
大学物理 热学习题课
1
Va 1 Tb ( ) Ta 424 K Vb
VcTb Tc 848 K Vb
1
c
bc为等压过程,据等压过程方程 Tb / Vb = Tc / Vc 得
O
d a Vb Vc Va V
cd为绝热过程,据绝热过程方程
TcVc
TdVd , (Vd Va )
1
第10章
理想气体模型
气体分子运动论
统计假设
k
PV vRT
P P 2 n 3 kT k k 2 3 T E
M i E RT 2
dN f ( v ) dv N
麦克丝韦 分布率
v2
3RT
vp
2 RT
8RT
v
z 2d 2 v n
v 1 z 2d 2 n
Nf ( v )dv
v0
v0
f ( v )dv
v d N vNf (v) d v
v0—— ∞间的分子数 v0—— ∞间的分子的速率和
v0
dN Nf ( v )dv
v0
v0
vdN vNf ( v )dv
v0
(3) 多次观察一分子的速率,发现其速率大于v0 的 几率= ———。 dN N v v 所求为v0—— ∞间的分子 f (v)dv 数占总分子数的百分比 N N v
M i RT 2 M i RT 2
吸收热量Q
M i RT 2
摩尔热容C
CV i R 2
等容 等压 等温
p/T=C V/T=C pV=C
pVγ=C1 Vγ-1T=C2 pγ-1T-γ=C3
大学物理第二章习题课
6
作业. 两块并排的木块A和B,质量分别为m1和m2,静止地放置在光滑的水 平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为t1 和t2,木块对子弹的阻力为恒力F,则子弹穿出后,木块A的速度为______, 木块B的速度大小为_______.
F t1 m1 m2
F t1 F t2 m1 m2 m2
u dt
l
船岸
0
M m 0 狗船
M m
S
狗离岸的距离为 S S0 S
S
L l
S
S0
S
S0
M M
m
l
S l L l(1 m ) M l M m M m 17
17
作业. 有两个自由质点,质量分别为 m1和m2 ,他们之间只有万有引 力作用,开始时,两质点相距为 l ,处于静止状态。求当它们相距 l /2
[ C]
(A) ①、②是正确的。
(B) ②、③是正确的。
(C) 只有②是正确的。
(D) 只有③是正确的。
势能与保守力作功的一般关系: W Δ E p
物体沿闭合路径运动一周时, 保守力对它所作的功等于零。 l F保 d r 0
功不仅与力有关,还与位移有关!
5
2.填空题
教材、作业. 质量为m的小球,用轻绳AB、
L1
Δ
L
质点系的角动量定理(积分形式):作用于质点组的合
外力矩的冲量矩等于质点组角动量的增量。
4
教材. 对功的概念有以下几种说法:
① 保守力作正功时,系统内相应的势能增加。
② 质点运动经一闭合路径,保守力对质点作的功为零。
③ 作用力与反作用力大小相等、方向相反,所以两者所作功的
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理习题课
小球在O '点产生电场:Ev2O' 0
v EO
r3 3 0 a3
ar
v EO'
ar 3 0
(2)空腔内任取一点P点,O’P为b,OP为r
大球在P点产生电场:
Ò v r E1P dS
v E1P
rr 3 0
v E1P
4πr2
1
0
4 3
πr3
小球在P点产生电场:
dl'
AO
E
1
4 0
(a2
Qz z2 )3 2
解:将圆盘分割成许多同心的圆环:
dq 2 rdr
该圆环在P点的场强方向沿z轴,大小为:
dE=
z 2 0
(r 2
rdr z2
)3
2
因此,P点的总场强积分如下:
E
R dE z
0
2 0
R rdr 0 (r2 z2 )3 2
(2)场强叠加原理:
vv v
v
E E1 E2 ... En
nv Ej
j 1
1
4 0
n j 1
qj rj2
rvj0
(3)电荷连续分布:
v
E
1
4 0
dq r2
rv0
静电场的高斯定理:
通过任意闭合曲面S的电通量Φe,等于该闭合曲面内所有 电荷电量的代数和∑q除以ε0,与闭合曲面外的电荷无关。
当z
l,E=
l 2 0
z
2
Q
4 0
z
2
即点电荷
• 一均匀带电薄圆盘,半径为R,电荷面密度为σ.试求:
大学物理复习习题课
7. 由绝热材料包围的容器被隔板隔为两半,左边是理想 气体,右边真空.如果把隔板撤去,气体将进行自由膨 胀过程,达到平衡后气体的温度__________(升高、降低 或不变),气体的熵__________(增加、减小或不变).
