数值分析作业答案

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析作业答案

数值分析作业答案

. 证明:(1). 假如 A 是对称正定矩阵,则 A 1也是对称正定矩阵(2). 假如 A 是对称正定矩阵,则 A 能够独一地写成 A L T L ,此中 L 是拥有正对角元的下三角矩阵。

证明:(1). 因 A 是对称正定矩阵,故其特点值i皆大于 0 ,所以 A 1的特点值i 1也皆大于 0 。

因此i1也皆大于 0 ,故 A 是可逆的。

又(A 1)T(A T) 1 A 1则 A 1也是对称正定矩阵。

(2).由A是对称正定,故它的全部次序主子阵均不为零,进而有独一的杜利特尔分解~A LU 。

又u111u12u1nu11u11 u221u2 nU DU 0u22u nn1此中 D 为对角矩阵,U0为上三角矩阵,于是~ ~A L U LDU0由 A 的对称性,得~A A T U0T D L T由分解的独一性得U 0T ~ L进而~ ~A LDL T由 A 的对称正定性,假如设D i (i 1,2, ,n) 表示A的各阶次序主子式,则有d1 D1 0 , d i D i 0 , i 2,3, , nD i 1故d1 d1 d1d2 d2 d2 Dd n d n d n1 1D2D2所以~11~ ~1~1LL T,A LD2D2 L T LD2(LD2)T~1此中 L L D 2为对角元素为正的下三角矩阵。

. 用列主元消去法解线性方程组12 x1 3x2 3x3 1518 x1 3x2 x3 15x1 x2 x3 6并求出系数矩阵 A 的队列式(即 det A )的值。

解18 3 1 15 ( A b) r1 r2 12 3 3 151 1 1 62m2131m311818 3 1 15 0 1 7 / 375 m32 0 7 /6 17 /18 631/ 618 3 1 150 1 7 / 3 50 0 11/ 3 11所以解为 x3 3 , x2 2 , x1 1,det A 66 。

. 用追赶法解三对角方程组Ax b ,此中2 1 0 0 0 1 1 2 1 0 0 0 A012 1 0 , b 0 。

《数值分析》所有参考答案

《数值分析》所有参考答案
解:
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)

当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)

当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时


, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得

,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析作业答案

数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。

(1)用单项式基底。

(2)用Lagrange 插值基底。

(3)用Newton 基底。

证明三种方法得到的多项式是相同的。

解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。

数值分析-课后习题答案

数值分析-课后习题答案
(2)如果A为对称正定矩阵,则Cond2(A)=1/n,1和n 分别为A的最大和最小特征值.
证明 (1)A正交,则ATA=AAT=E,Cond2(A)=A2A-12=1. (2)A对称正定,ATA=A2, A2=1. A-12=1/n.
精选课件
12
三.习题3 (第75页)
3-2.讨论求解方程组Ax=b的J迭代法和G-S迭代法的收
计算结果如下:
x x 1 2 ( (k k 1 1 ) ) 3 2 1 2 .x 5 2 (x k ) 1 (k 1 )
k
J法x1(k)
0
1.01
1
0.98
2
2.03
3
1.94
4
5.09
5
4.82
6
14.27
J法x2(k) 1.01 0.485 0.53 -1.045 -0.91 -5.635精选课件 -5.23
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
3 4精1选 课件
1
1
5
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1

数值分析参考答案

数值分析参考答案

1、确定参数p 、q 、r,使得迭代212512,,,...k k k kqa ra x px k x x +=++==(16分) 解:迭代方程225(),1,2,...qa ra x px k x xϕ=++== 2'3625(),qa ra x p x x ϕ=-- 2''47630(),qa ra x x x ϕ=+ 利用局部收敛性与收敛阶定理4知要使收敛的阶尽可能高,需满足'*''*()0()0x x ϕϕ== 又知 **()x x ϕ= 则可得到以下式子:22235027609qa ra p qa ++=--==......1 ......2 ......3 由以上三式可解得:2539p r a==- 收敛的阶数为3。