答案: 不变, 增加
p
8. 一定量理想气体的循 环过程如 p-V 图所示,
V2 V1
c
b
V1
V2
V
V2 V2 RT RT ln RT ln dV a b V1 V1 V
Q2 = n CV,m D T = CV,m
(TaTc) C V,mTa (1
V1 Tc V1 Q2 C V,mTa (1 ) C V,mTa (1 ) C V,mTb (1 ) V2 Tb V2
故
Wacbda 1000 J
15. 2 mol 氦气初态的温度t1 =27℃,且体积V1 =20l。 先等压 膨胀使体积倍增,之后绝热膨胀至原温度。已知 cp,m=20.79Jmol-1 K-1 求 1)画 出p —V 图. 2)求过程中氦气的吸热. 3) 求过程氦气的内能变化. 4) 求过程气体做的总功.
3 5 C v, mATA C v, mBTB 2 RTA 2 RTB T 362.5 K 3 5 C v, mA C v, mB R R 2 2
设A、B两部分初态的体积为VA、 VB , 末态的体积为V A 、 V B ,则有 A He B N2
VB VA VB VA
等温线 绝热线
或者由准静态绝 热方程判定
V
g 1
T C
10. 图中两卡诺循环 h1 h2 吗 ?
p
W1
W1 W2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 刚体的定轴转动2、(0116)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间? 3、(0979)一电唱机的转盘以n = 78 rev/min 的转速匀速转动.(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B . (2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度 及转过的圈数N . 4、(0115)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 5、(0156)如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221AA A r m J =和221B B B r m J =) 6、(0157)一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示). 7、(0159)一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10-3 kg ·m 2.一变力F =0.5t (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度. 8、(0163)一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 9、(0307)长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为 ,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?10、(0131)有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径). 11、(0303)质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s 1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.第6章 狭义相对论基础1、(4170)一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少? 2、(4364)一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少? 3、(4500)一电子以=v 0.99c (c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?(电子静止质量m e =9.11×10-31 kg)第5章 刚体的定轴转动(答案)2、(0116)解:设在某时刻之前,飞轮已转动了t 1时间,由于初角速度ω 0=0则 ω1β=t 1 ① 1分而在某时刻后t 2 =5 s 时间内,转过的角位移为222121t t βωθ+= ② 2分将已知量=θ100 rad , t 2 =5s , =β 2 rad /s 2代入②式,得ω1 = 15 rad /s 1分从而 t 1 = ω1/=β 7.5s即在某时刻之前,飞轮已经转动了7.5S 1分3、(0979)解:(1) 转盘角速度为602782π⨯=π=n ωrad/s=8.17 rad/s 1分P 点的线速度和法向加速度分别为v = r =8.17×0.15=1.23 m/s 1分a n = 2r =8.172×0.15=10 m/s 2 1分(2) 1517.800-=-=t ωβrad/s 2=-0.545 rad/s 2 1分21517.821221⨯⨯π=π=t ωN =9.75 rev 1分 4、(0115)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ 3分总摩擦力矩 mgR M M R μ32d 0==⎰ 1分故平板角加速度 =M /J 1分设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==422θβω 2分可得 g R MJ n μωωπ16/342020=π=1分5、(0156)解:根据转动定律 f A r A = J A A ① 1分其中221A A A r m J =,且 f B r B = J B B ② 1分其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A A = r B B ③ 1分由①、②式,有 BB B A A A B A B A B A B A r m r m r J r J f f ββββ== ④由③式有 A / B = r B / r A 将上式代入④式,得 f A / f B = m A / m B = 21 2分6、(0157)解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J ② 2分由运动学关系有: a = r ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分 7、(0159)解:根据转动定律 M =J d / d t 1分即 d =(M / J ) d t1分其中 M =Fr , r =0.1 m , F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得ad =50t d t 1分则1 s 末的角速度 1=⎰1050t d t =25 rad / s2分8、(0163)解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J 1分其中 4/30sin 21mgl mgl M == 1分于是 2rad/s 35.743 ===lgJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lgJ M β 1分9、(0307)解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) . 1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg =1分f = N 2 1分 解得 222/tg h L h h x -=⋅=μθμ 1分10、(0131)解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量 守恒. 1分设J 0和 0、J 和 分别为收缩前后球体的转动惯量和角速度, 则有J 0 0 = J ①2分由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2/ 5代入①式得 = 4 01分即收缩后球体转快了,其周期442200T T =π=π=ωω1分周期减小为原来的1 / 4. 11、(0303)解:由人和转台系统的角动量守恒J 1 1 + J 2 2 = 0 2分其中 J 1=300 kg ·m 2, 1=v /r =0.5 rad / s , J 2=3000 kg m 2∴ 2=-J 1 1/J 2=-0.05 rad/s 1分人相对于转台的角速度 r = 1- 2=0.55 rad/s1分∴ t =2 /r ω=11.4 s 1分第6章 狭义相对论基础(答案) 1、(4170)解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、(4364)解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m 则 t 1 = L /v =2.25×10-7s 3分(2) 宇航员测得飞船船身的长度为L 0,则 t 2 = L 0/v =3.75×10-7 s 2分3、(4500)解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分(2) 20v 21e K m E == 4.01×10-14 J22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ =K K E E /08.04×10-2 3分。