题外话:解这样比较复杂的方程组,不太适合手算,最好自己利用MATLAB 编写一个小程序:附带自编小程序:syms p q r a ;s1='sqrt(3)*p+(q*a)/3+(r*a^2)/(9*sqrt(3))=sqrt(3)';s2='p-(2*q*a)/(3*sqrt(3))-(5*r*a^2)/27=0';s3='(6*q*a)/9+(30*r*a^2)/(27*sqrt(3))=0';[p,q,r]=solve(s1,s2,s3,p,q,r)2、用MATLAB编程求著名的Van Der Pol 方程210()x x x x '''+-+= 的数值解并绘制其时间响应曲线和状态轨迹图(给出源程序)(14分)解:先建立一个函数文件fname.m :function xdot=fname(t,x)xdot=zeros(2,1);xdot(1)=(1-x(2)^2)*x(1)-x(2);xdot(2)=x(1);调用函数文件fname.m 求Van Der Pol 方程的数值解并绘制时间响应曲线和状态轨迹图:ts=[0 30]; %设置仿真时间30秒x0=[1;0]; %设置仿真初值[t,x]=ode45('fname',ts,x0);subplot(1,2,1),plot(t,x)subplot(1,2,2),plot(x(:,1),x(:,2))3、试确定常数A ,B ,C ,使得数值求积公式)1()()0()(110Cf x Bf Af dx x f ++≈⎰具有尽可能高的代数精度。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

数值分析第二章作业答案

数值分析第二章作业答案

第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。

证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。

2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。

解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。

解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。

,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。

1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。

数值分析最佳习题(含答案)

数值分析最佳习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6 设x 的相对误差为%a ,求nx y =的相对误差。

(完整版)数值分析课后习题答案

(完整版)数值分析课后习题答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析详细答案(全)

数值分析详细答案(全)

第二章 插值法习题参考答案2.)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0)(2+-+-⋅+------⋅-+-+-+⋅=x x x x x x x L3723652-+=x x . 3. 线性插值:取510826.0,693147.0,6.0,5.01010-=-===y y x x ,则620219.0)54.0()54.0(54.0ln 0010101-=-⋅--+=≈x x x y y y L ;二次插值:取510826.0,693147.0,916291.0,6.0,5.0,4.0210210-=-=-====y y y x x x ,则)54.0(54.0ln 2L ≈))(()54.0)(54.0())(()54.0)(54.0())(()54.0)(54.0(120210221012012010210x x x x x x y x x x x x x y x x x x x x y ----⋅+----⋅+----⋅==-0.616707 .6. i) 对),,1,0(,)(n k x x f k==在n x x x ,,,10 处进行n 次拉格朗日插值,则有)()(x R x P x n n k +=)())(()!1(1)(0)1(0n n ni k j j x x x x f n x x l --++=+=∑ ξ由于0)()1(=+ξn f,故有kni k j jxx x l≡∑=0)(.ii) 构造函数,)()(kt x x g -=在n x x x ,,,10 处进行n 次拉格朗日插值,有∑=-=ni j k j n x l t x x L 0)()()(.插值余项为 ∏=+-+=--nj j n n kx x n g x L t x 0)1()()!1()()()(ξ, 由于).,,2,1(,0)()1(n k g n ==+ξ故有 .)()()()(0∑=-==-ni j k j n kx l t x x L t x令,x t =即得 ∑==-ni j k jx l t x)()(.8. 截断误差].4,4[),)()((61)(2102-∈---=ξξx x x x x x e x R其中 ,,1210h x x h x x +=-= 则hx x 331+=时取得最大值321044392|))()((|max h x x x x x x x ⋅=---≤≤- .由题意, ,10)392(61|)(|6342-=⋅⋅≤h e x R所以,.006.0≤h16. ;1!7!7!7)(]2,,2,2[)7(71===ξf f .0!7)(]2,,2,2[)8(810==ξf f19. 采用牛顿插值,作均差表:i x)(i x f一阶均差 二阶均差0 1 20 1 11 0-1/2],,[))((],[)()()(210101000x x x f x x x x x x f x x x p x p --+-+=))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第三章 函数逼近与计算习题参考答案4.设所求为()g x c =,(,)max(,),max (),min ()a x ba x bf g M c m c M f x m f x ≤≤≤≤∆=--==,由47页定理4可知()g x 在[],a b 上至少有两个正负交错的偏差点,恰好分别为()f x 的最大值和最小值处,故由1(),()2M c m c c M m -=--=+可以解得1()()2g x M m =+即为所求。

数值分析习题答案

数值分析习题答案

第一章 绪论3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:**1 1.1021x =,**20.031x =, **3385.6x =, **456.430x =,**57 1.0.x =´解:*1 1.1021x =是五位有效数字;是五位有效数字;*20.031x =是二位有效数字;是二位有效数字; *3385.6x =是四位有效数字;是四位有效数字;*456.430x =是五位有效数字;是五位有效数字; *57 1.0.x =´是二位有效数字。

是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

题所给的数。

解:解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x e e e e e -----=´=´=´=´=´ ***124***1244333(1)()()()()1111010102221.0510x x x x x x e e e e ----++=++=´+´+´=´***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x e e e e ---=++=´´´+´´´+´´´»**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x e e e ---+»´´+´´=´= 6.设028Y =,按递推公式11783100n n Y Y -=- (n=1,2,n=1,2,……)计算到100Y 。

数值分析习题-答案

数值分析习题-答案

答案:1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 根据绝对误差计算相对误差的公式:*2121**.0105.010.01021r n n mn nm a a a a a a x x x ε=⨯≤⨯⨯≤--- (1) 05.10,0498756.10101*11===x x5****52310975.410211012437.005.10101---⨯<==⨯<⨯=-xr εεε(2) 2*22109901.0,990099009900.01011-⨯===x x 5****528-10055.01021109909900.0990100.01011---⨯<==⨯<⨯=-x r εεε(3) 111211==x4***42*310545.4,01021,01112111121--⨯==⨯==-==或或x x r εεε(4) 303.2,302585.2-)1.0ln(*41-===x x4****41310117.2102110414907.0330.2--)1.0ln(---⨯<==⨯<⨯=x r εεε )(1.2 1.2下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位数。

位效数字,有,位效数字或精确值,有位效数字,有位效数字,有位效数字,有2101,1021100.54101,1021,5000410159.0,1021,50.31410166.0,1021,3015.0310159.0,1021,0315.02*24*3*54*44**44*42**34*40**23*31**1-----------⨯=⨯=⨯=⨯=⨯==⨯=⨯==⨯=⨯==⨯=⨯==r r r r r x x x x x εεεεεεεεεε1.3 为了使31的近似值的相对误差不超过0.1%, 问应取几位有效数字? %1.010105.1333.0105.03--**=≤=⨯=⨯≤--n nxx x ,取n=4位有效数字 1.4 怎样计算下列各题才能使得结果比较精确?(1) 2sin)2cos(2sin )sin(εεε+=-+x x x(2) )1(11arctan arctan )1arctan(112++=-+=+⎰+N N N N xdx N N或2)5.0(11++N三个公式计算结果比较1e+001 9.00876529e-003 9.00876529e-003 8.98876404e-003 1e+002 9.90000987e-005 9.90000987e-005 9.89976488e-0051e+003 9.99000001e-007 9.99000001e-007 9.98999751e-007 1e+004 9.99899998e-009 9.99900000e-009 9.99899998e-009 1e+005 9.99991042e-011 9.99990000e-011 9.99990000e-011 1e+006 1.00010961e-012 9.99999000e-013 9.99999000e-013 1e+007 1.00944643e-014 9.99999900e-015 9.99999900e-015 1e+008 -4.33680869e-019 9.99999990e-017 9.99999990e-017 1e+009 7.80625564e-017 9.99999999e-019 9.99999999e-019 1e+010 -6.94973593e-017 1.00000000e-020 1.00000000e-020(3) xx x x x x x x x x x cos 1sin sin )cos 1(sin sin )cos 1()cos 1)(cos 1(sin cos 12+=+=++-=- (4) oo oo o o o21sin 21cos 11cos 11sin 1cos 11cos 11cos 1222=-+=+-=-或 (5) +⨯+⨯+=-9-6-3-001.010311021101!!e(6))11010ln()11010(1ln)11010()11010)(11010(ln)11010ln(848484848484-+-=-+=-+-+--=--1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。

数值分析作业答案——第五版

数值分析作业答案——第五版

数值分析第一次作业及参考答案1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1),(1)用Lagrange 插值求二次插值多项式。

(2)构造差商表。

(3)用Newton 插值求二次插值多项式。

解:(1)Lagrange 插值基函数为0(1)(2)1()(1)(2)(01)(02)2x x l x x x +-==-+-+-同理 1211()(2),()(1)36l x x x l x x x =-=+故2202151()()(1)(2)(2)(1)23631i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑(2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为0112155(1)[,]4,[,]20(1)12f x x f x x ---==-==-----0124(2)[,,]102f x x x ---==-22()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?解:()40000(),(),[4,4],,,, 1.xk x f x e fx e e x x h x x h x x th t ==≤∈--+=+≤考察点及(3)200044343()()[(()]()[()]3!(1)(1)(1)(1)3!3!2.(4,4).6fR x x x h x x x x ht t tet h th t h e heξξ=----+-+≤+⋅⋅-=≤∈-则436((1)(1)100.006.t t th h--+±<<在点取到极大值令 得3.求2()f x x=在[a,b]上的分段线性插值函数()hI x,并估计误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。

(1)用单项式基底。

(2)用Lagrange 插值基底。

(3)用Newton 基底。

证明三种方法得到的多项式是相同的。

解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。

6、在44≤≤-x 上给出xe xf =)(的等距节点函数表,若用二次插值求e x 的近似值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有),(),)()()((!31)(11112+-+-∈---'''=i i i i i x x x x x x x x f x R ξξ式中.,11h x x h x x i i +=-=+-3434114239313261))()((max 61)(11h e h e x x x x x x e x R i i i x x x i i =≤---=+-≤≤+-令6341039-≤h e 得00658.0≤h插值点个数12178.12161)4(41≤=---+N 是奇数,故实际可采用的函数值表步长006579.0121681)4(4≈=---=N h8、13)(47+++=x x x x f ,求]2,,2,2[710Λf 及]2,,2,2[810Λf 。

解:由均差的性质可知,均差与导数有如下关系:],[,!)(],,,[)(10b a n fx x x f n n ∈=ξξΛ 所以有:1!7!7!7)(]2,,2,2[)7(71===ξf f Λ 0!80!8)(]2,,2,2[)8(81===ξf f Λ15、证明两点三次Hermite 插值余项是),(,!4/)())(()(1212)4(3++∈--=k k k k x x x x x x fx R ξξ并由此求出分段三次Hermite 插值的误差限。

证明:利用[x k ,x k+1]上两点三次Hermite 插值条件)()(),()()()(),()(11331133++++'=''='==k k k k k k k k x f x H x f x H x f x H x f x H 知)()()(33x H x f x R -=有二重零点x k 和k+1。

设2123)())(()(+--=k k x x x x x k x R确定函数k(x):当k x x =或x k+1时k(x)取任何有限值均可;当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数2123)())(()()()(+----=k k x x x x x k t H t f t g显然有)(,0)(0)(,0)(,0)(11='='===++k k k k x g x g x g x g x g在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得0)(,0)(21='='ηηg g在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈,),(212ηηη∈k 和),(123+∈k k x ηη使得0)()()(321=''=''=''k k k g g g ηηη再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得0)()4(=ξg而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到)(),(!41)(1,)4(+∈=k k x x f t k ξξ 推导过程表明ξ依赖于1,+k k x x 及x综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限:记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。

nab h n k kh a x k -==+=),,1,0(,Λ 在区间[x k ,x k+1]上有212)4(212)4()()(max )(max !41!4/)())(()()(1+≤≤≤≤+--≤--=-+k k x x x bx a k k h x x x x x f x x x x f x I x f l k ξ而最值)(,161)1(max )()(max 4422102121sh x x h h s s x x x x k s k k x x x l k +==-=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4x f h x I x f bx a h ≤≤≤-16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,0)1()1(='=p p ,1)2(=p 。

解:满足0)0()0(33='=H H ,1)1()1(33='=H H 的Hermite 插值多项式为)1,0(10==x x322213332010)1(01001121)]()()()([)(x x x x x x x x H x a x H x H j j j j j -=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---='+=∑=β设223)1()()(-+=x Ax x H x P ,令1)2(=P 得41=A 于是222232)3(41)1(412)(-=-+-=x x x x x x x P 第3章 曲线拟合的最小二乘法解:经描图发现t 和s 近似服从线性规律。

故做线性模型{}t span bt a s ,1,=Φ+=,计算离散内积有:()611,1502==∑=j ,()7.140.59.30.39.19.00,15=+++++==∑=j j t t()63.530.59.30.39.19.00,222222502=+++++==∑=j j t t t()280110805030100,150=+++++==∑=j js s()10781100.5809.3500.3309.1109.000,5=⨯+⨯+⨯+⨯+⨯+⨯==∑=jj j s t s t求解方程组得:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛107828063.537.147.146b a 855048.7-=a ,253761.22=b运动方程为:t s 253761.22855048.7+-= 平方误差:[]2252101.2)(⨯≈-=∑=j j jt s sδ用最小二乘法求形如2bx a y +=的经验公式,并计算均方差。

解: {}2,1x span =Φ,计算离散内积有:()511,142==∑=j ,()53274438312519,122222422=++++==∑=j j x x()72776994438312519,444444422=++++==∑=j jx x x()4.2718.973.730.493.320.19,14=++++==∑=j jy y()5.3693218.97443.73380.49313.32250.1919,22222422=⨯+⨯+⨯+⨯+⨯==∑=j j jy xy x求解方程组得:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛5.3693214.2717277699532753275b a 972579.0≈a ,05035.0=b所求公式为:205035.0972579.0x y+=均方误差:[]1226.0)(2124≈⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-=∑=j jj y x y δ 第4章 数值积分与数值微分1、确定下列求积分公式中的待定参数,使其代数精度尽量高,并其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)1121()[(1)2()3()]/3f x dx f f x f x -≈-++⎰;(4)20()[(0)()]/2[(0)()]hf x dx h f f h ah f f h ''≈++-⎰。

相关文档
最新文档